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Abstract

Tests for the presence of heterogeneity in frailty models use an alternative hypothesis

in which the heterogeneity parameter is subject to an inequality constraint. As a result

the classical likelihood ratio asymptotic chi-squared distribution theory is no longer valid.

Our main result states the limiting distribution of the likelihood ratio and score statistic

for the one-sided testing problem. The resulting distribution is a mixture of chi-squared

distributed random variables. The results are shown to hold when the data might be subject

to right censoring and when covariate information is present. A data example on a diabetic

retinopathy study illustrates the tests.

Key words: Inference under inequality constraints, Frailty models, Likelihood ratio test, Mixture

of χ2-distributions, Score test, Survival data.

1 Introduction

Consider a set of n subjects, clusters or groups. For cluster i (i = 1, . . . , n) we observe a

vector of ni variables Tij, together with a censoring indicator δij which takes on the value

1 if the event of interest is observed and δij = 0 otherwise, as well as covariates xij. The

data take the form (Ti1, δi1, xi1), . . ., (Tini
, δini

, xini
). Denoting the true event times by Yij,

Tij = min(Yij, Cij) where Cij is the censoring time. In a shared frailty model the within

cluster dependence is described by the independent frailty variables Z1, . . . , Zn representing
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unobserved common risk factors. This leads to a “proportional” hazards model with random

effects (Clayton, 1978, Clayton & Cuzick, 1985). We want to test homogeneity (no associa-

tion between the survival outcomes) versus heterogeneity (there is positive association). We

assume that, conditional on the frailty variables Zi, the Yij (j = 1, . . . , ni) are independent

with, for Zi = z, a Weibull(zλj , γ) distribution with λj > 0 and γ > 0. This distribution is

a standard model for parametric survival data. In a first case we take Zi having a gamma

distribution with mean 1 and variance θ. For more information on this gamma frailty model

and examples of its use, see Hougaard (2000, Chapter 7) and Therneau and Grambsch (2000,

Chapter 9). In the second case, in Section 4, we discuss the situation of a positive stable

distribution for the frailty variables.

At time t, we denote for subject j within cluster i the conditional hazard function h(t|z) =

zµj(t) where µj(t) = λjγt
γ−1 exp(βxij) and the corresponding cumulative function Mj(t) =

λjt
γ exp(βxij). Let Di denote the total number of events for cluster i, Di =

∑ni

j=1 δij. From

a modelling point of view it should be understood that all λj = λ when the cluster sizes are

not all the same, while in the case of equal cluster sizes, for example data on pairs, we might

use different parameters λj. The likelihood for these data is given by

n∏

i=1

[
(−1)Di

ni∏

j=1

{µj(Tij)}δijL(Di){
ni∑

j=1

Mj(Tij)}
]

where L is the Laplace transform of the distribution of the frailty Z. For the gamma frailty

L(s) = (1 + θs)−1/θ. This leads to the following form of the likelihood

n∏

i=1



θ
DiΓ(1/θ +Di)

Γ(1/θ)

[
ni∏

j=1

{λjγT
γ−1
ij exp(βxij)}δij

]{
1 + θ

ni∑

j=1

λjT
γ
ij exp(βxij)

}−1/θ−Di



 .

(1)

Often a fixed number of observations ni = q is recorded. Twin studies provide typical

examples of bivariate event data. Another example are the times to failure for several

similar human organs like time to blindness of the right and the left eye as in studies on

diabetic retinopathy.

The relevant testing problem for the null hypothesis of no association between the survival
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outcomes in a cluster is

H0 : θ = 0 versus Ha : θ > 0. (2)

In this situation a one-sided testing problem is natural. Matters are non-standard for a

twofold reason: (i) the heterogeneity parameter is on the boundary of its parameter space

under H0 and (ii) the alternative model contains an inequality constraint. The boundary

problem can be circumvented via a (perhaps artificial) embedding of the natural parameter

space in a slightly bigger space which includes negative values for the association parameter

θ (see Hougaard, 2000, Section 7.3.3). Adjustment for one-sided testing, however, remains

to be dealt with; also in an enlarged parameter space techniques for testing under inequality

constraints are needed. Commenges & Anderson (1995) and Murphy & van der Vaart (1997)

only consider two-sided tests. We obtain the asymptotic distribution of the likelihood ratio

and score statistic for the one-sided testing problem.

Even though one-sided testing has a long history, going back to Chernoff (1954), its

asymptotic distributional behaviour has been studied only recently. For more references on

this issue, see Self & Liang (1987) for independent and identically distributed data. Silvapulle

& Silvapulle (1995) study one-sided score tests, see also Verbeke & Molenberghs (2003) in

the context of mixed linear models. Vu & Zhou (1997) derive general theoretical results;

more information is contained in the overview paper by Sen & Silvapulle (2002).

In this paper we focus on the survival context and show rigorously when and under which

conditions the general results of Vu and Zhou (1997) are applicable. A careful analysis is

required, especially in regression models with covariate information. In addition, we allow

for right censored observations.

Section 2 states the asymptotic distribution of the likelihood ratio statistic for this testing

problem, the definition and distribution of the score statistic is dealt with in Section 3.

Section 4 presents an extension to the positive stable frailty model. We apply our findings

to the diabetic retinopathy study (Huster et al. 1989) in Section 5, and a discussion on

possible extensions can be found in Section 6. Section 7 collects all proofs.
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2 One-sided likelihood ratio tests

To test for within subject (or cluster) dependence we consider the testing problem (2).

For the further discussion it is convenient to work with the following transformed Weibull

parameters: ηj = − log λj (j = 1, . . . , q) and α = − log γ. This transformation yields the

full real line as parameter space of the transformed parameters, which simplifies notational

aspects and allows to focus better on the heterogeneity parameter. Further we use ν =

(η1, . . . , ηq, α, β) as shorthand notation for the set of nuisance parameters and let τ = (θ, ν).

In terms of the transformed parameter vector τ the parameter space is Θ = [0,∞) × R
q+2

and the testing problem can be written as

H0 : τ ∈ Θ0 = {0} × R
q+2 against Ha : τ ∈ Θ1 = (0,∞) × R

q+2

with corresponding likelihood ratio statistic

Ln = 2

{
sup
τ∈Θ

Ln(τ) − sup
τ∈Θ0

Ln(τ)

}

where Ln(τ) is the log likelihood function.

In obtaining the asymptotic distribution of the likelihood ratio statistic we distinguish,

for transparency of the proof, three situations. First we focus on the frailty model without

the extra complication of censoring and covariates. Without loss of generality we will as-

sume that each cluster contains two observations. Bjarnason and Hougaard (2000) use this

model to study the Fisher information matrix. The idea behind the simplification is to fully

understand the statistical properties for a simple, though practically relevant, model. In a

second situation we study complete data including covariates. Third, we deal with the effect

of censoring.

2.1 Complete survival data

For bivariate data (Ti1, Ti2), i = 1, . . . , n with λ1 = λ2 = λ, no censoring and no covariates,

it follows from (1) that the log likelihood in terms of the original parametrisation equals

Ln(θ, λ, γ) = 2n log(λγ) + n log(1 + θ) +
n∑

i=1

[(γ − 1)(logTi1 + logTi2)

−(2 + 1/θ) log{1 + θλ(T γ
i1 + T γ

i2)}].



5

Theorem 1. The likelihood ratio statistic Ln for testing the one-sided heterogeneity

hypotheses H0 : (θ, η, α) ∈ {0} × R
2 against Ha : (θ, η, α) ∈ (0,∞) × R

2 in the shared

gamma frailty model with Weibull baseline hazard has an asymptotic null distribution which

is an equal mixture of a point mass at zero and a chi-square distribution with one degree of

freedom, that is, Ln →d
1
2
χ2

0 + 1
2
χ2

1 as n→ ∞.

We give the proof of this theorem in Section 7. The structure of the proof makes clear how

to deal with boundary parameters as well as with the one-sided aspect of the testing problem.

The main part of the proof consists of showing how for parametrically modelled survival data

the results of Vu and Zhou (1997) apply. For independent and identically distributed data

we could also have applied the results of Self and Liang (1987). The main difficulty lies in

working with the matrix of negative second derivatives of the log likelihood, and its limit, the

Fisher information matrix. We obtain explicit expressions for these matrices, allowing for

a detailed proof. This may be seen as an addition to earlier results obtained by simulation

only.

This result has an immediate impact on how to determine (asymptotic) critical values and

p-values for likelihood ratio tests for heterogeneity. Further it is well known that one-sided

testing as compared to two-sided testing is a less conservative strategy in rejecting the null

hypothesis of independence.

2.2 Complete survival data with covariate information

It is possible to generalize Theorem 1 to the situation of non-identically distributed obser-

vations. This allows the distribution of the lifetimes Tij to depend on covariate information.

The log likelihood from (1) now reads

Ln(θ, λ, γ) = 2n log(λγ) + n log(1 + θ) +

n∑

i=1

{β(xi1 + xi2) + (γ − 1)(log Ti1 + log Ti2)}

−(2 + 1/θ)
n∑

i=1

log{1 + θλ(T γ
i1 exp(βxi1) + T γ

i2 exp(βxi1))}].

We here let β be univariate, extension to more than one covariate is immediate. Let Fn(τ) be

the matrix of the negative of the second derivatives of Ln(τ) and define Gn(ν) = E[Fn(0, ν)].

Unlike the covariate-free case where the Fisher information matrix Gn only depends on the
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parameter η and its determinant is independent of any parameter (see the proof of Theorem

1 in Section 7) in the presence of covariates there is additional dependence of the matrix

Gn on the coefficients β and η. Restrictions on the allowable range of β and η values are

necessary for the asymptotic theory to go through. These restrictions depend on the type

of covariates. It is not uncommon that restrictions apply, for example in joint modelling of

outcomes via copulas (Nelsen 1999) the parameter space is restricted as well.

To explain this issue we take the same modelling situation as in the previous section, yet

with covariates added. DenoteMkl =
∑n

i=1

∑2
j=1 x

k
ij exp(lβxij) andNkl =

∑n
i=1 exp{β(kxi1+

lxi2)}. With this notation the symmetric Fisher information matrix Gn = Gn(η, β) has com-

ponents: G1,1 = n + 4(M0,3 −M0,2 + N2,1 + N1,2 − N1,1), G2,2 = M0,1, G3,3 = −2n(ψ(1) +

η)+ (ψ(2)+ η)M0,1 + {(ψ(2)+ η)2 + ζ(2, 2)}M0,1, G4,4 = M2,1, G1,2 = 2N1,1 +2M0,2 − 2M0,1,

G1,3 = −2(ψ(2)+η)M0,1+2(ψ(3)+η)M0,2+2(ψ(2)+η)N1,1, G1,4 = 2M1,1−2M1,2−
∑n

i=1(xi1+

xi2) exp{β(xi1 + xi2)}, G2,3 = (ψ(2) + η)M0,1, G2,4 = −M1,1 and G3,4 = −(ψ(2) + η)M1,1.

Here ψ denotes the digamma function and ζ(2, 2) =
∫ ∞

0
te−2t/(1 − e−t)dt. One of the key

issues is that the matrix Gn is positive definite. Without this assumption none of the results

mentioned in this paper is guaranteed to hold. We consider three applications.

Example 1. If β = 0, this is the situation of the previous section. No restrictions on the

parameter space apply. In this case det(Gn) = n3(2π2−8), independent of η, and the matrix

Gn is positive definite.

Example 2. Suppose n is even and for a binary covariate, half of the observations xi1 = 1

with the corresponding xi2 = 0. This situation occurs for example for a treatment of the eyes

when only one eye is treated, either left or right, and the other serves as a control. A specifi-

cation of the matrix Gn gives that the entries of G̃ = Gn/n are given by G̃1,1 = 1+4 exp(3β),

G̃2,2 = 1 + exp(β), G̃3,3 = −2(ψ(1) + η) + {ψ(2) + η + (ψ(2) + η)2 + ζ(2, 2)}{1 + exp(β)},

G̃4,4 = exp(β), G̃1,2 = 2 exp(2β), G̃1,3 = 2(ψ(3) + η) exp(2β) + 1, G̃1,4 = exp(β)− 2 exp(2β),

G̃2,3 = (ψ(2)+η){1+exp(β)}, G̃2,4 = − exp(β) and G̃3,4 = −(ψ(2)+η) exp(β). Direct calcu-

lation shows that the determinant of G̃ can take on both positive and negative values. Requir-

ing the matrix Gn(η, β) to be positive definite implies a restriction on β and the intensity η.
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Figure 1 gives the allowable area of covariate combinations. Taking e.g. η = 2 we need to re-

quire that a positive β < 2.1674 which corresponds to a risk difference between treatment and

non-treatment of size 8.736. When both η and β are negative, no further restrictions apply.

eta

be
ta

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 1. The allowable range of values of the intensity η (horizontally) and

regression coefficient β (vertically) for survival data with a binary covariate, is

located in between the curves of zero value for det(Gn).

Example 3. Let the covariate data be generated from distributions Fj such that xij =

F−1
j (ui) where ui = (i− 1/2)/n. It is now easy to compute limits for n→ ∞ for the entries

of the matrix Gn. For example, n−1Mk,l →
∑2

j=1E[Xk
j exp(lβXj)] where Xj ∼ Fj. Also

in this case, restrictions on the regression coefficient and the intensity are needed for the

matrix Gn to be positive definite.

Theorem 2. Assume that, for n tending to infinity, the limiting Fisher information

matrix G is positive definite and that |βx| is finite uniformly over the coefficient β and the

covariate space of x. Then the limiting null distribution of the likelihood ratio statistic Ln

for testing the one-sided heterogeneity hypothesis in the shared gamma frailty model with

Weibull baseline hazard is 1
2
χ2

0 + 1
2
χ2

1.

The proof of Theorem 2 (see Section 7) relies on Theorem 2.2 in Vu and Zhou (1997).

This is a situation where Self and Liang’s (1987) results do not apply since the data are

not identically distributed. As explained in the examples above, it is crucial to check the

assumptions of the theorem for the particular dataset at hand. Depending on the covariate
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design, restrictions to the parameter space might apply. “Guessing” asymptotic results

might for correlated survival data lead to situations where the theoretical results are not

applicable. By our knowledge, such a rigorous verification for the class of survival data is

nowhere available.

2.3 Censored survival data

For right censored bivariate data the general (log)likelihood (1) reduces to

Ln(θ) = −1

θ

∑

{i:Di=0}

log{1 + θ(Ti1 + Ti2)} − (
1

θ
+ 1)

∑

{i:Di=1}

log{1 + θ(Ti1 + Ti2)}

−(
1

θ
+ 2)

∑

{i:Di=2}

log{1 + θ(Ti1 + Ti2)} +N2 log(1 + θ)

where N2 = #{i : Di = 2} and for simplicity we choose λ1 = λ2 = γ = 1 and β = 0

(no covariates). Since the heterogeneity parameter is the only remaining parameter, the

likelihood ratio test for

H0 : θ = 0 versus Ha : θ > 0 (3)

is Ln = 2{supθ≥0 Ln(θ)−Ln(0)}. This log likelihood is, with λ(t) ≡ 1 and τ = ∞, a particular

example of the likelihood and the log likelihood expression given on pages 1476 and 1490 of

Murphy and van der Vaart (1997). Indeed an equivalent way to describe the information

contained in (Tij, δij) (i = 1, . . . , n, j = 1, 2) is through the counting process

Ni(t) =
2∑

j=1

Nij(t) =
2∑

j=1

I{Tij ≤ t, δij = 1}

and the risk process

Yi(t) =
2∑

j=1

Yij(t) =
2∑

j=1

I{Tij ≥ t}.

It then follows that

[{1 + θNi(t−)}Yi(t)]
∆Ni(t)

(1 + θ
∫ ∞

0
Yi(t)dt)1/θ+N(∞)

=






{1 + θ(Ti1 + Ti2)}−1/θ−Di for Di = 0 or 1

(1 + θ){1 + θ(Ti1 + Ti2)}−1/θ−Di for Di = 2
.

This shows that Ln(θ) can be written in the format of the log likelihood expression in Murphy

and van der Vaart (1997).
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Theorem 3. Assume that, for n tending to infinity, the limiting Fisher information G is

positive. The likelihood ratio statistic Ln for testing the one-sided heterogeneity hypothesis

(3) in the shared gamma frailty model with constant baseline hazard has an asymptotic null

distribution 1
2
χ2

0 + 1
2
χ2

1.

The proof is stated in Section 7. Verifying the crucial assumption on the positiveness of the

Fisher information corresponds to obtaining first, second, and third moments of Ti1+Ti2 (see

equation (11) in the proof). An explicit calculation of these moments requires information on

the censoring proportion and the joint distribution of (Ci1, Ci2). In contrast to the previous

theorems, the results of Vu and Zhou (1997) are not applicable to censored data.

3 One-sided score tests

If parameters constrained under the null hypothesis belong to the interior of the parameter

space, it is well known that likelihood ratio, Wald and score statistics have asymptotically the

same distribution under the null hypothesis. Under inequality constraints in the alternative

hypothesis this is no longer true. A score statistic is not uniquely defined, see Silvapulle

and Silvapulle (1995). Robertson, Wright and Dykstra (1988, pp. 320–321) propose a score

statistic which has the disadvantage of requiring estimation of model parameters both under

the null and alternative hypothesis. Silvapulle and Silvapulle (1995) propose a different

score-type statistic which only requires estimation under the null hypothesis. Under mild

regularity conditions, they obtain that under the null hypothesis asymptotically the score

statistic follows the same mixture distribution as the likelihood ratio statistic.

We first state the general form of the score statistic to test the heterogeneity hypothesis.

Partition the Fisher information matrix G(ν), evaluated at θ = 0, such that the upper left

block corresponds to the parameter θ constrained to zero under the null hypothesis and the

lower right block is defined by the nuisance parameters ν. Specifically,

G(ν) =




G00(ν) G01(ν)

GT
01(ν) G11(ν)


 .

Further, define G00(ν) = {G−1(ν)}00 = {G00(ν) − G01(ν)G
−1
11 (ν)GT

01(ν)}−1, let ν̂ be the
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maximum likelihood estimator of the nuisance parameters under the null hypothesis and let

Sn,θ(0, ν̂) denote the first component of the score vector consisting of the partial derivative

of the log likelihood with respect to θ evaluated at (0, ν̂). The other score components are

zero by definition of maximum likelihood estimation. We now reformulate Theorem 1 of

Silvapulle and Silvapulle (1995) for the one-sided hypothesis of heterogeneity.

Theorem 4. [Silvapulle and Silvapulle, 1995] Assume that there exists non-singular

matrices V (τ) and W (τ) such that as n → ∞, n−1/2Sn(τ) →d N(0, V (τ)) and for any

a > 0, sup
[
n−1/2{Sn(τ + n−1/2h) − Sn(τ)} +W (τ)h : ‖h‖ ≤ a

]
= oP (1). Then the score

statistic Sn = Qt(A00)
−1Q − inf{(Q − b)t(A00)

−1(Q − b) : b ≥ 0} = Ln + oP (1), where

Q = n−1/2W 00Sn(0, ν̂) with W 00 = (W00−W01W
−1
11 W10)

−1 and A = {W t(τ)V (τ)−1W (τ)}−1.

With V (τ) = W (τ) equal to the Fisher information matrix G, A00 = G00(ν). Since A00

is one-dimensional, the score statistic with parameters estimated under the null hypothesis

simplifies to

Sn = n−1G00(0, ν̂)S2
n,θ(0, ν̂) − n−1G00(0, ν̂) inf[{Sn,θ(0, ν̂) − b}2 : b ≥ 0]

= n−1G00(0, ν̂) max{0, Sn,θ(0, ν̂)}2.

This structure of the score test invites to appreciate the asymptotic distribution result; either

Sn(0, ν̂) = 0 which occurs with probability 1/2 or Sn = n−1G00(0, ν̂)S2
n,θ(0, ν̂), which has

asymptotically a chi-square distribution with one degree of freedom.

Corollary 1. (i) For a shared gamma frailty model with exponential baseline hazard

a score statistic for testing the heterogeneity hypothesis (2) is given by

Sn =
1

3n2
max{0, Sn,θ(0, η̂)}2.

(ii) For a Weibull distribution as the baseline hazard function a score statistic for testing the

heterogeneity hypothesis (2) is given by

Sn =
π2

3n2(π2 − 4)
max{0, Sn,θ(0, ν̂)}2.

For both models the corresponding score statistic has, under the null hypothesis, asymptotic

distribution 1
2
χ2

0 + 1
2
χ2

1.
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More details on the calculations are given in Section 7.

This general recipe also applies for the situation with added covariates. Here we sub-

stitute an estimator of the Fisher information matrix G that is consistent under the null

hypothesis. The data analysis in Section 5 employs the empirical Fisher information matrix

with maximum likelihood estimators of (η, β) inserted.

4 The positive stable frailty model

Two major classes of frailty models are currently in use. The shared gamma frailty model

we discussed above and one where the frailty variables follow a stable distribution. An

extension to the stable frailty model requires techniques to deal with an infinite valued

Fisher information matrix.

In the positive stable frailty model, the joint survival function for a bivariate observation

is S(t1, t2) = exp{−λθ̃(tγ1 + tγ2)
θ̃} where 0 < θ̃ ≤ 1. The corresponding log likelihood for the

data reads as follows: L̃n(θ̃, λ, γ) =

n∑

i=1

[−λθ̃(T γ
i1 + T γ

i2)
θ̃ + log(λθ̃θ̃(T γ

i1 + T γ
i2)

θ̃−2γ2T γ−1
i1 T γ−1

i2 ) + log{λθ̃(T γ
i1 + T γ

i2)
θ̃ − (θ̃ − 1)}]

Independence corresponds here to θ̃ = 1 and the relevant testing problem for heterogeneity

is H0 : θ̃ = 1 versus Ha : θ̃ ∈ (0, 1). When λ and γ are known, for example λ = γ = 1, the

score value at θ̃ = 1,

S̃n(1) =
dL̃n(1)

dθ̃
=

n∑

i=1

[1 + {2 − (Ti1 + Ti2) log(Ti1 + Ti2) − (Ti1 + Ti2)
−1].

Although this function is different from the score function considered in Tawn (1988), the

essence of the problem is the same: the infinite variance of the term (Ti1 +Ti2)
−1. Following

arguments as in Tawn (1988), in particular using Feller (1971), we derive that

21/2(n logn)−1/2S̃n(1) →d N(0, 1).

Hence 2(n logn)−1 max{0, S̃n(1)}2 →d χ
2
0/2+χ2

1/2. This also is the main ingredient to derive

the same asymptotic distribution for the likelihood ratio test statistic. For the situation

where nuisance parameters (such as λ and γ) are present, methods as in Section 8 of Tawn

(1988) can be used to derive the asymptotic distributions of test statistics for heterogeneity.
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5 Data example

We use the Diabetic Retinopathy Study (Huster et al. 1989) to test for heterogeneity by

considering time to blindness in each eye of 197 patients with diabetic Retinopathy. One

eye of each patient is randomly selected for treatment and the other eye is observed without

treatment. The data are bivariate right censored data with a treatment indicator as covariate.

0 10 20 30 40 50 60 70

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Follow−up Time

H
az

ar
d 

R
at

e

Population average

Control eye

Treated eye

Figure 2. Nonparametric hazard function estimates for data from the Diabetic

Retinopathy study.

The monotone decreasing trend of the nonparametric hazard function estimates (Figure

2) motivates that the Weibull baseline is an acceptable parametric way to describe the data.

The Weibull parameters are λ and γ. We obtain the following results:

Table 1. Diabetic Retinopathy Study: parameter estimates (standard errors).

Parameter

θ λ γ β

Full model: 0.712 (0.145) 0.011 (0.190) 0.888 (0.006) 0.382 (0.046)

Null model: — 0.015 (0.126) 0.799 (0.005) 0.280 (0.027)

The log likelihood values for null and full model are -846.499 and -841.272 respectively. This

gives the observed value 10.454 of the likelihood ratio statistic. The corresponding p-value

for the one-sided likelihood ratio test equals 0.0006.

The presence of heterogeneity is confirmed by the construction of a profile likelihood

based confidence interval for θ. For a given value of θ we maximize Ln(θ, λ, β) with respect

to λ and β: for a given θ we denote these maximizers as λ(θ) and β(θ). We then obtain
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the profile likelihood Ln(θ, λ(θ), β(θ)) and follow the method similar as explained in Morgan

(1992) to obtain the profile likelihood based confidence interval. From Figure 3 it is clear

that the confidence interval for θ does not contain zero, hence heterogeneity is present in the

data; 95% confidence limits are (0.32, 1.20).
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Figure 3. Profile likelihood Ln(θ, λ(θ), β(θ)) for data from the Diabetic

Retinopathy study.

6 Discussion

In Section 2.3 we discussed one-sided heterogeneity tests in frailty models for censored data.

For clarity we restricted attention to the situation where the heterogeneity parameter is the

only unknown parameter. The likelihood expressions given in Murphy (1995) and Murphy

and van der Vaart (1997) will be useful to extend our Theorem 3 to more complex parametric

and semi-parametric frailty models. The related study of score tests for censored data is a

further interesting theme. The discussion will be slightly more complicated than the one

given in Section 3 since the censored data score vector does not have mean zero (see for

example Theorem 2 in Murphy, 1995). One way to define a score statistic would be to start

with the centered score vector by subtracting its mean value and then proceed similarly as in

Section 3. If not the empirical mean but the population mean is used, this approach requires

information on the censoring mechanism. See also Commenges and Anderson (1995) for a

related two-sided score test.

A first step to study testing in semiparametric shared gamma frailty models, has been

made by Vu and Knuiman (2002). Simulation methods are used to obtain statistical proper-

ties of the estimators of frailty variances. A relevant further step would be a mathematical
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treatment of the semiparametric model, to counterpart and confirm the results of their sim-

ulation study, hereby extending our results for parametric models.

Wald-type test statistics for testing hypothesis (2) may be employed as well. Robertson,

Wright and Dykstra (1988) construct a Wald statistic for the situation where the alternative

hypothesis is described by inequalities. Their test statistic requires estimation of model

parameters under both the null and alternative hypothesis. Sen and Silvapulle (2002) state

a Wald test statistic as a difference of the minimum of two quadratic forms which has

under the null hypothesis the same asymptotic distribution as the score and likelihood ratio

statistic. For more details, see the recent review paper by Sen and Silvapulle (2002).

An interesting theme for further work is to study the distributional behaviour of the tests

for heterogeneity under local alternatives converging to the null hypothesis at the rate n−1/2.

As in two-sided testing problems, it is expected that the test statistics will have the same

power characteristics under these local circumstances.

A further relevant issue is to provide information on good finite sample approximations of

the mixing properties, i.e., can we improve the asymptotic 50:50 mixture of the χ2
0 and the

χ2
1 by finding mixing proportions that depend on the information of the sample size? In a

setting of regression spline mixed models, Claeskens (2004) calculates finite sample approxi-

mations to the mixing probabilities. In the frailty models currently under consideration the

situation is more complex by the presence of nuisance parameters under the null hypothesis.

Bootstrapping the distribution of the test statistic can provide another alternative to the

asymptotic distribution.

7 Proofs

7.1 Proof of Theorem 1

The proof follows Vu and Zhou (1997). It is straightforward to verify that Ln, components

of the score vector Sn(τ) and entries of the matrix of negative second derivatives Fn(τ)

are continuous and finite on a neighborhood of the true parameter value (0, ν0). For the

derivatives with respect to θ boundedness follows by an expansion of the logarithmic function
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in the derivatives. In the full likelihood model E[Sn(0, ν)] = 0. For the shared gamma frailty

model with Weibull baseline hazard

Gn(ν) = nG(η) = n




5 2 2(2 − γe + η)

2 2 2(1 − γe + η)

2(2 − γe + η) 2(1 − γe + η) π2/3 + 2(1 − γe + η)2




(4)

with γe the Euler constant. Note that det{G(η)} = 2π2 − 8 > 0. The matrix G(η) is

symmetric and positive definite and therefore has for every fixed value of η, three posi-

tive real eigenvalues. From this it follows that liminfn→∞ βmin{Gn(ν)}/βmax{Gn(ν)} > 0,

where βmin(A) and βmax(A) denote the smallest and the largest eigenvalue of a symmetric

positive definite matrix A. The convexity of the parameter space Θ1 = (0,∞) × R × R

implies Chernoff regularity (Geyer, 1994). The arguments above are sufficient to conclude

that there exists a closed cone CΘ1
with vertex at (0, ν0) such that CΘ1

⊆ Θ1 and for

every closed neighbourhood N of (0, ν0), CΘ1
∩ N = Θ1 ∩ N , see Vu & Zhou (1997).

The approximating cones for Θ0 and Θ1 are CΘ0
≡ Θ0 and CΘ1

≡ Θ. The transformed

cones, used to obtain the asymptotic distribution of the likelihood ratio test, are (for

j = 0, 1): C̃n,Θj
=

{
(θ̃, η̃, α̃) = G

T/2
n (ν)(θ, η, α)T with (θ, η, α) ∈ CΘj

}
. The matrices G

1/2
n (ν)

and G
T/2
n (ν) are the left and the corresponding right Cholesky square root of Gn(ν). A direct

calculation shows that G
T/2
n (ν) = n1/2GT/2(η) with

GT/2(η) =




51/2 2/51/2 2(2 − γe + η)/51/2

0 (6/5)1/2 21/2(1 − 3γe + 3η)/(15)1/2

0 0 {(π2 − 4)/3}1/2




We therefore have

C̃n,Θ0
=

{
(θ̃, η̃, α̃) : θ̃ − (2/3)1/2η̃ − 201/2{3(π2 − 4)}−1/2α̃ = 0

}
≡ C̃Θ0

C̃n,Θ1
=

{
(θ̃, η̃, α̃) : θ̃ − (2/3)1/2η̃ − 201/2{3(π2 − 4)}−1/2α̃ ≥ 0

}
≡ C̃Θ1

,

not dependent on the sample size n.

We now show that

sup
τ∈Nn(A)

‖G−1/2
n (ν0)Fn(τ)G−T/2

n (ν0) − I3‖1 = oP (1) (5)
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with P shorthand notation for Pτ0 where τ0 = (0, ν0) ∈ Θ0. In the above ‖W‖1 denotes the

sum of the absolute values of the elements of a matrix W , and for (0, ν0) the true parameter

value,

Nn(A) =
{
τ = (θ, η, α) : (θ, η − η0, α− α0)Gn(ν0)(θ, η − η0, α− α0)

T ≤ A2, τ ∈ Θ
}
.

Write

G−1/2
n (ν0)Fn(τ)G−T/2

n (ν0) − I3

= n−1G−1/2(η0){Fn(0, ν0) −Gn(ν0)}G−T/2(η0) (6)

+ n−1G−1/2(η0){Fn(τ) − Fn(0, ν0)}G−T/2(η0).

For matrices W1 and W2, ‖W1W2‖1 ≤ ‖W1‖1‖W2‖1. Since ‖G−1/2(η0)‖1 = ‖G−T/2(η0)‖1 ≤

C(η0), with 0 < C(η0) < ∞, (5) follows since ‖Fn(0, ν0)/n− G(η0)‖1 = oP (1), through

a componentwise application of the law of large numbers, and since sup
τ∈Nn(A)

‖{Fn(τ) −

Fn(0, ν0)}/n‖1 = oP (1). This also is obtained componentwise; we show the proof for the

[2, 2]-entry: n−1{Fn(τ)−Fn(0, ν0)}[2,2] = n−1
∑n

i=1H22(Ti, τ) where, with Ui = T e−α

i1 + T e−α

i2 ,

H22(Ti, τ) = −θe−2η(1 + 2θ)
U2

i

(1 + θe−ηUi)2
+ e−η(1 + 2θ)

Ui

1 + θe−ηUi

− e−η0Ui.

Note that H22(Ti, τ0) ≡ 0. There exists a fixed positive integer n0 such that for all n ≥ n0

sup
τ∈Nn(A)

e−α ≤ K ≡ 2(e−α0 + 1)

and, for some constant D > 0, |H22(Ti, τ)| < D(T 2K
i1 + T 2K

i2 ). With µ(τ) = Eτ0H(Ti, τ) we

have by the dominated convergence theorem that lim
τ→τ0

µ(τ) = µ(τ0) ≡ 0. Now the result

follows since

sup
τ∈Nn(A)

∣∣∣∣∣
1

n

n∑

i=1

H22(Ti, τ)

∣∣∣∣∣ ≤ sup
τ∈Nn(A)

∣∣∣∣∣
1

n

n∑

i=1

H22(Ti, τ) − µ(τ)

∣∣∣∣∣ + sup
τ∈Nn(A)

|µ(τ)| = oP (1). (7)

An application of Theorem 16(a) in Ferguson (1996), p. 108 implies indeed that the first term

in the right-hand side of (7) is oP (1) (uniform law of large numbers); elementary analysis

implies that the second term in the right-hand side of (7) is o(1).

Similar proofs hold for all the other entries of {Fn(τ) − Fn(0, ν0)}/n.
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Since (Ti1, Ti2), i = 1, . . . , n, are independent and identically distributed vectors, an

application of classical multivariate central limit theory gives that G
−1/2
n Sn(0, ν0) →d Z =

(Z1, Z2, Z3) ∼ N(0, I3).

Since by the above arguments the Vu and Zhou (1997) conditions (A1)-(A3) and (B1)-

(B5) are valid, an application of their Theorem 2.2 gives that the asymptotic null distribution

of Ln, the likelihood ratio statistic, is the same as the distribution of

inf
�

τ∈
�

CΘ0

|Z − τ̃ |2 − inf
�

τ∈
�

CΘ1

|Z − τ̃ |2 (8)

where τ̃ = (θ̃, η̃, α̃).

From the definitions of C̃Θ0
and C̃Θ1

we have

inf
�

τ∈
�

CΘ0

|Z − τ̃ |2 = (Z1 + aZ2 + bZ3)
2/(1 + a2 + b2) (9)

with a = −(2/3)1/2 and b = −201/2{3(π2 − 4)}−1/2. This implies that the random variable

in (9) has a χ2
1 distribution. We further have

inf
�

τ∈
�

CΘ1

|Z − τ̃ |2 =





0 Z ∈ C̃Θ1

(Z1 + aZ2 + bZ3)
2/(1 + a2 + b2) Z /∈ C̃Θ1

(10)

Moreover we have P (Z ∈ C̃Θ1
) = 0.5. This, together with (8) – (10) implies that the

asymptotic distribution of the likelihood ratio test is 0.5χ2
0 + 0.5χ2

1.

7.2 Proof of Theorem 2

This follows along the lines of the proof of Theorem 1. We indicate the main differ-

ences. Write Gn(η, β) = n(n−1Gn(η, β)). The conditions on x and β assure that G(η, β) =

limn→∞ n−1Gn(η, β) exists, and that the symmetric matrix G(η, β) is positive definite. Its

Cholesky decomposition leads to cones C̃n,Θj
(j = 0, 1) of which the limiting cones are defined

by using the matrix G(η, β). The remaining part of the proof holds under the boundedness

assumption on β and on the covariate x.

7.3 Proof of Theorem 3

The limiting Fisher information G is calculated as limn→∞E[−(d2/dθ2)Ln(0)/n] where

d2

dθ2
Ln(0) = −2

3

n∑

i=1

U3
i +

∑

i:Di=1

U2
i + 2

∑

i:Di=2

U2
i −N2, (11)
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with Ui = Ti1+Ti2. Since G > 0, the log likelihood Ln(θ) is concave in a closed neighborhood

N of zero. Define θ̂n = arg maxθ∈N Ln(θ). For θ̂n the following properties are immediate

from the more general Theorem 2 in Murphy (1994) and Theorem 1 in Murphy (1995):

under the null hypothesis the likelihood estimator θ̂n strongly converges to zero and the

distribution of
√
nθ̂n tends to a normal limit with zero mean and bounded limit variance

G−1 > 0. This implies that limn→∞ P (θ̂n ≤ 0) = 0.5. Take x ≥ 0. Under the null hypothesis

P (Ln ≤ x) = P (Ln ≤ x|θ̂n > 0)P (θ̂n > 0) + P (Ln ≤ x|θ̂n ≤ 0)P (θ̂n ≤ 0).

The condition on the second derivative implies the existence of a neighbourhood [−ε, ε],

ε > 0, where Ln(θ) is concave. Therefore, for n sufficiently large, θ̂n ≤ 0 implies Ln = 0 and

therefore under the null hypothesis P (Ln ≤ x|θ̂n ≤ 0) = 1.

For θ̂n > 0, a Taylor expansion yields

Ln = 2(Ln(θ̂n) − Ln(0)) = −θ̂2
nGn(θ̃n)

with θ̃n an intermediate point in (0, θ̂n).

Since −n−1Gn(θ̃n) → G in probability as n → ∞ it follows that the variable Zn =

n1/2θ̂n{−n−1Gn(θ̃n)}1/2 →d Z with Z ∼ N(0, 1) and

P (Ln ≤ x|θ̂n > 0)P (θ̂n > 0) = P (0 < Zn ≤ x1/2) → 1

2
P (Z2 ≤ x).

Hence, under the null hypothesis,

P (Ln ≤ x) → 1

2
P (Z2 ≤ x) +

1

2
.

7.4 Proof of Corollary 1

For the case of a shared gamma frailty model with an exponential baseline hazard there

is only the nuisance parameter η (or λ = exp(−η)). For this special case, with Fisher

information matrix

Gn = n




5 2

2 2


 ,
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we have that G00
n = (3n)−1, not dependent on any nuisance parameters, and hence we obtain

the following score statistic

Sn =
1

3n2
{Sn,θ(0, η̂)}2 − 3n inf

b≥0

{(
1

3n3/2
Sn,θ(0, η̂) − b

)2
}

=
1

3n2
max{0, Sn,θ(0, η̂)}2

For the Weibull baseline hazard the nuisance parameter is ν = (η, α) and the Fisher infor-

mation matrix is Gn(ν) as given in (4), from which it is deduced that G00
n = π2/{3n(π2−4)}.

Hence the resulting score statistic is obtained as given in Theorem 2.
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