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1 Introduction and survey on clustering for symbolic data

Clustering is a multivariate statistical technique that aims at collecting similar
objects in homogeneous clusters, on the basis of observed values for a set of
variables. The constructed clusters may be organized according to different
set-theoretical structures: partitioning methods construct a partition of the
set of objects with non-overlapping clusters, usually optimizing some suitable
criterion, whereas hierarchical and pyramidal clustering methods produce a
system of nested and stratified clusters. For a good overview on cluster analysis
see, for instance, Jain et al. (1999) or Gordon (1999).

In this paper, we present a partitioning clustering method based on the dy-
namic clustering methodology. Dynamical clustering (Diday (1972), Diday
and Simon (1976)), also known as k-means, alternating minimization etc.,
provides a general framework for non-hierarchical clustering which has given
rise to many different particular methods for special clustering methods and
data cases. The method allows to obtain a partition of a set Ω = {1, ..., n} of
objects into a given number k of clusters, by optimizing a criterion that evalu-
ates the fit between the cluster members and their representatives. The general
algorithm proceeds by an iterative application of a class assignment function
that allows to form clusters, and a corresponding representation function that
determines the class representatives (prototypes) of the formed clusters, un-
til convergence is attained. Various special algorithms result from different
choices of the dissimilarity measure used by the assignment function, and
of the representation space: centroids (Diday (1972)), factorial axes (Bock
(1974), Ok-Sakun (1975)), probability laws (Schroeder (1976)), etc.

In the classical data table model each row represents an individual (or object)
and each column represents a variable. In particular, each individual takes
just one single value for each variable. In practice, however, many situations
do not fit this simple model since there are several values or categories for
each variable, possibly even with frequencies or weights. Such data, together
with the idea of producing results which are directly interpretable in terms of
the input variables, have led to the development of Symbolic Data Analysis.
Thereby new types of variables - interval-type, categorical multi-valued, and
modal variables - have been introduced which allow to represent the variability
and/or uncertainty that underly the observed data (Bock and Diday (2000)).
The main objective of Symbolic Data Analysis is to extend classical data
analysis techniques to such ‘symbolic’ data whereby the input data and the
output results may both be expressed within the same formalism, based on
the notion of a ‘symbolic object’.

As far as clustering is concerned, the problem consists in developing methods
that allow to cluster a set of individuals described by symbolic data and to
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produce classes which are directly interpretable in terms of the input variables.
Nowadays, many clustering methods for symbolic data have been proposed
which differ in the type of the considered symbolic variables, in their cluster
structures and/or in the considered clustering criteria (see Bock and Diday
(2000), Bock (2004)).

Several authors have addressed the problem of non-hierarchical clustering for
symbolic data. Diday and Brito (1989) used a transfer algorithm to parti-
tion a set of symbolic objects into clusters described by weight distribution
vectors. Ralambondrainy (1995) extended the classical k-means clustering
method in order to deal with data characterized by numerical and categorical
variables, and complemented his method by a characterization algorithm to
provide a conceptual interpretation of the resulting clusters. El-Sonbaty and
Ismail (1998) have presented a fuzzy k-means algorithm to cluster data on
the basis of different types of symbolic variables. Gordon (2000) presented
an iterative relocation algorithm to partition a set of symbolic objects into
classes so as to minimize the sum of the description potentials of the classes.
Verde et al. (2001) introduced a dynamic clustering algorithm for symbolic
data considering context-dependent proximity functions where the cluster rep-
resentatives are weight distribution vectors. Bock (2002) has proposed several
clustering algorithms for symbolic data described by interval variables, based
on a clustering criterion and thereby generalized similar approaches in classical
data analysis. Chavent and Lechevallier (2002) proposed a dynamic clustering
algorithm for interval data where the class representatives are defined by an
optimality criterion based on a modified Hausdorff distance. More recently,
Souza and De Carvalho (2004) have proposed partitioning clustering meth-
ods for interval data based on city-block distances, also considering adaptive
distances.

In this paper, we address the problem of clustering interval data. A partition-
ing clustering method is presented which allows to cluster objects described
both by classical quantitative and interval-type variables. It is based on the
dynamic clustering approach and uses a Minkowski-like distance of L2 type
(Ichino and Yaguchi (1994)) which results as a special case of the distance
introduced by De Carvalho and Souza (1998). Each cluster is represented by
a class prototype that is a vector of intervals such that, for each coordinate or
variable, the corresponding interval has, as its lower bound, the average of all
lower bounds of the intervals of all cluster members, and the average of the
upper bounds of these intervals as its upper bound. This is a ’most typical’
class prototype under a vertex-type dissimilarity measure for interval vectors
Bock (2004).

When clustering quantitative data, standardization is an important issue In-
deed, the result of any clustering method depends heavily on the scales used
for the variables: modifying the scales of single variables may disturb or de-
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stroy a natural clustering whereas, inversely, natural clustering structures can
sometimes only be detected after an appropriate rescaling of variables before
running a clustering algorithm (e.g., by transforming all variables to the same
standard deviation). In this paper, we address the standardization problem for
interval variables and propose three alternative standardization techniques.
The two first ones are based on the usual mean-and-variance paradigm, but
differ in the way of measuring the dispersion of a set of intervals: the first
one measures the overall dispersion by the dispersion of the interval centers
whereas the second one uses the dispersion of the interval boundaries. The
third method transforms the interval variables such that the resulting global
range becomes the full unit interval [0, 1].

After having obtained a clustering of the underlying objects by an algorithm,
it is important to interpret and evaluate its classes. Celeux et al. (1989) have
introduced a family of indices to interpret a partition of classical quantitative
data, based on the notion of ’inertia’. In this paper, we adapt these indices to
the case of interval data and propose various indices for evaluating the quality
of a partition, the homogeneity and eccentricity of the individual clusters,
and the role played by the different variables in the cluster formation process.
Typically, all resulting clusters may be represented by symbolic objects which
provide a conceptual description directly in terms of the observed variables.
We will consider two alternative descriptions: a first one by using the cluster
representatives, and a second one which provides a ’generalizing description’
of the cluster. By computing the degree of overlap of the symbolic descriptions
of pairs of clusters, we may then evaluate their mutual separation.

The proposed methods have been tested on simulated and real data. Two
simulated data sets have been generated, one with well separated clusters
and another one with overlapping clusters, so as to study the performance of
the method under three alternative standardizations. Our evaluation of the
clustering results is based on an external validity index, i.e., the corrected
Rand index (Hubert and Arabie (1985)), in the framework of a Monte Carlo
study with 100 replications of each data set. The mean and standard deviation
of the values of the external validity index are computed for each method.
Additionally, our method has been applied to a real data-set consisting of
33 car models described by 8 interval variables. In this study we analyze the
role of the different variables in the clustering process and stress the need
for standardization. Moreover, we explore the potentialities of the proposed
family of interpretation indices.

Section 2 recalls the dynamic clustering approach. Section 3 introduces sym-
bolic data and specifies the data model considered in our method. Section 4
presents our clustering algorithm and discusses the influence of the selected
distance measure. Section 5 addresses the standardization issue. In Section
6, we propose tools for the interpretation of the obtained partition. Section
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7 presents and discusses the results of our numerical experiments. Finally,
Section 8 concludes and opens perspectives for further developments.

2 Dynamic Clustering

Dynamic clustering (Diday and Simon (1976)) is a non-hierarchical clustering
method that determines a partition of a set Ω = {1, ..., n} of objects into a
fixed number k of clusters by optimizing a criterion W that evaluates the
fit between the clusters and their representatives. The method requires the
suitable definition of a ’representation’ of a given set of objects (a cluster
representative or prototype) which may be a central object, a subset of objects,
an interval, a function, etc. Starting from a set of class representatives or from
an initial partition (random or user defined), the method applies an assignment
function followed by a cluster representation function and iterates these steps
in turn until convergence is achieved.

In the following we consider a suitable set L of ’admissible’ class representa-
tives (the representation space) and denote by Lk = (L)k the set of all k-tuples
of admissible representatives L = (`1, . . . , `k) (one for each cluster). Let Pk

denote the family of all partitions P = (P1, . . . , Pk) of Ω into the given number
k of non-empty clusters, and D(`h, Ph) a dissimilarity measure between a class
representative `h and a cluster Ph (a low value indicates a good fit between `h

and Ph). In this paper, we consider a clustering criterion of the form

W (P,L) =
k

∑

h=1

D(`h, Ph) (1)

which can be considered as a mapping W : Pk × Lk −→ <+. Our clustering
problem consists in finding a pair (L∗, P ∗) ∈ Pk × Lk that minimizes W, i.e.,
such that

W (P ∗, L∗) = min{W (P,L) : P ∈ Pk, L ∈ Lk}. (2)

In this paper the dissimilarity (heterogeneity) measure D(`, P ) is obtained by
considering a dissimilarity measure ϕ(x, y) for elements x, y of the representa-
tion space L (later on this will be the set Ip of all p-dimensional rectangles of
<p) and summing up over all individuals ωi of the class P (with corresponding
data rectangles xi ∈ L):

D(`, P ) :=
∑

ωi∈P

ϕ(`, xi) ` ∈ L, P ⊂ Ω. (3)
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A dynamic clustering (or k-means) algorithm is defined in terms of an assign-
ment function f and a representation function g. They are defined as follows:

The assignment function f : Lk −→ Pk is the function that assigns to each k-
tuple L = (`1, . . . , `k) of class prototypes a k-partition f(L) = P = (P1, ..., Pk)
of objects with classes defined by the minimum-dissimilarity rule:

Ph := {ω ∈ Ω : D(`h, {ω}) ≤ D(`m, {ω}), 1 ≤ m ≤ k}, h = 1, . . . , k(4)

where in the case of ties an object ω is assigned to the prototype (class) with
the smallest index.

The representation function g : Pk −→ Lk is a function that assigns to each
partition P = (P1, . . . , Pk) a system g(P ) = L = (`1, . . . , `k) of class represen-
tatives in such a way that, for each class Ph, `k is the ’most typical element’
in Lk in the sense:

`h = argmin`∈L D(`, Ph) h = 1, . . . , k. (5)

In order to obtain a well-defined function g we assume that for each subset
Ph ⊆ Ω there exists a unique ` ∈ L that minimizes D(Ph, `) in Lk.

Applying iteratively the representation function (4) followed by the assignment
function (5) in turn decreases steadily the values W (P, L) of the clustering
criterion (1) until a local minimum is attained that depends on the data and,
typically, on the initial configuration.

Along the lines of this general approach, different specific clustering approaches
have been developed that are distinguished by the choice of the clustering
criterion (1), i.e., the dissimilarity function D and the representation space
L which may include, e.g., the centroids (Diday (1972)), the factorial axes
(Bock (1974), Ok-Sakun (1975)), a probability law (Schroeder (1976)), etc.

3 Symbolic Data

There are numerous practical situations where the information gathered for n
individuals ω1, ..., ωn is too complex to be represented by a classical data table
where each individual ωi takes exactly one value xij for each of p variables
j = 1, ..., p. In particular, there are cases when some variables take more
than just one single value for each individual. For example, the time needed
for a person (individual) to go to work varies from day to day (between 20
to 40 minutes, say), and the means of transportation that is used may be
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different over time (e.g., car or bus or ...). In the first case, the “value” for
the variable “time” is an interval (here [20, 40]), and in the second case, the
variable “transportation mean” is a frequency distribution (for example: car
40%, bus 60%). This type of data is called ’symbolic data’.

Such data arise typically in cases where the investigated objects are not sin-
gle individuals, but classes of individuals for which some internal (intra-class)
variability must be taken into account. For instance, the variable “gender” of
the class “people working in a given enterprise” is described by a frequency
distribution: 70% male and 30% female. Another example is provided by sit-
uations where there is some inaccuracy or uncertainty in (or after) recording
the value of a (classical) variable (e.g., due to measurement errors or ’soft’
answers); when describing such variables by a distribution of values, we ob-
tain probabilistic, possibilistic or fuzzy data that constitute another kind of
symbolic data.

To process and analyze symbolic data new types of variables have been intro-
duced (Bock and Diday (2000)). A variable is called

– a set-valued variable if its “values” are nonempty sets of the underlying do-
main; more specifically it is called
– a multi-valued (categorical) variable if its “values” are finite subsets of the
underlying domain (e.g., of an alphabet, of a set of categories,...), and
– an interval variable if its “values” are intervals of <1. Moreover,
– a modal variable is a multi-state variable where, for each object (e.g. a class
of individuals) we are given a set of categories and, for each category, a fre-
quency or probability which indicates how frequent, likely, or plausible that
category is for this object. In the case where an empirical distribution is given,
the variable is called a histogram variable.

When looking for the set of all individuals of Ω (or the set of all objects,
classes,...) which share some specific properties the following concept may be
useful: A symbolic object is a conjunction of conditions on the values taken by
the variables, each one of the form [Y (ω) R d] where Y is a symbolic variable
(observed for all ω ∈ Ω), d is a description (i.e., an element of a description
space L), and R is a relation between descriptions. As an example consider the
symbolic description of a group of people participating in a seminar, defined
on the variables age, nationality, sex and staff category:

s = [age ∈ [20, 45]] ∧ [nationality ∈ {French, English}] ∧ [sex ∈ {M}]

Inversely, this symbolic object s can be seen as defining the set of all elements
from Ω that realize the stated conditions. This set is called the extent of s,
the approach can be denoted as ’definition by intent’.

In this paper, we consider symbolic data tables which involve (only) interval
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variables. More specifically, we consider data tables where each individual
(row) ωi, i = 1, . . . , n is described by p interval-type variables Yj, j = 1, . . . , p
such that each cell (i, j) of the data matrix contains an interval: Here each

Table 1

Y1 . . . Yj . . . Yp

ω1 [a11, b11] . . . [a1j , b1j ] . . . [a1p, b1p]

. . . . . . . . . . . .

ωi [ai1, bi1] . . . [aij , bij ] . . . [aip, bip]

. . . . . . . . . . . .

ωn [an1, bn1] . . . [anj , bnj ] . . . [anp, bnp]

ωi ∈ Ω is described by a vector xi = (Ii1, . . . , Iip) of intervals Iij = [aij, bij], j =
1, . . . , p. Notice that we may have aij = bij for some i, j (that means that the
underlying variable is single-valued for the element ωi). To each ωi we can
canonically associate the symbolic object si = [Y1 ∈ Ii1] ∧ . . . ∧ [Yp ∈ Iip].

4 Dynamic Clustering for Interval Data

When defining the clustering criterion (1) for interval data, we consider the
description space L = Ip of p-dimensional rectangles in <p and define the
dissimilarity D(`, P ) between a class representative ` ∈ Ip and a class P ⊂ Ω
by (3) where the dissimilarity φ(xi, `) between two p-dimensional rectangles
` = [u, v] = ([u1, v1], ..., [up, vp]) and xi = [ai, bi] = ([ai1, bi1], ..., [aip, bip]) is
defined by

φ(xi, `) :=
p

∑

j=1

[

|aij − uj|2 + |bij − vj|2
]

. (6)

Obviously, this is the squared Euclidean distance ||(ai, bi) − (u, v)||2 between
the 2p-dimensional points (u, v) and (ai, bi) in <2p that characterize the rectan-
gles ` and xi, respectively. A slight generalization is provided by Minkowski-like
distance between rectangles defined by

φ̃(xi, `) :=
p

∑

j=1
[|aij − uj|q + |bij − vj|q]

1
q (7)

with a fixed exponent q > 1 (see De Carvalho and Souza (1998)). However,
we will only use the definition (6) which results for the choice q = 2.
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The corresponding representation and the assignment functions are then ob-
tained from (4) and (5) as follows:

The representation function g = g(P1, ..., Pk) assigns to each partition P =
(P1, ..., Pk) of Ω the system L = L(P ) := (`1, . . . , `k) of p-dimensional intervals:

`h = ([āh1, b̄h1], . . . , [āhp, b̄hp]) for h = 1, . . . , k (8)

whose lower and upper boundaries are given by the corresponding averaged
boundaries of the data intervals xi = [ai, bi] in the classes Ph:

āhj =
1
|Ph|

∑

ωi∈Ph

aij and b̄hj =
1
|Ph|

∑

ωi∈Ph

bij (9)

for j = 1, . . . , p and h = 1, . . . , k (see, e.g., Bock (2004)).

The assignment function f = f((`1, . . . , `k)) := (P1, . . . , Pk) =: P defined by
(4) is given here by the minimum-distance rule

Ph = {ωi ∈ Ω : ϕ(xi, `h) ≤ ϕ(xi, `m), 1 ≤ m ≤ k} h = 1, ..., k (10)

with the distance measure (6) (in case of ties the cluster with lowest index is
chosen).

Example: In case of the symbolic data table:

Age Weight [kg]

ω1 [30, 40] [48, 55]

ω2 [10, 20] [30, 45]

ω3 20 [45, 50]

Table 2: A 3 by 2 interval-type data table

we find, e.g., ϕ(x1, x3) = 534.0721 and the representative (prototype) rectangle
of the class Ph = {ω1, ω3} is `h = [u, v] = ([25, 30], [46.5, 52.5]).

Inserting the partial solution (8) of the minimization problem (2) in (1), we
see that the clustering problem (2) reduces to minimizing the criterion

W (P,L(P )) =
k

∑

h=1

∑

ωi∈Ph

p
∑

j=1

[

(aij − āhj)2 + (bij − b̄hj)2
]

(11)

by a suitable choice of the partition P . Both will be (approximately) solved
by the dynamic clustering algorithm described above.
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5 Three standardization methods for interval data

It is has been stressed above that clustering results and dissimilarity values
are strongly affected when modifying the scales of variables. Typically, some
standardization must be performed prior to the clustering process. In the case
of interval data we standardize the variables separately, each one in a linear
way with the same transformation for both the lower and the upper bound of
each interval. In the following we describe three alternative standardization
methods.

5.1 Standardization using the dispersion of the interval centers

The first method considers the mean and the dispersion of the interval centers
(midpoints) and standardizes such that the resulting transformed midpoints
have zero mean and dispersion 1 in each dimension.

Formally, for a given variable j, let Iij = [aij, bij], i = 1, . . . , n, the intervals to
be standardized. The mean value and the dispersion of all interval midpoints
(aij + bij)/2) are given by

mj :=
1
n

n
∑

i=1

aij + bij

2
=

1
2
(āj + b̄j) and s2

j :=
1
n

n
∑

i=1

(

aij + bij

2
−mj

)2

, (12)

respectively. With this notation, the data interval Iij is transformed into the
interval I ′ij = [a′ij, b

′
ij] with boundaries

a
′

ij :=
aij −mj

sj
and b

′

ij :=
bij −mj

sj
(13)

where automatically a′ij ≤ b′ij for all i, j. As stated above, the midpoints of
the new intervals I ′ij are standardized with

m
′

j :=
1
n

n
∑

i=1

a′ij + b′ij
2

= 0 (14)

and

s
′2
j :=

1
n

n
∑

i=1

(

a′ij + b′ij
2

−m
′

j

)2

=
1
s2

j

1
n

n
∑

i=1

(

aij + bij

2
−mj

)2

= 1. (15)
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Remark: Note that the mean value mj and the dispersion s2
j verify the usual

property that mj minimizes the mean quadratic deviation Φj(c) = 1
n

∑n
i=1 [(aij+

bij)/2− c]2 with minimum value s2
j = minc Φj(c) = Φ(mj).

5.2 Standardization using the dispersion of the interval boundaries

The second standardization method transforms the intervals Iij such that the
mean and the (joint) dispersion of the rescaled interval boundaries are 0 and
1, respectively. For a given variable j we define the joint dispersion by

s̃2
j =

1
n

n
∑

i=1

(aij −mj)2 + (bij −mj)2

2
(16)

and transform, for i = 1, ..., n, the intervals Iij = [aij, bij] to I ′ij = [a′ij, b
′
ij] with

a
′

ij =
aij −mj

s̃j
and b

′

ij =
bij −mj

s̃j
(17)

with a′ij ≤ b′ij for all i, j. Similarly as before, the new intervals I ′ij = [a′ij, b
′
ij]

are standardized according to (14) and

s̃
′2
j =

1
2n

n
∑

i=1

[

(a
′

ij −m
′

j)
2 + (b

′

ij −m
′

j)
2
]

=
1
2n

n
∑

i=1

[

(a
′

ij)
2 + (b

′

ij)
2
]

= 1. (18)

Remark: Similarly as before, the mean value mj minimizes the joint quadratic
deviation φ̃(c) = [

∑n
i=1 [(aij − c)2 + (bij − c)2]/(2n) and the joint dispersion is

identical to the minimum value: s̃2
j = minc Φ̃(c) = Φ̃(mj) for j = 1, ..., p.

5.3 Standardization using the global range

Our third standardization method transforms, for a given variable, the in-
tervals Iij = [aij, bij] (i = 1, ..., n) such that the range of the n rescaled in-
tervals is the unit interval [0, 1]. Let Minj = Min{a1j, ..., anj} and Maxj =
Max{b1j, ..., bnj} the extremal lower and upper boundary values. With this
notation, we transform the interval Iij = [aij, bij] in the interval I ′ij = [a′ij, b

′
ij]

with boundaries

a
′

ij =
aij −Minj

Maxj −Minj
and b

′

ij =
bij −Minj

Maxj −Minj
(19)

11



with a′ij ≤ b′ij as before. Obviously we have here

Min{a′1j, ..., anj} = 0 and Max{b′1j, ..., bnj} = 1

as desired.

6 Cluster Interpretation

Celeux et al. (1989) have introduced a family of indices for cluster interpreta-
tion for classical quantitative data. These indices come within the framework
of the dynamic clustering algorithm, using the L2 distance, and are based on
the notion of inertia. In this paper we present suitable adaptations of these
indices to interval data.

6.1 Measures based on Inertia

Let P = (P1, . . . , Pk) be the final partition of Ω = {ω1, . . . , ωn} in k clusters,
nh the cardinal of cluster h, and `h = (J1

h, . . . , Jp
h) the representative of cluster

h, with J j
h = [āhj, bhj],where āhj =

1
nh

∑

ωi∈Ph

aij and b̄hj =
1
nh

∑

ωi∈Ph

bij,

h = 1, . . . , k, j = 1, . . . , p.

Let āj =
1
n

n
∑

i=1
aij =

1
n

k
∑

h=1

nhāhj and b̄j =
1
n

n
∑

i=1
bij =

1
n

k
∑

h=1

nhb̄hj,

j = 1, . . . , p. Then the global mean vector is defined as G = (I1, . . . , Ip) with
Ij = [āj, b̄j], j = 1, . . . , p.

6.1.1 Global inertia

The global inertia of the data set is defined as

T =
n

∑

i=1
ϕ(xi, G) =

n
∑

i=1

p
∑

j=1
[(aij − āj)2 + (bij − b̄j)2] =

p
∑

j=1
Tj =

=
k

∑

h=1

T h =
p

∑

j=1

k
∑

h=1

T h
j (20)
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with

T h
j =

∑

ωi∈Ph

[(aij − āj)2 + (bij − b̄j)2] (21)

Tj =
n

∑

i=1
[(aij − āj)2 + (bij − b̄j)2] =

k
∑

h=1

T h
j (22)

and

T h =
∑

ωi∈Ph

ϕ(xi, G) =
p

∑

j=1

∑

ωi∈Ph

[(aij − āj)2 + (bij − b̄j)2] =
p

∑

j=1
T h

j (23)

h = 1, . . . , k, j = 1, . . . , p.

6.1.2 Within-class inertia

The within-class inertia measures the internal dispersion of each cluster; it is
defined as :

W =
k

∑

h=1

∑

ωi∈Ph

ϕ(xi, `h) =
k

∑

h=1

∑

ωi∈Ph

p
∑

j=1
[(aij − āhj)2 + (bij − b̄hj)2] =

=
p

∑

j=1
Wj =

k
∑

h=1

W h =
p

∑

j=1

k
∑

h=1

W h
j (24)

with

W h
j =

∑

ωi∈Ph

[(aij − āhj)2 + (bij − b̄hj)2] (25)

Wj =
k

∑

h=1

∑

ωi∈Ph

[(aij − āhj)2 + (bij − b̄hj)2] =
k

∑

h=1

W h
j (26)

and

W h =
∑

ωi∈Ph

ϕ(xi, `h) =
p

∑

j=1

∑

ωi∈Ph

[(aij − āhj)2 + (bij − b̄hj)2] =
p

∑

j=1
W h

j (27)

h = 1, . . . , k, j = 1, . . . , p.

13



6.1.3 Between-class inertia

The between-class inertia measures the dispersion of the cluster representa-
tives; it is defined as:

B =
k

∑

h=1

nhϕ(`h, G) =
k

∑

h=1

p
∑

j=1
nh[(āhj − āj)2 + (b̄hj − b̄j)2] =

=
p

∑

j=1
Bj =

k
∑

h=1

Bh =
p

∑

j=1

k
∑

h=1

Bh
j (28)

with

Bh
j = nh[(āhj − āj)2 + (b̄hj − b̄j)2] (29)

Bj =
k

∑

h=1

[(āhj − āj)2 + (b̄hj − b̄j)2] =
k

∑

h=1

Bh
j (30)

and

Bh = nh

p
∑

j=1
[(āhj − āj)2 + (b̄hj − b̄j)2] =

p
∑

j=1
Bh

j (31)

h = 1, . . . , k, j = 1, . . . , p.

It is easy to establish that T = W +B, Tj = Bj +Wj, T h = Bh +W h and
T h

j = Bh
j + W h

j , h = 1 . . . , k, j = 1, . . . , p.

6.2 Interpretation indices

The indices presented in this section are the suitable adaptations of the indices
presented in (Celeux et al. (1989)) for the classical case, where the data are
vectors of <p. All these indices range from 0 to 1.

6.2.1 General index

The proportion of inertia explained by the partition is :

R =
B
T

(32)
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The algorithm is designed so as to maximize R. The greater the value of R, the
more homogeneous are the clusters, and the better the elements of a cluster
Ph are represented by its representative `h, h = 1, . . . , k.

6.2.2 Variable contribution

The proportion of inertia of variable j taken into account by the partition is

COR(j) =
Bj

Tj
(33)

By comparing the value of COR(j) with the value of the general index R,
which measures the mean discriminant power of all variables, it may be eval-
uated whether the discriminant power of variable j is above or below the
mean.

The relative contribution of variable j to the between-class inertia is given by

CTR(j) =
Bj

B
(34)

A high value of CTR(j) indicates that variable j has an important contribu-
tion to the separation of the clusters, it varies a lot from cluster to cluster.
In general, CTR(j) varies together with COR(j). An interesting case arises
when COR(j) has a low value and CTR(j) is high, meaning that variable j
has a low discriminant power although it has an important contribution to
inertia (Celeux et al. (1989).

6.2.3 Cluster description

The proportion of the global inertia explained by cluster Ph is

T (h) =
T h

T
(35)

The relative contribution of cluster Ph to the between-class inertia is

B(h) =
Bh

B
(36)

A high value of B(h) indicates that cluster Ph is very distant from the global
center.
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The relative contribution of cluster Ph to the within-class inertia is

W (h) =
W h

W
(37)

A high value of W (h) indicates that cluster Ph is not homogeneous.

6.2.4 Cluster description by variables

The proportion of the discriminant power of variable j taken into account by
cluster Ph is given by

COR(j, h) =
Bh

j

Tj
(38)

A high value of COR(j, h) shows that variable j has an homogeneous be-
haviour among members of cluster h.

The relative contribution of variable j to the between-class inertia explained
by cluster Ph is given by

CTR(j, h) =
Bh

j

Bh (39)

The relative contribution of variable j and cluster Ph to the between-class
inertia is

CE(j, h) =
Bh

j

B
(40)

If CE(j, h) is close to 1, then variable j has a high contribution to the distance
between the representative of Ph and the global mean vector, G, that is, for
variable j, cluster Ph is rather eccentric.

Remark:

For classical quantitative data, where each interval is reduced to one point, the
values of T, Tj, T h, T h

j ,W,Wj,W h,W h
j , B,Bj, Bh and Bh

j , j = 1, . . . , p, h =
1, . . . , k, are multiplied by a factor of 2. Consequently, the global index, the
indices of variable contribution, cluster description and cluster description by
variables, have exactly the same values as those computed in the classical case.

16



6.3 Cluster description by Symbolic Objects

At the end of the algorithm, each cluster Ph of the final partition is represented
by the symbolic object associated to its representative `h, h = 1, . . . , k:

th = [Y1 ∈ J1
h] ∧ . . . ∧ [Yp ∈ Jp

h ] (41)

where J j
h = [āhj, b̄hj], j = 1, . . . , p, h = 1, . . . , k.

Moreover, each cluster may be described by the join (Ichino and Yaguchi
(1994)) of the symbolic objects associated to its members, that is

zh = [Y1 ∈ I1
h] ∧ . . . ∧ [Yp ∈ Ip

h] (42)

where Ij
h = [Minωi∈Phaij, Maxωi∈Phbij], j = 1, . . . , p, h = 1, . . . , k.

Notice, however, that this description, providing a generalization of the cluster,
may be influenced by outliers, and two descriptions may overlap even if no
member of the corresponding clusters do.

Let us also consider

th ∧ th′ = [Y1 ∈ R1] ∧ . . . ∧ [Yp ∈ Rp] (43)

where Rj = [Max{āhj, āh′j}, Min{b̄hj, b̄h′j}] if Max{āhj, āh′j} ≤ Min{b̄hj, b̄h′j},
otherwise, Rj = ∅, j = 1, . . . , p; h, h′ = 1, . . . , k. Analogously for zh ∧ zh′ .

Two matrices, A and B may then be computed, respectively for representatives
and joint descriptions, that allow to evaluate the degree of overlap between
cluster descriptions:

Ak×k = (αh h′ ), αh h′ =
ln π(th ∧ th′ )

ln π(th′ )
, (44)

Bk×k = (βh h′ ), βh h′ =
ln π(zh ∧ zh′ )

ln π(zh′ )
(45)

where π(u) =
p

∏

j=1

[

1 + (ūj − uj)
]

if u = [Y1 ∈ [u1, ū1]] ∧ . . . ∧ [Yp ∈ [up, ūp]] is

a symbolic object. We have 0 ≤ αh h′ ≤ 1 and 0 ≤ βh h′ ≤ 1, h, h′ = 1, . . . , k.

High values of αh h′ and βh h′ indicate that the corresponding clusters are not
well separated. High values in B indicate that the corresponding clusters may
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have some overlap in the borders, whereas high values in A result from overlap
in the representatives, meaning that the two clusters are not separated.

7 Experimental results

The method described above has been applied to simulated and real data, so
as to study its performance.

7.1 Simulated data

We simulated two standard quantitative data sets in <2. Each data set has
450 points scattered among four clusters of unequal sizes: two clusters sizes
150, one cluster with size 50 and one cluster with size 100. The data points
of each cluster in each data-set were drawn according to a bi-variate normal
distribution with mean vector µ and covariance matrix Σ represented by:

µ =







µ1

µ2





 and Σ =







σ2
1 ρ σ1σ2

ρ σ1σ2 σ2
2







Data-set 1 shows well-separated clusters (Figure 1).

Fig. 1. Seed Points for data-set 1

The data points of each cluster in this data set were drawn according to the
following parameters:

• Cluster 1: µ1 = 5, µ2 = 250, σ1 = 5, σ2 = 30, ρ = 0.7;

18



• Cluster 2: µ1 = 35, µ2 = 320, σ1 = 5, σ2 = 30, ρ = 0.8;
• Cluster 3: µ1 = 25, µ2 = 200, σ1 = 5, σ2 = 5, ρ = −0.7;
• Cluster 4: µ1 = 5, µ2 = 400, σ1 = 5, σ2 = 5, ρ = −0.8.

Data-set 2 shows overlapping clusters (Figure 2):

Fig. 2. Seed Points for data-set 2

The data points of each cluster in this second data set were drawn according
to the following parameters:

• Cluster 1: µ1 = 5, µ2 = 250, σ1 = 5, σ2 = 30, ρ = 0.7;
• Cluster 2: µ1 = 25, µ2 = 320, σ1 = 5, σ2 = 30, ρ = 0.8;
• Cluster 3: µ1 = 25, µ2 = 250, σ1 = 5, σ2 = 5, ρ = −0.7;
• Cluster 4: µ1 = 10, µ2 = 350, σ1 = 5, σ2 = 5, ρ = −0.8.

Each data point (x1, x2) in Figures 1 and 2 is a seed of a vector of intervals
(rectangle): ([x1 − γ1/2, x1 + γ1/2], [x2 − γ2/2, x2 + γ2/2]). The parameters
γ1, γ2 are randomly selected from the same predefined interval. The intervals
considered in this paper are: [1, 8], [1, 16], [1, 24], [1, 32], and [1, 40] (see Figures
3, 4, 5 and 6).

The evaluation of these clustering methods was performed in the framework
of a Monte Carlo experience: 100 replications are considered for each interval
data set, as well as for each predefined interval. The mean and the standard
deviation of the corrected Rand (CR) index (Hubert and Arabie (1985)) for
these 100 replications are computed. In each replication the clustering method
is run (until convergence to a stationary value of the adequacy criterion W )
50 times and the best result, according to the criterion W , is selected.

The CR index assesses the degree of agreement (similarity) between an a priori
partition (in our case, the partition defined by the seed points) and a partition
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Fig. 3. Non-standardized interval data, data-set 1

Fig. 4. Interval data standardized using the dispersion of the interval centers,
data-set 1

provided by the clustering algorithm. The CR index was used because it is not
sensitive to the number of clusters in the partitions neither to the distributions
of the objects in the clusters.

If U = {u1, . . . , ur, . . . , uR} is a partition obtained by the clustering algorithm,
and V = {v1, . . . , vc, . . . , vC} is a a priori partition, the CR index between U
and V is defined as:

CR =

R
∑

i=1

C
∑

j=1

(

nij

2

)

−
(

n
2

)−1 R
∑

i=1

(

ni.

2

) C
∑

j=1

(

n.j

2

)

1
2





R
∑

i=1

(

ni.

2

)

+
C

∑

j=1

(

n.j

2

)



−
(

n
2

)−1 R
∑

i=1

(

ni.

2

) C
∑

j=1

(

n.j

2

)
(46)

where nij denotes the number of objects in clusters ui and vj; ni. indicates the

20



Fig. 5. Non-standardized interval data, data-set 2

Fig. 6. Interval data standardized using the dispersion of the interval centers,
data-set 2

number of objects in cluster ui; n.j indicates the number of objects in cluster
vj; and n is the total number of objects.

The index CR can take values in the interval [-1,1], where the value 1 indicates
a perfect agreement between the partitions, whereas values close to 0 (or
negative) corresponds to cluster agreements found by chance.

Table 2 shows the values of the mean and the standard deviation of the CR
index values for the different method and seed points, for the first data-set
(well separated clusters).

Table 3 shows the values of the mean and the standard deviation of the CR
index values for the different methods and seed points, for the second data-set
(overlapping clusters).

The values in tables 2 and 3 show that standardization, performed by either
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Table 2
Mean and Standard Deviation of the CR index values for the different methods and
seed points, for the first data-set

Predefined No stand. Stand. 1 Stand. 2 Stand. 3

intervals Mean SD Mean SD Mean SD Mean SD

[1, 8] 0.595 0.00123 0.956 0.00078 0.954 0.00080 0.942 0.00745

[1, 16] 0.595 0.00164 0.949 0.00275 0.949 0.00346 0.926 0.0137

[1, 24] 0.589 0.00185 0.956 0.00080 0.954 0.00253 0.918 0.0145

[1, 32] 0.591 0.00166 0.946 0.00481 0.929 0.0111 0.928 0.0113

[1, 40] 0.597 0.00177 0.943 0.00351 0.936 0.00728 0.927 0.00788

Table 3
Mean and Standard Deviation of the CR index values for the different methods and
seed points, for the second data-set

Predefined No stand. Stand. 1 Stand. 2 Stand. 3

intervals Mean SD Mean SD Mean SD Mean SD

[1, 8] 0.359 0.00048 0.645 0.00887 0.639 0.01245 0.605 0.0172

[1, 16] 0.357 0.00049 0.651 0.00844 0.597 0.0183 0.560 0.0193

[1, 24] 0.358 0.00044 0.656 0.01015 0.548 0.0198 0.559 0.0181

[1, 32] 0.360 0.00086 0.648 0.00956 0.523 0.0189 0.518 0.0156

[1, 40] 0.357 0.00049 0.638 0.0105 0.525 0.0134 0.496 0.0136

of the three proposed methods, greatly improves the clustering results, as
expected. For data-set 1, with well-separated clusters, the method applied to
standardized data produced very good results, returning partitions which are
very close to the a priori partition.

Among the three standardization methods, the standardization using the dis-
persion of the interval centers produces results that are always slightly better
than those produced by the two other methods, while standardization using
the global range produced slightly worse results in each case.

7.2 The ‘Car’ example

The ‘car’ data-set consists of a set of 33 car models described by 8 interval,
2 categorical multi-valued and one nominal variables (see table 4). In this ap-
plication, only the 8 interval variables - Price, Engine Capacity, Top Speed,
Acceleration, Step, Length, Width and Height - have been considered for clus-
tering purposes, the nominal variable Car Category has been used as a a priori
classification.

The dynamic clustering method described in Section 4 has been applied to
this data-set for k = 4 clusters, first without a prior standardization, and then
applying each of the three standardization methods introduced in Section 5.
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Table 4
‘Car’ data-set with 8 interval and one nominal variables

Price Engine . . . Height Category

Capacity

Alfa 145 [27806, 33596] [1370, 1910] . . . [143, 143] Utilitarian

Alfa 156 [41593, 62291] [1598, 2492] . . . [142, 142] Berlina

. . . . . . . . . . . . . . . . . .

Porsche 25 [147704, 246412] [3387, 3600] . . . [130, 131] Sporting

Rover 25 [21492, 33042] [1119, 1994] . . . [142, 142] Utilitarian

Passat [39676, 63455] [1595, 2496] . . . [146, 146] Luxury

The a priori classification, indicated by the suffix attached to the car model
denomination, is as follows:

Utilitarian:
1-Alfa 145/U 5-Audi A3/U 12-Punto/U 13-Fiesta/U 17-Lancia Y/U

24-Nissan Micra/U 25-Corsa/U 28-Twingo/U 29-Rover 25/U 31-Skoda Fabia/U

Berlina:
2-Alfa 156/B 6-Audi A6/B 8-BMW serie 3/B 14-Focus/B

21-Mercedes Classe C/B 26-Vectra/B 30-Rover 75/B 32-Skoda Octavia/B

Sporting:

4-Aston Martin/S 11-Ferrari/S 15-Honda NSK/S 16-Lamborghini/S

19-Maserati GT/S 20-Mercedes SL/S 27-Porsche/S

Luxury:

3-Alfa 166/L 7-Audi A8/L 9-BMW serie 5/L 10-BMW serie 7/L

18-Lancia K/L 22-Mercedes Classe E/L 23-Mercedes Classe S/L 33-Passat/L

The results of the clustering method are summarized in table 5, where Stand.
1 denotes standardization using the dispersion of the interval centers, Stand.
2 denotes standardization using the dispersion of the interval bounds, and
Stand. 3 denotes standardization using the global range.

The clustering method produced the same partition with all three standard-
ization methods, which is rather different than that obtained without stan-
dardization. This partition gathers all Berlina cars in one Cluster (Cluster 1),
all Sporting cars in another cluster (Cluster 3), and forms one cluster with
most Utilitarian cars (Cluster 2) and another with most Luxury cars (Cluster
4). It is clear that the partition obtained with standardization of the data is
more compatible with the a priori categorization than that obtained without
standardization.

From table 7 we can see that in the partition obtained without standardization,
cluster 4 is the closest to the global mean vector (see Section 6.1), while cluster
3 (three Sporting cars) is the farthest. On the other hand, cluster 2 is the least
homogeneous of the four clusters, and cluster 1 presents a low value for W (h),
due to the low cardinal of this cluster.
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Table 5
Clustering Results for the Car Data-Set

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4

No stand. 22/L 23/L 1/U 2/B 3/L 4/S 11/S 16/S 7/L 9/L 10/L

5/U 6/B 8/B 15/S 19/S 20/S

12/U 13/U 14/B 27/S

17/U 18/L 21/B

24/U 25/U 26/B

28/U 29/U 30/B

31/U 32/B 33/L

Stand. 1 1/U 2/B 3/L 12/U 13/U 17/U 4/S 11/S 15/S 6/B 7/L 9/L

5/U 8/B 14/B 24/U 25/U 28/U 16/S 19/S 20/S 10/L 22/L 23/L

18/L 21/B 26/B 29/U 31/U 27/S

30/B 32/B 33/L

Stand. 2 1/U 2/B 3/L 12/U 13/U 17/U 4/S 11/S 15/S 6/B 7/L 9/L

5/U 8/B 14/B 24/U 25/U 28/U 16/S 19/S 20/S 10/L 22/L 23/L

18/L 21/B 26/B 29/U 31/U 27/S

30/B 32/B 33/L

Stand. 3 1/U 2/B 3/L 12/U 13/U 17/U 4/S 11/S 15/S 6/B 7/L 9/L

5/U 8/B 14/B 24/U 25/U 28/U 16/S 19/S 20/S 10/L 22/L 23/L

18/L 21/B 26/B 29/U 31/U 27/S

30/B 32/B 33/L

Table 6
General index for all methods

Method R

No standardization 0.916779

Standardization using dispersion of interval centers 0.776215

Standardization using dispersion of interval bounds 0.775035

Standardization using global range 0.778167

Table 7
Indices of cluster description for method without standardization

Cluster Cardinal T (h) B(h) W (h)

1 2 0.147393 0.158525 0.024760

2 21 0.285315 0.278015 0.365734

3 3 0.473741 0.490851 0.285249

4 7 0.093552 0.072609 0.324256

The values in table 8 show that in the partition obtained when standardization
is performed using the dispersion of the interval centers, cluster 1 is the closest
to the global mean, while cluster 3 (all Sporting cars) is the farthest and also
the least homogeneous of the four clusters.

Tables 9 and 10 show that, when performing standardization using the dis-
persion of the interval bounds, or using the global range, clusters 2 and 3 are
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Table 8
Indices of cluster description for method with standardization using the dispersion
of the interval centers

Cluster Cardinal T (h) B(h) W (h)

1 12 0.093634 0.054376 0.229805

2 8 0.308889 0.363858 0.118225

3 7 0.421324 0.391660 0.524216

4 6 0.176152 0.190105 0.127755

Table 9
Indices of cluster description for method with standardization using the dispersion
of the interval bounds

Cluster Cardinal T (h) B(h) W (h)

1 12 0.092931 0.052087 0.233643

2 8 0.311504 0.366390 0.122412

3 7 0.414615 0.384202 0.519389

4 6 0.180951 0.197320 0.124557

Table 10
Indices of cluster description for method with standardization using the global range

Cluster Cardinal T (h) B(h) W (h)

1 12 0.094847 0.056044 0.230967

2 8 0.310026 0.367230 0.109358

3 7 0.412902 0.380926 0.525071

4 6 0.182225 0.195801 0.134603

the most eccentric, and cluster 1 is very close to the global center, G. Cluster
2 (Utilitarian cars) is the most homogeneous and cluster 3 (all Sporting cars)
the least homogeneous of the four clusters.
Table 11
Indices of partition and cluster description by variables for method without stan-
dardization (%)

Partition Cluster 1 Cluster 2 Cluster 3 Cluster 4

COR CTR COR CTR COR CTR COR CTR COR CTR

Price 91.7 99.99 14.5 99.99 25.5 99.98 45.0 99.98 6.66 99.97

Engine

Capacity 79.8 0.01 9.63 0.01 23.6 0.01 37.3 0.01 9.24 0.02

Top Speed 74.2 0.0 0.41 0.0 21.9 0.0 37.6 0.0 14.3 0.0

Acceleration 62.7 0.0 1.81 0.0 20.7 0.0 24.4 0.0 15.7 0.0

Step 28.0 0.0 19.4 0.0 5.73 0.0 0.07 0.0 2.78 0.0

Length 29.9 0.0 10.8 0.0 9.75 0.0 2.80 0.0 6.57 0.0

Width 61.6 0.0 2.99 0.0 17.9 0.0 33.9 0.0 6.78 0.0

Height 62.3 0.0 1.85 0.0 11.7 0.0 43.1 0.0 5.59 0.0

Comparing the values of COR(j) with the value of R (see table 6) , for the
partition obtained without standardization, we may conclude that variable
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Price’s discriminant power is equivalent to the mean value, while all other
variables have a discriminant power below the mean. The values in table 11
also allow to conclude that variable Price has the most important role in the
formation of the clusters, being almost totally responsible for the inter-class
inertia. We’ll see that this effect will disappear with standardization.

Table 12
Indices of partition and cluster description by variables with standardization using
the dispersion of the interval centers (%)

Partition Cluster 1 Cluster 2 Cluster 3 Cluster 4

COR CTR COR CTR COR CTR COR CTR COR CTR

Price 75.4 13.1 11.1 35.5 16.5 7.91 37.9 16.9 9.90 9.08

Engine

Capacity 75.5 13.1 7.68 24.5 21.8 10.4 31.7 14.1 14.3 13.0

Top Speed 87.1 13.6 2.63 7.57 33.4 14.3 49.0 19.5 2.02 1.66

Acceleration 83.5 14.1 1.31 4.08 39.1 18.1 38.2 16.5 4.81 4.27

Step 75.2 11.6 0.66 1.87 28.3 12.0 2.20 0.87 44.0 35.8

Length 80.3 12.3 1.23 3.47 49.1 20.6 1.12 0.44 28.9 23.3

Width 69.1 10.7 0.94 2.67 35.8 15.2 22.0 8.65 10.4 8.42

Height 74.9 11.5 7.19 20.4 3.40 1.44 58.7 23.1 5.55 4.50

Table 13
Indices of partition and cluster description by variables with standardization using
the dispersion of the interval bounds (%)

Partition Cluster 1 Cluster 2 Cluster 3 Cluster 4

COR CTR COR CTR COR CTR COR CTR COR CTR

Price 75.4 11.9 11.1 35.5 16.5 7.91 37.9 16.9 9.90 9.08

Engine

Capacity 75.5 11.3 7.68 24.5 21.8 10.4 31.7 14.1 14.3 13.0

Top Speed 87.1 14.0 2.63 7.57 33.4 14.3 49.0 19.5 2.02 1.66

Acceleration 83.5 12.2 1.31 4.08 39.1 18.1 38.2 16.5 4.81 4.27

Step 75.2 12.7 0.66 1.87 28.3 12.0 2.20 0.87 44.0 35.8

Length 80.3 13.6 1.23 3.47 49.1 20.6 1.12 0.44 28.9 23.3

Width 69.1 11.7 0.94 2.67 35.8 15.2 22.0 8.65 10.4 8.42

Height 74.9 12.6 7.19 20.4 3.40 1.44 58.7 23.1 5.55 4.50

Comparing the values of COR(j) with the values of R (see table 6), for the
partitions obtained using either of the standardization methods (see tables
12, 13 and 14) we may conclude that the discriminant power of variables
Top Speed, Acceleration and Length is higher than the mean value, while all
other variables have a discriminant power slightly below the mean. The values
in tables 12, 13 and 14 also allow to conclude that variables Price, Engine
Capacity and Height are the most important in the formation of Cluster 1,
variable Length is the most important in the formation of Cluster 2, variable
Top Speed is the most important in the formation of Cluster 3 and variables
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Table 14
Indices of partition and cluster description by variables with standardization using
the global range (%)

Partition Cluster 1 Cluster 2 Cluster 3 Cluster 4

COR CTR COR CTR COR CTR COR CTR COR CTR

Price 75.4 13.9 11.1 36.3 16.5 8.25 37.9 18.3 9.90 9.28

Engine

Capacity 75.5 16.0 7.68 29.1 21.8 12.6 31.7 17.7 14.3 15.5

Top Speed 87.1 14.5 2.63 7.84 33.4 15.2 49.0 21.5 2.02 1.72

Acceleration 83.5 12.6 1.31 3.53 39.1 16.0 38.2 15.1 4.81 3.70

Step 75.2 11.6 0.66 1.81 28.3 11.9 2.20 0.89 44.0 34.7

Length 80.3 13.6 1.23 3.72 49.1 22.5 1.12 0.50 28.9 24.9

Width 69.1 8.80 0.94 2.14 35.8 12.4 22.0 7.35 10.4 6.75

Height 74.9 9.09 7.19 15.6 3.40 1.12 58.7 18.7 5.55 3.44

Step and Length are the most important in the formation of Cluster 4. With
standardization, irrespective to the technique used, variable Price loses the
importance it had when no standardization was applied, the responsibility for
the cluster formation being now distributed by the whole set of variables.

Table 15
Values of CE(j, h) for each cluster and variable, for methods without standardiza-
tion and with standardization using the dispersion of the interval centers (Stand.
1) (%)

No Stand. Stand. 1

Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 1 Cl. 2 Cl. 3 Cl. 4

Price 15.9 27.8 49.1 7.26 1.93 2.88 6.61 1.73

Engine

Capacity 0.0 0.0 0.0 0.0 1.33 3.77 5.50 2.48

Top Speed 0.0 0.0 0.0 0.0 0.41 5.21 7.66 0.32

Acceleration 0.0 0.0 0.0 0.0 0.22 6.60 6.46 0.81

Step 0.0 0.0 0.0 0.0 0.10 4.37 0.34 6.80

Length 0.0 0.0 0.0 0.0 0.19 7.51 0.17 4.43

Width 0.0 0.0 0.0 0.0 0.14 5.52 3.39 1.60

Height 0.0 0.0 0.0 0.0 1.11 0.52 9.04 0.86

Tables 15 and 16 show that without standardization, only variable Price con-
tributes to the separation of the four clusters, while when either of the stan-
dardization techniques is applied, no variable presents a high value of CE(j, h)
for any of the clusters: separation between cluster representatives is due the
whole set of variables. Nevertheless, it may be said that, without standardiza-
tion, cluster 3, with three Sporting cars, is the most eccentric. For the other
three methods (i.e. with standardization), cluster 2 (Utilitarian cars) is a little
more eccentric as respects variables Length and Width; cluster 3, comprehend-
ing only Sporting cars, as respects variables Top Speed and Height ; and cluster
4, with only Luxury cars, as respects variable Step.
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Table 16
Values of CE(j, h) for each cluster and variable, for methods with standardization
using the dispersion of the interval bounds (Stand. 2) and using the global range
(Stand. 3) (%)

Stand. 2 Stand. 3

Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 1 Cl. 2 Cl. 3 Cl. 4

Price 1.75 2.61 5.91 1.57 2.03 3.03 6.96 1.82

Engine

Capacity 1.15 3.26 4.76 2.14 1.63 4.62 6.75 3.03

Top Speed 0.42 5.38 7.90 0.33 0.44 5.57 8.18 0.34

Acceleration 0.19 5.72 5.60 0.70 0.20 5.88 5.76 0.72

Step 0.11 4.78 0.37 7.43 0.10 4.37 0.34 6.80

Length 0.21 8.28 0.19 4.88 0.21 8.28 0.19 4.88

Width 0.16 6.04 3.71 1.75 0.12 4.56 2.80 1.32

Height 1.21 0.57 9.91 0.94 0.87 0.41 7.13 0.67

The symbolic objects associated to the representatives of the clusters, for the
partition obtained without standardization, are as follows:

t1 = [Price ∈ [98722.5, 391873.5]] ∧ [Engine Capacity ∈ [1506.6, 2207.2]] ∧ . . . ∧ [Height ∈ [144.0, 144.0]]

t2 = [Price ∈ [35144.9, 55052.3]] ∧ [Engine Capacity ∈ [2598.5, 5612.5]] ∧ . . . ∧ [Height ∈ [143.0, 143.0]]

t3 = [Price ∈ [304597.3, 424897.3]] ∧ [Engine Capacity ∈ [5171.0, 5800.3]] ∧ . . . ∧ [Height ∈ [121.7, 124.3]]

t4 = [Price ∈ [134254.1, 218665.0]] ∧ [Engine Capacity ∈ [2873.6, 4278.6]] ∧ . . . ∧ [Height ∈ [135.7, 135.9]]

The generalizing descriptions for the partition obtained without standardiza-
tion are as follows:

z1 = [Price ∈ [69243, 394342]] ∧ [Engine Capacity ∈ [1998, 5786]] ∧ . . . ∧ [Height ∈ [144, 144]]

z2 = [Price ∈ [16992, 140265]] ∧ [Engine Capacity ∈ [973, 4172]] ∧ . . . ∧ [Height ∈ [132, 148]]

z3 = [Price ∈ [240292, 460000]] ∧ [Engine Capacity ∈ [3586, 5992]] ∧ . . . ∧ [Height ∈ [111, 132]]

z4 = [Price ∈ [70292, 276792]] ∧ [Engine Capacity ∈ [2171, 5987]] ∧ . . . ∧ [Height ∈ [129, 144]]

Matrices A and B for the partition obtained without standardization are as
follows:

A =





















1.0 0.0 0.96 0.99

0.0 1.0 0.0 0.0

0.85 0.0 1.0 0.45

0.89 0.0 1.0 1.0





















B =





















1.0 0.85 0.91 0.88

0.91 1.0 0.59 0.89

0.92 0.48 1.0 0.74

0.97 0.88 0.83 1.0





















The values in matrix A show that Cluster 2, which gathers the least expensive
cars, is well separated from the other clusters; Cluster 1 overlaps with both
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Cluster 3 and Cluster 4, and these latter also present some overlap. Matrix
B shows that the generalizing descriptions of the clusters intersect in a great
extent.

The symbolic objects associated to the representatives of the clusters, for the
partition obtained with standardization, are as follows:

t1 = [Price ∈ [42984.3, 65595.7]] ∧ [Engine Capacity ∈ [1707.9, 2424.3]] ∧ . . . ∧ [Height ∈ [143.2, 143.2]]

t2 = [Price ∈ [19251.9, 28585.6]] ∧ [Engine Capacity ∈ [1170.3, 1636.0]] ∧ . . . ∧ [Height ∈ [142.6, 142.6]]

t3 = [Price ∈ [222076.9, 308335.2]] ∧ [Engine Capacity ∈ [3984.7, 4769.1]] ∧ . . . ∧ [Height ∈ [126.3, 127.6]]

t4 = [Price ∈ [94115.7, 261835.5]] ∧ [Engine Capacity ∈ [2452.2, 4894.0]] ∧ . . . ∧ [Height ∈ [144.0, 144.0]]

The generalizing descriptions for the partition obtained with standardization
are as follows:

z1 = [Price ∈ [27419, 115248]] ∧ [Engine Capacity ∈ [1370, 3199]] ∧ . . . ∧ [Height ∈ [142, 146]]

z2 = [Price ∈ [16992, 33042]] ∧ [Engine Capacity ∈ [973, 1994]] ∧ . . . ∧ [Height ∈ [132, 148]]

z3 = [Price ∈ [132800, 460000]] ∧ [Engine Capacity ∈ [2799, 5992]] ∧ . . . ∧ [Height ∈ [111, 132]]

z4 = [Price ∈ [68216, 394342]] ∧ [Engine Capacity ∈ [1781, 5786]] ∧ . . . ∧ [Height ∈ [143, 145]]

Matrices A and B for the partition obtained with standardization are as fol-
lows:

A =





















1.0 0.0 0.0 0.26

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.87

0.29 0.0 0.96 1.0





















B =





















1.0 0.77 0.78 0.87

0.72 1.0 0.39 0.65

0.83 0.43 1.0 0.95

0.98 0.60 0.89 1.0





















The values in matrix A show that Cluster 2, which comprehends only Utili-
tarian cars, is well separated from the other clusters; Cluster 3 and Cluster 4,
with Sporting and Luxury cars, respectively, overlap in great extent; Cluster
1, which also contains some Luxury cars, seems to be close to cluster 4. Again,
matrix B shows that the generalizing descriptions of the clusters intersect in
a great extent; Cluster 2 an Cluster 3, with Utilitarian and Sporting cars,
respectively, are the better separated clusters.

8 Concluding remarks

In this paper, a method for clustering interval data, based on the dynamic
clustering methodology, is proposed. The method is designed to consider clas-
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sical quantitative and interval variables together, allowing for the presence
of degenerate intervals. The distance used to assign objects to clusters is a
Minkowski-like distance, of L2 type. Each cluster is represented by a vector of
intervals, whose bounds are, for each variable, respectively, the mean of the
lower bounds and the mean of the upper bounds, computed for cluster. The
final partition corresponds to a local optimum of a criterion, which evaluates
the fit between the clusters and their representatives.

Special attention is given to the issue of standardization, and three standard-
ization techniques, adapted to interval data, are introduced.

The problem of interpreting and evaluating the obtained partition has then
been addressed. A family of indices, based on the notion of inertia are pre-
sented, which constitute suitable adaptations to interval data of indices intro-
duced by (Celeux et al. (1989)).

The simulation study carried out showed that standardization greatly im-
proves the performance of the clustering method, and that, among the three
proposed standardization techniques, the standardization using the dispersion
of the interval centers produces results that are always slightly better than
those produced by the two other methods. The application to the real data-
set stressed the need for standardization prior to the clustering process and
allowed to explore the potentialities of the proposed family of interpretation
indices.

Further developments concern the extension of the method to generalized sym-
bolic data.
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