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SUMMARY

It is rather well known that one can approach survival problems without
covariates in an actuarial way. The time axis is divided into intervals
(named bins), and in each bin the number of people at risk is counted as well
as the number of events. The relationship between time and probability
of an event can then be estimated with a parametric or semi-parametric
model. Here, we consider a subdivision of the time scale into a large
number of bins. The number of events observed in each bin is described
using a Poisson distribution with the log mean specified using a flexible
penalized B-splines model with knots located at the bins limits. Regression
on pertinent covariates can easily be performed using the same log-linear
model, leading to the classical proportional hazard model. We propose
to extend that model by allowing the regression coefficients to vary in a
smooth way with time. Penalized B-splines models will be proposed for
each of these coefficients. We show how the regression parameters and the
penalty weights can be estimated efficiently using Bayesian inference tools
based on the Metropolis-adjusted Langevin algorithm.

KEY WORDS: proportional hazards; P-splines; Markov chain Monte
Carlo methods; Metropolis-adjusted Langevin algorithm.

1. INTRODUCTION

The discrete, or life table, approach to survival analysis has many advantages, for
modelling as well as computation. The principle of a life table is simple: the time
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axis is divided into relatively small intervals and in each interval we count the
number at risk an the number of events. The ratio of the two gives crude estimate
of the hazard. For small data sets this estimate generally will be too erratic to be
useful. However, if we introduce smoothing, very useful results can be obtained.
Efron [1] uses a small set piecewise polynomial function, while Tutz et al. [2]
and Kauermann [3] use penalized B-splines (see also the references in [3]). The
discrete intervals reduce survival analysis to a Poisson log-linear model. We are
dealing with proper likelihoods. Multiple events, complicated risk patterns and
large data sets are handle with ease.

In this manuscript we use the smoothed life table approach to develop Bayesian
models for varying coefficient survival models. In the standard proportional
hazards model the (linear) effect of a covariate on the log-hazard is constant
over time. The VCM (varying coefficient model) allows it to change gradually.
Smoothness is introduced by means of P-splines: regression on a basis of B-splines
in combination with a roughness penalty on their coefficients [4]. The Poisson
VCM does not allow many useful analytic results, so we have to rely on simu-
lation to estimate parameters. In the Bayesian setting the penalty translates to
an (informative, normal) prior on differences of coefficients. The variance of the
prior corresponds to the (inverse of the) weight of the penalty. The beauty of
the Bayesian approach is that parameters like this are included in the estimation
scheme and so all uncertainties are quantified.

Bayesian P-splines were studied by various authors to describe the conditional
mean of a normal response. Berry et al. [5] use them in normal regression models.
A similar approach is proposed by Lang et al. [6] to build additive and varying
coefficient models, with extensions to be able to deal with spatially-correlated re-
sponses. Bayesian P-splines were also considered in non-normal contexts, see e.g.
[7], [8] and the very interesting review paper by Fahrmeir [9] on semiparametric
Bayesian function estimation. Alternative Bayesian spline approaches propose to
estimate the number of knots and their locations, see e.g. Denison et al. ([10],
Chap. 3), [11] and [6] for a comparison with Bayesian P-splines. It will be not be
considered here.

The plan of our paper is as follows. The lifetime approach to survival and the
associated VCM model are reviewed in Section 2. Notations are introduced there.
The penalized likelihood and the gradients associated to the P-splines approach
are derived. The corresponding Bayesian formulation is proposed in Section 3.
The Langevin-Hastings algorithm is explained and suggested to update blocks of
splines parameters. A re-parametrization strategy is developed to improve the
mixing of the generated chain. We conclude our presentation in Section 4 with
the illustrative analysis of a clinical study and a discussion in Section 5.



2. THE LIFE TABLE APPROACH

2.1. Basic ideas

Here we review how one can approach survival problems without covariates in an
actuarial way. The time axis is divided into intervals (named bins) and in each
bin the number of people at risk is counted as well as the number of events. The
relationship between time and probability of an event can then be estimated with
a parametric or semi-parametric model. See [1] for details.

Let 7; be the number of persons at risk in interval j and let ; be the number
of events. Then a basic model for the number of events assumes a binomial
distribution for it, ¥; ~ Bin(#;, ;). One could further assume that
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where the elements b, are values of basis functions at the midpoints of the bins.
The basis functions might be global functions of time, or local splines.
It is advantageous to switch to a Poisson model, (Y;|R; > 0) ~ Pois(y;), with

log iy = m; = Y bjkCox + log 7;
k

For small probabilities 7;, the two models are nearly equivalent and provide MLEs
for the parameters (o,’s with negligible numerical differences. But the advantages
of additivity on the log scale with the Poisson model are large, as will be become
clear.

It is interesting to develop the model in more detail, as a basis for further
exploration. Consider subject 7 in the sample. We can connect a vector r; to it,
with elements r;;, indicating in which bins it was at risk. We can also introduce
a vector y,, with elements y;;. It this subject failed in bin j, y;; will be 1, and all
other elements of y; will be zero. If subject ¢ was lost to follow up, there will be
no failure and y; will contain only zeros.

We can combine all vectors 7; into a matrix R with I rows (the number of
subjects) and J columns (the number of bins). Then it is clear that 7; = Y, r;;
and ¥; = >_; y;;, sums over all subjects, per interval.

Note that this framework can be used directly for all kinds of risks patterns,
like staggered entry or intermittent risk: for each subject it can be coded in the
patterns of ones and zeros in its row of R. Multiple events are no problem either:
just put counts of events per subject, per interval in the rows of Y. In the case
of multiple events the Poisson model is the natural one; the binomial model is
not applicable there.

Thus, we assume that (Y;;|R;; = 1) ~ Pois(y;;) with

log pij = Mij = D bikCok
p
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Of course, Y;; is identically 0 when r;; = 0. The corresponding log-likelihood is
l= Z z T'ij (yij log Hij — :uij Z Z Tij yzg Z bjkCOk ,uz]
i

Using the fact that r;;4;; = i, because there can be no event when r;; = 0, we
get:

l= Z Z(yz’j ;bjkCOk — Tijlhiz)-
i
The derivatives w.r.t. the elements of ¢, are given by
gor = 01/ 9Cor, = Z Z bk (Y — Tijhis)- (1)
i
The sums can be rearranged, to give

Jor = Z b]lc Z Yij — szluzy Z bjlc (g] - fj/}'j)a
J

because p;; = [i;, is the same for all subjects still at risk. This proves that we can
fit a model to the aggregated data 7; and g;: there are no advantages to look at
the individual subjects. The only thing that counts is the number at risk in each
bin and the number of events. This is not true when we introduce covariates.

Assume that @) (non time-varying) covariates are available for each subject,
collected in the I by @ matrix X. They can be introduced in a proportional
hazards scheme, giving for a subject at risk

log p1ij = i = Y bikCor + D, Tighy (2)
k q

and the log-likelihood can be adapted accordingly. For the partial derivatives
w.r.t. ¢y, we find the same formula (1), and for the partial derivatives w.r.t. the
elements of 8 we find

9 =0l/0By =33 wig(yij — Tijis)-
i
If we introduce

¢ = exp(D_zigBy) 5 ¥ =exp(D_ bjkCok),
q p

we see this, we can write u;; = ¢;%;. This helps us to simplify the partial
derivatives to

Jok = Z bjk(z Yij — U; Zriqui) S szq(z Yij — i Zn‘ﬂ/fj)-
j ) i ? J J



Let &1- = >;Tij¢i- It is the mean relative hazard for interval j, averaged over
the subjects being at risk. Let v); = >, r;;4;. It is the mean relative hazard of
subject I, averaged over the bins in which it was at risk. Now we can write, with

Yir = 225 Yij and Yy = 32, Yij,
9ok = Zbﬂc(yﬂ' - "/’J"/;j) i 9q = inq(yH - WL)
J i

The simplification of computing prior sums is still applicable to Y, but no
longer to R, because we are dealing with sums of r;;¢;1;: both columns and rows
of R are weighted (by ¢ and v respectively). Still there are possibilities to reduce
the computational work, as will become clear later.

2.2. Varying coefficient model

One arguable hypothesis in the proportional hazard model is the constant ratio of
the hazards across strata. This might not be a reasonable hypothesis as, among
other reasons, the characteristics of the patients at risk could be changing over
time.

We allow the regression coefficients to vary in a smooth way over time. Again,
a B-splines representation is used with the same knots as in the description of
the baseline hazard. This is not a restriction when a large number of knots is
considered. Therefore, 3, in Equation (2) becomes

Boi = zbjkqu’
k

yielding

Q Q
log ij = mij = Y bje{Cor + D iglar} = D_ bjk Y, Tigla,
% =1 % q=0

with z;o0 = 1 for all 4. Thus, the partial derivative of the log-likelihood w.r.t. the
baseline hazard and regression splines parameters is

9o = OL/OCoe = D mig > biw(yij — Tijfij)
i F

2.3. Penalized likelihood

We follow Eilers and Marx [4] to force the fitted baseline hazard and the time
varying regression coefficients to be smooth functions in time. Therefore, we shall
work with the penalized likelihood

A
lpen - l_ZEq Z(Arqu)Q
q k

= Z_Z%CQTP@

q



where A" denotes the difference operator of order 7, CqT = ((g1,---,(yx) and
{A;:¢=0,...,Q} is the set of roughness penalty parameters.

The partial derivatives of the penalized likelihood can easily be obtained using
the expressions from the previous section:

gk = Olpen/0Cq = Z Tig Z bik(Vij — Tijfi) — Aq Z PyiCys (3)
i j s

3. BAYESIAN INFERENCE USING THE LANGEVIN ALGORITHM

A Bayesian simulation framework, based on Monte-Carlo Markov chains (MCMC)
methods, is very convenient to estimate spline parameters and credibility en-
velopes for the associated time-varying regression parameters. In addition, the
penalty parameters can be estimated jointly as well as the uncertainties of all
estimated quantities. This is a major advantage over the traditional (penalized
likelihood) estimation procedure which implicitly assumes that the penalty pa-
rameters are fixed known quantities, thereby providing too narrow confidence
intervals for the splines parameter estimates.

3.1. Bayesian P-splines

In Bayesian terms, each added penalty can be translated by introducing a prior
distribution on the rth order differences of the corresponding B-splines coeffi-
cients, i.e.

A"Cpp ~ N(o,Tq—l)

(see [5] for a Bayesian implementation of P-splines in normal regression models
and [6] for a similar exercise in additive models). Consequently, we propose to
multiply the improper prior for the B-splines coefficients by

1
HT;(P)/Z exp {—5 T, CgPCq} )
q

The inverse variance 7, (¢ = 0,...,Q) plays the role of )\, in the penalized
likelihood. A vague prior distribution can be chosen for each, say, a gamma
distribution G(a, b), i.e.

() = FIE‘;) 79 texp(=b 7).

Taking e.g. a = b = .0001 is suitable and clearly expresses our ignorance, while
yielding a proper posterior distribution for 7.

Therefore, the posterior distribution for the the penalty parameters, + =
(70, ..., 7q), and the splines parameters, ¢ = (o, . --,{g), is

(¢, 7ly) o L(Gy) [ret /> exp {~[b+05 ¢ P, 7}
q
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with the log-likelihood
log L(¢;y) = DD (yijlog pij — i)
iog

The conditional posterior distributions of the penalty parameters, given the other
parameters can easily be shown to be

7(14lC0, ¢ g3 y) = 7(7glC,) = G (a+ 0.5 p(P), b+ 0.5 ¢ PE,) - (4)

3.2. Sampling using the Langevin-Hastings algorithm

We propose to explore the high-dimensional posterior distribution using Monte-
Carlo Markov chains (MCMC), see [12] for an excellent introduction. More
precisely, we propose to combine the Metropolis-adjusted Langevin algorithm
(MALA, [13]) to sample blocks of transformed B-splines coefficients and the Gibbs
algorithm to sample the inverse variance (penalty) parameters.

The MALA algorithm enables to sample from potentially high dimensional
posterior distribution using Monte Carlo Markov where each proposal is made
using the gradient of the log posterior distribution at the current state. More
precisely, if () is the posterior distribution and 8" € IR the state of the chain
at iteration ¢, then the proposal 8 for the next state is obtained by a random
generation from the K-variate normal distribution N (6°+0.5§ Vlogm(6"),51x)
where I is the K dimensional identity matrix and ¢ a carefully chosen variance
parameter. This proposal is accepted with probability

of1.29 q(o,ew}

"7(8") q(6",0)

where . \
q(z,y) = (276) /% exp {—2—5Hy —x —0.50 Vlogﬂ(w)’u

i.e. 01! is set equal to @ if accepted and to 8% otherwise.

Roberts and Rosenthal [14] have shown that the relative efficiency of the
algorithm can be characterized by its overall acceptance rate, independently of
the target distribution. The asymptotic optimal value for that last quantity
is 0.57 with acceptance probabilities in the range (0.40,0.80) still reasonable.
That information can be used to choose the above § parameter by increasing
(decreasing) 0 when the observed acceptance rate is larger (smaller) than the
targeted value.

3.3. Block use of the MALA algorithm

We prefer the MALA algorithm over the usual random-walk Metropolis-Hastings
algorithm as its use of the local properties of the log posterior distribution was
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found to provide more quickly converging and better mixing chains while remain-
ing simple to implement.

Let us detail our proposal to build a sample from the posterior distribution
of @ = ({o,...,Cq,T0,---,7q)- At iteration (¢ +1):

1. Langevin-Hastings steps. For q from 0 to Q: in block ¢, generate ¢, us-
ing the MALA algorithm with ¢, , = Cf’l, Crsg = ¢! and 7 = 7. An
expression for the components of the gradient is given in Equation (3). The
value of the variance parameter ¢, in the normal proposal density associ-
ated to block ¢, see Section 3.2, must be tuned to achieve an acceptance
rate in the above metioned range. These (@ + 1) tuning parameters are
chosen during the burn-in iterations.

2. Gibbs steps. For q from 0 to Q: generate 77! from m(7,|¢"), cf. Equa-
tion (4).

The theory ensures that after a sufficiently large number of iterations, say M,
{6M+1,9M*2 .} can be considered as a random sample from the posterior dis-
tribution.

In practice, updating the B-splines parameters by blocks in the Langevin-
Hastings steps is essential to get convergence of the chains after a few thousands
iterations. Convergence speed was much larger than with a block random-walk
Metropolis-Hastings algorithm.

We also found that a careful re-parametrization of the posterior distribution
within blocks of B-splines parameters substantially boosts the convergence of the
corresponding chain. Indeed, P-splines parameters associated to close knots are
forced to take similar values leading to large cross-correlations between succes-
sive components of the chain: it limits the mixing of the chain and, hence, slows
the convergence of the Markov chain to the target posterior distribution. Conse-
quently, after running the above algorithm for R (say, one thousand) iterations
and having managed to have the acceptance rates within the above prescribed in-
tervals, we propose to use the following strategy to re-parameterize the posterior
distribution within blocks:

Block reparametrization: For q from 0 to Q, compute the mean éq and the
variance-covariance matrix S, of {C(ll, ., C 5}. Reparametrize the posterior
distribution using ¢, where

Co= S;/QCZJ + zq

The initial algorithm can be used again to sample from the re-parameterized
posterior distribution. If required, that re-parameterization can be repeated until
the cross-correlations between the different components of the chain are smaller
than some threshold. The usual diagnostics can be used to assess convergence.
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4. ILLUSTRATION ON CLINICAL DATA

We illustrate our the method with the analysis of a clinical study involving 358
patients with advanced ovarian cancer, as described in [15]. Survival/censoring
times vary between 9 and 2729 days, with about 25% censoring. The covariates
are

e KARN: the Karnovsky performance status measuring the ability of the
patient to lead her daily life at the start of therapy, coded as an integer
from 0 (100% functional ; 38% of the patients), 1 (30%), 2 (13%), 3 (13%)
to 4 (< 60% functional ; 6%).

e DIAM: diameter of residual tumor after surgery, coded as 0 (8% of the
patients), 1 (19%), 2 (14%), 3 (19%), 4 (41%) (small to large).

e FIGO: stage of the cancer, coded as 0 (FIGO = III ; 73% of the patients)
and 1 (FIGO =1V ; 27%).

All these covariates were centered and scaled to zero mean and unit standard
deviation. The block Langevin-Hastings algorithm described in Section 3 was
used with four blocks of parameters, the first block corresponding to the baseline
hazard and the other three to the standardized covariates. Five equidistant knots
were considered to span the observed range for the survival data, yielding eight
parameters per block with cubic B-splines.

The Langevin variance parameters dy, .. ., d3 of the proposal distributions as-
sociated to each of the four blocks were increased or decreased several times after
each of a few sets of hundreds iterations to yield, finally, acceptance rates in the
above suggested (0.40,0.80) range, see [14].

Then, a few thousands extra burn-in iterations were considered to estimate
the correlation structure within each block. These structures were used to re-
parameterize the posterior distribution, as suggested at the end of Section 3.3.
That strategy was repeated two or three times until the cross-correlations of the
chain and the autocorrelations of the chain for the transformed parameters were
found reasonably low.

A final chain of length 20,000 corresponding to the back-transformed B-splines
parameters for the baseline hazard and for DIAM is plotted in Figures 1 and 2
respectively.

The baseline hazard, the baseline survival curve and the time-varying regres-
sion coeflicients evaluated at the estimated mean of the posterior distribution are
plotted in Figure 3. The 90% credibility envelopes for the time-varying regression
coeflicients are in Figure 4. It suggests that the patient performance status before
surgery is just a very short term survival predictor. The diameter of the residual
tumor after surgery has a significant negative effect on survival for more than 3
years, while a FIGO stage IV is associated to patients with a significantly worse
prognosis during most of the observation period.
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5. DISCUSSION

The Bayesian formulation of P-splines, implemented with modern simulation
techniques, allows the implementation of sophisticated semi-parametric models
while accounting for the uncertainty involved in the choice of smoothing param-
eters. The large number of parameters is not a problem in non-normal settings
provided that the local properties of the log posterior density are used to de-
rive proposals in Metropolis-Hastings steps. Here, the gradient of that function
was used to update blocks of parameters. Re-parametrization suggested dur-
ing the burn-in period was essential to have a well mixing chain. Alternatively,
one could use MCMC simulation techniques based on iteratively weighted least
squares (IWLS) proposals in the Metropolis-Hastings steps, see [16].

Our MCMC approach relies on three elements to achieve efficient computa-
tion: 1) use of the Langevin-Hastings algorithm to get good proposals in the
steps of the Markov chain, 2) block-wise updating of P-spline coefficients and
3) proper rotation and scaling of parameters (after a burn-in period) to improve
mixing. The result is an R program interfacing a routine in C that can handle a
data set of 400 observations in about 5 minutes (20,000 simulations after burn-in)
with a Pentium IV 3.0 Ghz. This leads to quite acceptable computation times
for moderately sized data sets.

The Poisson approach to survival has multiple advantages, among which the
easy modelling of sophisticated risk patterns and multiple events, the possibility
to include time-varying frailty components.

We are currently working on a similar project with accelerated failure time
models: these results will be reported elsewhere.

Finally, note that the Bayesian setting allows an easy specification and esti-
mation of frailty components in the model. This is a useful addition to deal with
multicentre studies or with recurrent events.
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Figure 1: Langevin-Hastings chain for the baseline hazard B-splines parameters.
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Figure 3: Fitted baseline hazard, baseline survival curve and time-varying regres-
sion coeflicients.
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Figure 4: 90% credibility envelope for the time-varying regression coefficients:
posterior mean (solid black line) ; posterior 5.0% and 95.0% quantiles (solid grey
lines).

14





