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Abstract

A class of R-estimators, based on the concepts of multivariate signed ranks and the op-
timal rank-based tests developed in Hallin and Paindaveine (2004b), is proposed for the
estimation of the shape matrix of an elliptical distribution. These R-estimators are root-n
consistent under any radial density g, without any moment assumptions, and semiparamet-
rically efficient at some prespecified density f . When based on normal scores, they are
uniformly more efficient than the traditional normal-theory estimator, based on empirical
covariance matrices (the asymptotic normality of which moreover requires finite moments of
order four), irrespective of the actual underlying elliptical density. They rely on an original
rank-based version of Le Cam’s one-step methodology, which avoids the unpleasant nonpara-
metric estimation of cross-information quantities that is generally required in the context of
R-estimation. Although they are not strictly equivariant, they are shown to be equivariant
in a weak asymptotic sense. Simulations confirm their feasability and excellent finite-sample
performances.

AMS 1980 subject classification : 62M15, 62G35.
Key words and phrases : Elliptical densities, Shape matrix, Multivariate ranks and signs, R-

estimation, Local asymptotic normality, Semiparametric efficiency, One-step estimation, Affine
equivariance.

1 Introduction.

1.1 Rank-based inference for elliptical families.

An elliptical density is determined by a location centre θθθ, a positive definite symmetric k × k
matrix V = (Vij) with V11 = 1, the shape matrix, and the so-called radial density g; for a precise
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definition, see Section 2. The shape (matrix) V is a genuinely multivariate concept, which
describes the shape and orientation of the distribution. The traditional covariance matrix, if
it exists, is proportional to the shape matrix, but the latter does not require any moment
assumptions.

Elliptical families have been introduced in multivariate analysis as a reaction against per-
vasive Gaussian assumptions. Most classical multivariate analysis procedures—principal com-
ponent, canonical correlations, multivariate regression, etc.—readily extend to elliptical models,
with the shape matrix playing the role of traditional covariances or correlations. All these meth-
ods crucially depend on an estimation V̂ of the shape matrix. So does inference on the location
parameter θθθ, or on the parameters of interest in more complex models (multiple output regres-
sion, multivariate analysis of variance, VARMA models, etc.) involving elliptical rather than
traditional Gaussian noise; see, e.g., Hallin and Paindaveine (2002a, 2002b, 2004a, and 2005).
It is reasonable, in most applications, to treat the radial density g as a nuisance. Therefore, it
is essential for V̂ to enjoy good properties under arbitrary g, including the heavy-tailed ones.

The traditional sample covariance matrix in this respect clearly does not qualify, and new esti-
mators have to be considered. One of them is the celebrated Tyler estimator VT (Tyler 1987a, b),
which is extremely robust, but relies entirely on multivariate signs, and thus does not fully ex-
ploit the available information. When g is unspecified, invariance arguments suggest that this
information is contained in the ranks of radial distances, and that these ranks should allow for
improving over VT .

Similar arguments, in the hypothesis testing context, were used by Hallin and Paindav-
eine (2004b), who developed a class of optimal signed rank tests for null hypotheses of the
form V = V0. Let X1, ...,Xn be a random sample from an elliptical distribution with un-
known shape matrix V. Hallin and Paindaveine (2004b)’s test statistics are constructed as
follows. For a known θθθ (which can be replaced by a root-n consistent estimate), denote by
Zi := V−1/2

0 (Xi − θθθ) the V0-standardized observations, by di := ‖Zi‖ their lengths, and by
Ui := ‖Zi‖−1Zi their multivariate signs, i = 1, ..., n. Let Ri, i = 1, ..., n be the rank of di among
d1, ..., dn. For a chosen score function Kf : (0, 1) → R (ensuring optimality at some chosen
radial density f), consider the matrix-valued signed rank statistic

Sf (V0) :=
1
n

n∑
i=1

Kf

(
Ri

n + 1

)
UiU′

i.

The (distribution-free under the null hypothesis) test statistic is then Qf := Q(Sf (V0)), where

Q(S) := tr(S2)− 1
k

(trS)2

is k times the variance of the eigenvalues of the positive definite symmetric k × k matrix S
(another possibility would be the ratio k|S|1/k/(trS) of the geometric mean of the eigenvalues
to their arithmetic mean).

These test procedures enjoy a series of attractive features: (i) they are valid under arbitrary
radial density g, irrespective of any moment assumptions; (ii) they are nevertheless (semipara-
metrically) efficient at some prespecified radial density f (more specifically, at the class of
densities with standardized form f1; see Section 2.1 for a precise definition); (iii) they exhibit
surprisingly high asymptotic relative efficiencies, with respect to classical Gaussian procedures,
under non Gaussian g’s; and (iv), quite remarkably, when Gaussian (van der Waerden) scores
are adopted, their AREs with respect to the classical Gaussian tests (John (1971, 1972)’s test, or
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equivalently, the extension by Muirhead and Waternaux (1980) of the Mauchly (1940) Gaussian
likelihood ratio test) are uniformly larger than one—see Paindaveine (2004) for this extension
to shape matrices of the celebrated Chernoff-Savage (1958) result.

All these nice properties, actually, are properties of the noncentrality parameters of the
asymptotically noncentral chi-square distributions, under local alternatives, of the rank-based
test statistic considered. When the radial density, under such alternatives, is g, these noncen-
trality parameters depend on a symmetric positive definite matrix, of the form Jk(f1, g1)ΥΥΥ−1

k (V)
(where ΥΥΥk does not depend on f1 nor g1) which, for g1 = f1 coincides with the efficient (at f1)
information matrix for V.

An immediate question is: do such tests have any natural counterparts in the context of
point estimation, that is, can we construct estimators V̂(n) for the shape matrix that match the
performances of those rank-based tests, in the sense of (i) being root-n consistent under any
radial density g, irrespective of any moment assumptions—in sharp contrast with the Gaussian
estimators, which require finite second-order moments for consistency, and finite fourth-order
ones for asymptotic normality; (ii) being nevertheless (semiparametrically) efficient at some
prespecified standardized radial density f1; and (iii) exhibiting the same asymptotic relative
efficiencies, with respect to classical Gaussian estimators, including (iv) the Chernoff-Savage
property of Paindaveine (2004). Such estimators would improve the performance of the existing
ones that satisfy the consistency requirement (i), such as Tyler (1987a)’s celebrated affine-
equivariant estimator of shape (scatter, in Tyler’s terminology), or the estimator of shape based
on the Oja signs developed in Ollila, Hettmansperger, and Oja (2004). These estimators indeed
are root-n consistent under extremely general conditions (finite second-order moments, however,
for Ollila et al.), but they are not efficient. Tyler’s estimate as well as the associate sign test
(Tyler 1987b) actually are efficient in the so-called angular central Gaussian model—the model
obtained by applying the transformation x 7→ x/‖x‖ to the model considered here, that is, by
taking the trace Ui of our observations Xi on the unit sphere; see Tyler (1987b) for details.

The answer, as we shall see, is positive, and the estimators achieving the required perfor-
mances, as expected, are R-estimators, based on the same concepts of multivariate ranks and
signs as the test statistics in Hallin and Paindaveine (2004b). Actually, when adequately defined,
the R-estimator which is efficient at standardized density f1 (that is, has an asymptotic covari-
ance matrix, under density f , coinciding with the inverse of the efficient information matrix)
has, under radial density g, asymptotic covariance J −1

k (f1, g1)ΥΥΥk(V). This implies, for instance,
that the R-estimator corresponding to van der Waerden tests inherits the attractive property of
dominating, irrespective of the actual radial density, its Gaussian parametric competitor.

1.2 R-estimation.

The derivation of such R-estimators however is by no means straightforward. Traditional R-
estimators are defined (and computed) via the minimization of some rank-based objective func-
tion; see Hodges and Lehmann (1963a), Adichie (1967), Jurečková (1971), Koul (1971), or the
review paper by Draper (1988). Such “argmin” definitions are numerically costly, especially
when the dimension of the parameter is high (in dimension k, a shape matrix has dimension
k(k + 1)/2 − 1), since only numerical implementation is possible (the only example we know
of a closed-form is the Hodges-Lehmann, Wilcoxon type, estimator for univariate location and
regression). Neither is the “argmin” form convenient from a theoretical point of view, since the
objective function, being a function of ranks, is discontinuous, and uniform monotonicity in the
vicinity of the parameter is not always an obvious issue; this issue remains unsolved, for instance,
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in the serial context (estimation of autoregressive parameters, see Allal et al. 2001—note that
Koul and Saleh (1993)’s estimator, which escapes this difficulty, is not genuinely rank-based
and, as such, does not qualify as an R-estimator).

In the present context, this intuitively appealing approach would consist in defining an R-
estimator as the shape matrix V minimizing the test statistic Q(Sf (V)). Unfortunately, the
uniqueness, consistency and other asymptotic properties of such an estimator are unknown for
a general choice of Kf . Another serious inconvenience of R-estimators stems from the fact
that estimating their asymptotic variances is another hard problem, even in the simplest cases.
Indeed, this variance, under density g, involves a cross-information quantity J (g) (below taking
the form Jk(f1, g1) when the scores are the optimal ones associated with density f ; see (3.4)),
which depends on the unknown g. Simple consistent estimators of this quantity have been
proposed by Lehmann (1963b) and Sen (1966) for one- and two-sample location problems; these
estimators are based on comparisons of confidence interval lengths, a method which involves the
arbitrary choice of a confidence level 1−α—a choice which has quite an impact on the final result.
Another simple method for constructing consistent estimators of J (g) can be obtained from the
asymptotic linearity property of rank statistics (see Kraft and van Eeden 1972, Antille 1974, or
page 321 of Jurečková and Sen 1996 for location and regression; see Section 3.3 of the present
paper for a more elaborated version). These “naive” estimators however involve the arbitrary
choice of a “small” perturbation of the parameter (generally set to n−1/2; but it could be 2n−1/2

or 3n−1/2 as well...). Theory again provides no guidelines for this choice, which has a dramatic
impact on the output. The resulting estimators thus are likely to be poor. More elaborated
approaches rely on a kernel estimate of g—hence cannot be expected to perform well under small
and moderate sample sizes. Such kernel methods have been considered, for the Wilcoxon case,
by Schweder (1975) (see also Cheng and Serfling 1981, Bickel and Ritov 1988, and Fan 1991)
and, in a more general setting, by Koul (2002) (Section 4.5). They also require arbitrary choices
(window width and kernel; or, as in Koul 2002, the choice of the order α of an empirical quantile)
for which universal recommendations seem hardly possible (see Koul, Sievers, and Mc Kean 1987
for an empirical investigation). Moreover, estimating the actual underlying density is somewhat
incompatible with the spirit and basic invariance principles of rank-based inference.

Motivated by these problems, still in the context of univariate regression models, Kraft
and van Eeden (1972) have proposed a class of closed form linearized R-estimators, which are
defined as the sum of a preliminary root-n consistent estimator and an adequate rank-based
correction (see also Antille 1974). A severe objection against linearized R-estimators is that
the influence of the preliminary estimator in general does not fade away as n → ∞, so that
the resulting estimator cannot be considered, even asymptotically, as a genuine R-estimator.
There is however one noteworthy exception: when the rank-based correction has a very specific
form, proportional to J (g) or to some consistent estimator thereof, then the influence of the
preliminary estimator is oP(n−1/2), and linearized R-estimators can be made asymptotically
equivalent to genuine R-estimators. This however brings us back to the difficult problem of
estimating J (g).

These difficulties probably are the reason why R-estimation has never become as popular in
applications as rank tests.

1.3 R-estimation of shape.

In the context of elliptical models, and for the multivariate concepts of signs and ranks consid-
ered in this paper, we propose an R-estimator that avoids the drawbacks of “classical” univariate
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R-estimators we just described. The R-estimators we are proposing are closed-form estimators
(in the spirit of Kraft and van Eeden’s linearized ones) depending on multivariate ranks and
signs only, which achieve the objectives (i)-(iv) mentioned in Section 1.1 without having recourse
to kernel-based estimation of such quantities as J (g) (here, Jk(f1, g1)). These estimators are
one-step estimators in the sense of Le Cam, with Tyler’s scatter matrix as a preliminary es-
timator, and a rank-based version of the semiparametrically efficient central sequences derived
in Hallin and Paindaveine (2004b) as a linear correction; the influence of the preliminary esti-
mator however disappears as n → ∞. As can be expected, the one-step correction term again
involves the cross-information quantity Jk(f1, g1), or at least some consistent estimator thereof.
A sophisticated version of the traditional “naive” estimator of this quantity is briefly described,
but suffers the same weaknesses as in the traditional setting. We therefore propose another,
more elaborated construction which, by fully exploiting the local uniform asymptotic normality
(ULAN) structure of the model under study, produces an indirect estimation of Jk(f1, g1).

Summing up, we are breaking with the tradition of an “argmin definition” of R-estimators,
and rather use the Le Cam theory of LAN experiments in order to construct an explicit one-step
R-estimator entirely based on (multivariate concepts of) ranks and signs, enjoying the robustness
(no moment assumptions), optimality, and relative efficiency properties of the corresponding
rank tests (listed under (i)-(iv) in Section 1.1), as well as the computational advantages related
to the one-step structure.

1.4 Outline of the paper.

The outline of the paper is as follows. First, we need some preparation and notation: in Sec-
tion 2.1, we recall the main definitions related with elliptical symmetry, location, scale, and
shape. Section 2.2 restates the LAN result derived in Hallin and Paindaveine (2004b), and
Section 2.3 briefly explains the relation between ranks and signs on one hand, semiparametric
efficiency on the other. Section 3 is devoted to the presentation and asymptotic properties of our
one-step R-estimators. We start, in Section 3.1, with the rank-based version of semiparametri-
cally efficient central sequences. Then, in Section 3.2, we investigate the asymptotic behavior
of a pseudo-estimator involving the unknown cross-information quantity Jk(f1, g1). Finally, we
show how this quantity can be estimated consistently, in a naive way first (Section 3.3), but also
(Sections 3.4 and 3.5) in a more subtle way, without turning to kernel estimation of g and its
derivative, as in the methods that have been proposed before (in the restricted context of uni-
variate Hodges-Lehmann estimation of location). The estimation of the asymptotic covariance
of the resulting R-estimator, which is essential for confidence estimation, follows as a by-product.
The resulting estimators enjoy all the asymptotic properties expected from R-estimation (see
the unusually high AREs figures listed in Table 1), but remain unsatisfactory on one point: for
fixed sample size n, they are not affine-equivariant. They are nevertheless equivariant in a weak
asymptotic sense, as shown in Section 4. A numerical study (Section 5) confirms the excellent
performances of the method. An appendix (Section 6) collects technical proofs.

1.5 Notation.

As usual, vec (A) stands for the k2 × 1 vector resulting from stacking the columns of a k × k
matrix A on top of each other, and, whenever A is symmetric, vech (A) for the k(k + 1)/2-
dimensional vector obtained by stacking A’s upper-triangular elements. Now, if A = (Aij)
is a shape matrix, A11 is automatically one, and we write ve

◦
ch (A) for the (k(k + 1)/2 − 1)-

dimensional vector obtained by omitting vech (A)’s first component. Denoting by e` the `th
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vector in the canonical basis of Rk and by Ik the k × k unit matrix, let

Kk :=
k∑

i,j=1

(eie′j)⊗ (eje′i) and Jk :=
k∑

i,j=1

(eie′j)⊗ (eie′j) = (vec Ik)(vec Ik)′;

Kk is the k2 × k2 commutation matrix. With this notation, note that Kkvec(A) = vec(A′),
and Jkvec(A) = (trA)(vec Ik). Also note that (1/k)Jk and Ik − (1/k)Jk are the matrices of the
mutually orthogonal projections on the subspaces {λ(vec Ik) |λ ∈ R} and {vec(A) | trA = 0},
respectively. Define Mk as the (k(k +1)/2−1)×k2 matrix such that M′

k(ve
◦
ch(v)) = vec (v) for

any symmetric k×k matrix v = (vij) such that v11 = 0, and let Nk be the (k(k +1)/2− 1)×k2

real matrix such that Nk(vecv) = ve
◦
chv for any symmetric k× k matrix v. For any symmetric

and positive semi-definite matrix A, we will denote by A1/2 the symmetric root of A; however,
any other square root B of A (satisfying BB′ = A) could also be used—provided, of course, it
is used in a consistent way. Finally, we write V⊗2 for the Kronecker product V ⊗V.

Throughout the paper, we had to face very serious notational problems. Indeed, for each
score function (each radial density f), we have to distinguish between sequences of estimators of
V combining several of the following features: non-rank-based/rank-based, estimators/pseudo-
estimators, discretized/nondiscretized, etc. Although in practice we will be interested in non-
discretized R-estimators only, the proofs of asymptotic properties unfortunately require vari-
ous clumsy discretization steps. We deliberately adopted a heavy, but explicit and systematic
notation. As a rule, tilde (V˜ , ∆∆∆˜ , . . . ) is used for R-estimators and rank-based quantities;
subscript # indicates discretization (at some point, further discretization is indicated by =///); hats
distinguish estimators from pseudo-estimators, etc. For instance, V˜ (n)

f# stands for a discretized
rank-based pseudo-R-estimator with f -scores, V̂˜ (n)

f# and V̂˜ (n)
f for the corresponding discretized

and undiscretized estimators, and so on. We apologize for such awkward style (fortunately,
it mainly appears in the proofs), but we feel this is the only way we can avoid ambiguous or
erroneous statements.

2 Elliptical symmetry.

2.1 Location, scale, and shape.

Denote by X(n) := (X(n)′
1 , . . . ,X(n)′

n )′, n ∈ N a triangular array of k-dimensional observations.
Throughout, X(n)

1 , . . . ,X(n)
n are assumed to be i.i.d., with elliptical density

f
θθθ,V;f

(x) := ck,f
1

|V|1/2
f

((
(x− θθθ)′V−1(x− θθθ)

)1/2
)

, x ∈ Rk, (2.1)

where θθθ ∈ Rk is a location parameter and V := (Vij), a symmetric positive definite real k × k
matrix with V11 = 1, is a shape parameter. The infinite-dimensional parameter f : R+

0 −→ R+,
the so-called radial density, is an a.e. strictly positive function, the constant ck,f a normalization
factor depending on the dimension k and f .

It is convenient to rewrite the radial density f into r 7→ f(r) := 1
σf1( r

σ ), where σ2 > 0 and f1

are the scale parameter and standardized radial density associated with f , respectively. Note
that f and f1 are quite improperly called radial densities. Denote indeed by d

(n)
i = d

(n)
i (θθθ,V) :=

‖Z(n)
i (θθθ,V)‖ the modulus of the centered and sphericized observations Z(n)

i = Z(n)
i (θθθ,V) :=
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V−1/2(X(n)
i − θθθ), i = 1, . . . , n. If the X(n)

i ’s have density (2.1), these moduli are i.i.d., with
density and distribution function

r 7→ 1
σ

f̃1k

(
r

σ

)
:=

1
σµk−1;f1

(
r

σ

)k−1

f1

(
r

σ

)
I[r>0] and r 7→ F̃1k(r/σ) :=

∫ r/σ

0
f̃1k(s) ds,

respectively—provided, however, that

µk−1;f :=
∫ ∞

0
rk−1f(r) dr = σk−1µk−1;f1 < ∞, (2.2)

an assumption we henceforth always make on f . This function f̃1k is the actual standard-
ized radial density, and (2.2) thus merely ensures that it be a probability density function; in
particular, it does not imply any moment restriction on f̃1k, the d

(n)
i ’s, nor the X(n)

i ’s.
In order for σ and f1 to be identifiable, a scale constraint is required. Still in order to avoid

moment restrictions, we impose that the d
(n)
i ’s, under (2.1), have common median σ, i.e., that

F̃1k(1) = 1/2, or, equivalently, (µk−1;f )−1
∫ σ

0
rk−1f(r)dr = 1/2. (2.3)

The k-variate multinormal distribution and k-variate Student distribution with ν > 0 degrees
of freedom are associated with radial densities f1(r) = φ1(r) := exp(−akr

2/2) and f1(r) =
f t
1,ν(r) := (1 + ak,νr

2/ν)−(k+ν)/2, respectively; the constants ak > 0 and ak,ν > 0 are such
that (2.3) is satisfied.

Denote by P(n)
θθθ,V;f or P(n)

θθθ,σ2,V;f1
the distribution of X(n) under parameter value (θθθ′, (ve

◦
chV)′)′

and radial density f (where f1 satisfies (2.2) and (2.3)). The parameter space is thus ΘΘΘ :=
Rk × Vk, where Vk either stands for the set of all k × k symmetric positive definite matrices V
such that V11 = 1, or for the corresponding set (in R(k(k+1)/2)−1) of values of ve

◦
chV.

2.2 Uniform local asymptotic normality.

Our objective is the estimation of the shape parameter V under unspecified location θθθ and radial
density f . In this problem, V is the parameter of interest, whereas θθθ and f (equivalently, θθθ, σ2,
and f1) play the role of a nuisance.

The relevant statistical experiment is the nonparametric family

P(n) :=
⋃

f∈FA

P(n)
f :=

⋃
f∈FA

{
P(n)

θθθ,V;f

∣∣∣θθθ ∈ Rk,V ∈ Vk

}
(2.4)

(f ranges over the set FA of densities satisfying Assumption (A) below), in which the partition
of P(n) into a collection of parametric subexperiments P(n)

f , all indexed by the same parameters θθθ
and V, induces a semiparametric structure. Uniform local asymptotic normality (ULAN, for
fixed f , with respect to θθθ and V) of the parametric subexperiments P(n)

f , f ∈ FA readily follows
from the ULAN property established, in Proposition 1 of Hallin and Paindaveine (2004b), for
P(n)

f1
:=

{
P(n)

θθθ,σ2,V;f1

∣∣∣ (θθθ′, (ve
◦
chV)′)′ ∈ΘΘΘ, σ2 ∈ R+

0

}
with respect to θθθ, σ2, and V. The latter is

established under extremely mild assumptions on f1; in order to save space, we do not restate
these assumptions here, and only give the following simple sufficient condition, which is satisfied
by all densities considered in practice (it is satisfied, for instance, by all multivariate Student
radial densities, including the Cauchy ones).
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Assumption (A). The radial density f is absolutely continuous, with a.e.-derivative ḟ ; letting
ϕf1(r) := −ḟ1(r)/f1(r), r ∈ R+

0 and Kf1(u) := ϕf1(F̃
−1
1k (u))(F̃−1

1k (u)), u ∈ (0, 1), the integrals

Ik(f1) :=
∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du and Jk(f1) :=
∫ 1

0
K2

f1
(u) du

are finite.

Note that, under this assumption,
∫ 1
0 ϕf1(F̃

−1
1k (u)) du = 0 and

∫ 1
0 Kf1(u) du = k, so that

E [ϕf1(di/σ)] = 0 and E [ϕf1(di/σ) di/σ] = k under P(n)
θθθ,V;f .

Proposition 2.1 Assume that f satisfies Assumption (A). Then, the sequence of experiments
P(n)

f is ULAN, with (writing di and Ui for d
(n)
i (θθθ,V) and U(n)

i (θθθ,V) := Z(n)
i (θθθ,V)/d

(n)
i (θθθ,V),

respectively) central sequence

∆∆∆(n)
f (θθθ,V) :=

∆∆∆(n)
f ;I(θθθ,V)

∆∆∆(n)
f ;II(θθθ,V)

:=n−1/2


1
σ
V−1/2

n∑
i=1

ϕf1

(
di

σ

)
Ui

1
2Mk

(
V⊗2

)−1/2
n∑

i=1

vec
(

ϕf1

(
di

σ

)
di

σ
UiU′

i − Ik

)
 (2.5)

and full-rank information matrix

ΓΓΓf (θθθ,V) :=

(
ΓΓΓf ;I(θθθ,V) 0

0 ΓΓΓf ;II(θθθ,V)

)
, (2.6)

where
ΓΓΓf ;I(θθθ,V) :=

1
kσ2

Ik(f1)V−1,

and

ΓΓΓf ;II(θθθ,V) :=
1
4

Mk

(
V⊗2

)−1/2
[ Jk(f1)
k(k + 2)

(Ik2 + Kk + Jk)− Jk

] (
V⊗2

)−1/2
M′

k. (2.7)

The block-diagonal structure of the information matrix (2.6) and ULAN imply that substi-

tuting (in principle, after adequate discretization) a root-n consistent estimator θ̂θθ
(n)

for the un-
known location θθθ has no influence, asymptotically, on the V-part ∆∆∆(n)

f ;II of the central sequence.
Hence, optimal inference about V can be based, without any loss of (asymptotic) efficiency,

on ∆∆∆(n)
f ;II(θ̂θθ

(n)
,V) as if θ̂θθ

(n)
were the actual location parameter: this actually follows from the

asymptotic linearity property of Section 6.1. Therefore, in the derivation of theoretical results,
we tacitly may assume, without loss of generality, that θθθ = 0. The notation P(n)

V;f , d
(n)
i (V),

U(n)
i (V), ∆∆∆(n)

f (V), ΓΓΓf (V), . . . will be used in an obvious way instead of P(n)
0,V;f , d

(n)
i (0,V),

U(n)
i (0,V), ∆∆∆(n)

f ;II(0,V), ΓΓΓf ;II(0,V), etc. The experiment (2.4) under study now takes the form

P(n) :=
⋃

f∈FA

P(n)
f :=

⋃
f∈FA

{
P(n)

V;f

∣∣∣V ∈ Vk

}
(2.8)

Although any root-n consistent estimator θ̂θθ
(n)

could be used, we suggest adopting the multi-
variate affine-equivariant median introduced by Hettmansperger and Randles (2002), which is it-

self a “sign-based” estimator. The multivariate signs to be considered then are the U(n)
i (θ̂θθ

(n)
,V)’s,

and the ranks those of the d
(n)
i (θ̂θθ

(n)
,V)’s.
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2.3 Semiparametric efficiency, ranks, and signs.

As already mentioned, the partition of P(n) into a collection of parametric subexperiments P(n)
f ,

all indexed by V, induces a semiparametric structure, where V is the parameter of interest,
whereas f or, equivalently, (σ2, f1) plays the role of a nuisance. Except for the unavoidable
loss of efficiency resulting from the presence of this nuisance, we would like our estimators to
be optimal, i.e., to reach semiparametric efficiency bounds, either at some prespecified radial
density f1, or at any density belonging to some class F of radial densities. The semiparametric
efficiency bound at f is provided by the so-called efficient information matrix

ΓΓΓ∗f1
(V) :=

Jk(f1)
4k(k + 2)

Mk

(
V⊗2

)−1/2
[
Ik2 + Kk −

2
k
Jk

] (
V⊗2

)−1/2
M′

k =: Jk(f1)ΥΥΥ−1
k (V),

(2.9)
which is the asymptotic covariance matrix of the efficient central sequence

∆∆∆(n)∗
f (V) :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1
k
Jk

] n∑
i=1

ϕf1

(
di

σ

)
di

σ
vec

(
UiU′

i

)
(2.10)

(see Hallin and Paindaveine 2004b) and does not depend on σ (whence the notation). An
estimator V(n) of V is semiparametrically efficient at f iff the asymptotic distribution under
P(n)

V;f of n1/2
(
ve
◦
ch
(
V(n)

)
− ve

◦
ch
(
V
))

is the same as that of
(
ΓΓΓ∗f1

(V)
)−1∆∆∆(n)∗

f (V), that is, iff,

under P(n)
V;f ,

n1/2
(
ve
◦
ch
(
V(n))− ve

◦
ch (V)

) L−→ N
(
0,
(
ΓΓΓ∗f1

(V)
)−1

)
. (2.11)

The difference ΓΓΓf (V) − ΓΓΓ∗f1
(V) quantifies the loss of information on V which is due to the

non-specification of (σ2, f1)—actually, to the non-specification of σ2 (as far as f1 is concerned,
the model is adaptive); see Section 3.1 of Hallin and Paindaveine (2004b) for details.

A general result by Hallin and Werker (2003) indicates that, in case

(i) the parametric subexperiments P(n)
f , f ∈ FA are ULAN, with central sequences ∆∆∆(n)

f (V)
and information matrices ΓΓΓf (V), and

(ii) the nonparametric subexperiments P(n)
V :=

{
P(n)

V;f

∣∣∣ f ∈ FA

}
, V ∈ Vk are generated by

groups of transformations G(n)
V with maximal invariant σ-fields B(n)

V ,

then the projection E
[
∆∆∆(n)

f (V)
∣∣∣B(n)

V

]
of ∆∆∆(n)

f (V) onto B(n)
V yields a distribution-free version of

the semiparametrically efficient central sequence (2.10), in the sense that, under P(n)
V;f ,

E
[
∆∆∆(n)

f (V)
∣∣∣B(n)

V

]
−∆∆∆(n)∗

f (V) = oP(1)

as n →∞ .
In the present context, this double structure exists: (i) is an immediate consequence of Propo-

sition 2.1, and the generating groups G(n)
V are the groups of order-preserving radial transforma-

tions (see Section 4.1 of Hallin and Paindaveine (2004b) for a precise description), which admit
the ranks R

(n)
i = R

(n)
i (V) of the distances d

(n)
i (V) and the multivariate signs U(n)

i = U(n)
i (V)

as maximal invariants. Locally asymptotically optimal estimation of V thus in principle can be
based on ranks and signs.
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Note that, under P(n)
V , the vector of ranks (R(n)

1 (V), . . . , R(n)
n (V)) is uniformly distributed

over the n! permutations of (1, . . . , n), while the signs U(n)
i (V) are i.i.d. and uniformly dis-

tributed over the unit sphere; ranks and signs moreover are mutually independent. Since how-
ever V is unknown, those ranks and signs associated with V are not computable from the
observations, and the construction of our R-estimators will be based on the ranks R

(n)
i (V(n)

T )
and the signs U(n)

i (V(n)
T ) associated with Tyler’s estimator V(n)

T (see Section 3.2 for a precise
definition)—call them Tyler ranks and Tyler signs, respectively.

3 One-step optimal R-estimation of shape.

3.1 A central sequence for shape based on ranks and signs.

Rather than E
[
∆∆∆(n)

f (V)
∣∣∣R(n)

1 (V), . . . , R(n)
n (V),U(n)

1 (V), . . . ,U(n)
n (V)

]
, the semiparametrically

efficient rank-based central sequences we plan to consider for our construction of R-estimators
are of the (asymptotically equivalent: see (3.2)) form

∆∆∆˜ (n)
f (V) :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1
k
Jk

] n∑
i=1

Kf1

(
Ri

n + 1

)
vec

(
UiU′

i

)
(3.1)

=
1
2
n−1/2Mk

(
V⊗2

)−1/2
n∑

i=1

Kf1

(
Ri

n + 1

)
vec

(
UiU′

i

)
−

m
(n)
f1

k
vec (Ik)

 ,

with Ri = R
(n)
i (V), Ui = U(n)

i (V), and the exact centering constants m
(n)
f1

:= 1
n

∑n
i=1 Kf1

(
i

n+1

)
.

It follows from part (ii) of Proposition 3.1 below that

E
[
∆∆∆(n)

f (V)
∣∣∣R(n)

1 (V), . . . , R(n)
n (V),U(n)

1 (V), . . . ,U(n)
n (V)

]
− ∆∆∆˜ (n)

f (V) = oP(1) (3.2)

under P(n)
V;f , as n → ∞: ∆∆∆˜ (n)

f (V) thus also qualifies as a rank-based version of the semipara-

metrically efficient (at P(n)
V;f ) central sequence (2.10). For any g ∈ FA, define

ΓΓΓ∗f1,g1
(V) := Jk(f1, g1)ΥΥΥ−1

k (V), (3.3)

where (using the notation G̃1k, ϕg1 in an obvious way)

Jk(f1, g1) :=
∫ 1

0
Kf1(u)Kg1(u) du =

∫ 1

0
F̃−1

1k (u)ϕf1(F̃
−1
1k (u))G̃−1

1k (u)ϕg1(G̃
−1
1k (u)) du (3.4)

(a cross-information quantity); note that, when f and g coincide up to the scale (that is, for f1 =
g1), Jk(f1, g1) = Jk(f1), and that ΓΓΓ∗f1,f1

(V) reduces to ΓΓΓ∗f1
(V) defined in (2.9). The properties

of ∆∆∆˜ (n)
f (V) are summarized in the following proposition (in which we let di := d

(n)
i (V)).

Proposition 3.1 For any f ∈ FA, the rank-based random vector ∆∆∆˜ (n)
f (V) defined in (3.1)

(i) is distribution-free under
{

P(n)
V;g

∣∣∣ g ∈ F}, where F denotes the class of all possible radial
densities;
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(ii) is asymptotically equivalent, in P(n)
V;g-probability for any g ∈ F , to

∆∆∆(n)∗
f,g (V) :=

1
2
n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1
k
Jk

] n∑
i=1

Kf1

(
G̃1k

(
di

σ

))
vec

(
UiU′

i

)
(3.5)

(σ here stands for the scale parameter associated with g), hence, in P(n)
V;f -probability, to

the semiparametrically efficient (at f , for any σ) central sequence for shape (2.10);

(iii) is asymptotically normal under
{

P(n)
V;g

∣∣∣ g ∈ F}, with mean zero and covariance matrix ΓΓΓ∗f1
(V);

(iv) is asymptotically normal under P(n)

V+n−1/2v;g
, as n →∞, with mean ΓΓΓ∗f1,g1

(V)ve
◦
ch(v) and

covariance matrix ΓΓΓ∗f1
(V), for any symmetric matrix v such that v11 = 0 and any g ∈ FA;

(v) satisfies under P(n)
V;g, as n →∞, the asymptotic linearity property

∆∆∆˜ (n)
f (V + n−1/2v(n))− ∆∆∆˜ (n)

f (V) = −ΓΓΓ∗f1,g1
(V) ve

◦
ch(v(n)) + oP(1) (3.6)

for any bounded sequence v(n) of symmetric matrices such that v
(n)
11 = 0, and any g ∈ FA.

Proof. Part (i): the distribution-freeness of ∆∆∆˜ (n)
f (V) readily follows from the distribution-

freeness, under ellipticity, of the ranks R
(n)
i (V) and the signs U(n)

i (V) with respect to which
∆∆∆˜ (n)

f (V) is measurable. Parts (ii) and (iii) are consequences of the more general asymptotic
representation result given in Lemma 2 of Hallin and Paindaveine (2004b) (see the proof of their
Proposition 3). Part (iv) is a direct application of Le Cam’s Third Lemma (Proposition 4 of
Hallin and Paindaveine 2004b). Finally, the asymptotic linearity property of part (v) follows
from the more general property given in Proposition 6.1). �

3.2 An optimal one-step rank-based pseudo-estimator.

Tyler’s celebrated estimator of shape V(n)
T was introduced by Tyler (1987a) from the very

simple idea that, if X is elliptical with location θθθ, then its shape V is entirely character-
ized by the fact that U(θθθ,V) := V−1/2(X − θθθ)/‖V−1/2(X − θθθ)‖ is centered, with covariance
(1/k)Ik. He accordingly defines (assume θθθ is known) V(n)

T as the unique shape matrix satisfying
1
n

∑n
i=1 U(n)

i (θθθ,V)
(
U(n)

i (θθθ,V)
)′ = 1

kIk.
Denote by V(n)

# a discretized version of V(n)
T . Such a discretization can be obtained, for

instance, by mapping each component v
(n)
i of the ve

◦
ch form of Tyler’s original estimate onto

v
(n)
#i := c−1

0 sign(v(n)
i )n−1/2dn1/2c0|v(n)

i |e, where dn1/2|v(n)
i |e denotes the smallest integer larger

than or equal to n1/2|v(n)
i | and c0 an arbitrary positive constant that does not depend on n.

Clearly, this discretization does not affect root-n consistency; in practice (where n = n0 is fixed),
it is not required, as c0 can be arbitrarily large, and actually makes little sense, as one can always
pretend starting discretization at n = n0 + 1; see Section 3.5 for practical implementation.

Since ∆∆∆˜ (n)
f (V) is a version of the efficient central sequence for shape, Le Cam’s classical

one-step method suggests estimating ve
◦
ch(V) by means of

ve
◦
ch(V˜ (n)

f#) := ve
◦
ch(V(n)

# ) + n−1/2
(
ΓΓΓ∗f1,g1

(V(n)
# )

)−1
∆∆∆˜ (n)

f (V(n)
# ). (3.7)
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Such an estimator is semiparametrically efficient at P(n)
f , in the sense of (2.11). Indeed, in view

of Proposition 3.1 and the continuity of v 7→ ΓΓΓ∗f1,g1
(v), we have, under P(n)

V;g,

n1/2
(
ve
◦
ch(V˜ (n)

f#)− ve
◦
ch(V)

)
= n1/2

(
ve
◦
ch(V(n)

# )− ve
◦
ch(V)

)
+
(
ΓΓΓ∗f1,g1

(V(n)
# )

)−1
∆∆∆˜ (n)

f (V(n)
# )

= n1/2
(
ve
◦
ch(V(n)

# )− ve
◦
ch(V)

)
+
(
ΓΓΓ∗f1,g1

(V(n)
# )

)−1

×
(
∆∆∆(n)∗

f,g (V)−ΓΓΓ∗f1,g1
(V) n1/2

(
ve
◦
ch(V(n)

# )− ve
◦
ch(V)

))
+ oP(1)

=
(
ΓΓΓ∗f1,g1

(V)
)−1

∆∆∆(n)∗
f,g (V) + oP(1) (3.8)

=
(
ΓΓΓ∗f1,g1

(V)
)−1

∆∆∆˜ (n)
f (V) + oP(1), (3.9)

where the application to ∆∆∆˜ (n)
f (V(n)

# ) of the asymptotic linearity property (3.6) is made possible,

as usual, by the local discreteness of V(n)
# ; the asymptotic representation (3.8) implies, for g = f ,

the efficiency of V˜ (n)
f#, whereas (3.9), by providing for V˜ (n)

f# an asymptotic representation as a
genuine signed rank quantity, justifies its status as an R-estimator.

A major problem however is that (3.7), via ΓΓΓ∗f1,g1
(V(n)

# ), involves the unknown cross-informa-
tion quantity Jk(f1, g1) defined in (3.4); V˜ (n)

f# thus is just a pseudo-estimator, as it cannot be
computed from the observations. The presence of this unknown coefficient Jk(f1, g1) probably
explains why one-step R-estimation methods seldom have been considered so far in practice (this
problem is completely overlooked, for instance, in Allal et al. 2001).

Clearly, any P(n)
V;g-consistent estimator Ĵ (n)

f of Jk(f1, g1) can be substituted for Jk(f1, g1)
itself. The same estimation of Jk(f1, g1) will be needed whenever the asymptotic variance of
V˜ (n)

f# is to be computed. This estimation thus plays a crucial role.
Estimating Jk(f1, g1)—the expectation of a function that depends on the unknown g—

however is not an obvious task, as explained in Section 1.2.
“Naive” consistent estimators can be obtained (Section 3.3) from the asymptotic linearity

property (3.6), but cannot be expected to be very accurate. And, although plain consistency in
theory is sufficient, a poor estimation of Jk(f1, g1) is likely to ruin the finite sample performance
of (3.7). More accuracy can be expected, for large sample size, from a kernel estimation of g,
along with a fair amount of technical work (see Schweder 1975 and Bickel and Ritov 1988
for the simple Wilcoxon case). From a practical perspective, this approach however is rather
heavy (with the usual kernel and bandwidth choices), and is hopeless for small or moderate
values of n. Moreover, from a decision-theoretical point of view, estimating g is somewhat
incompatible with the group-invariance spirit of the rank-based approach: if indeed the unknown
density g eventually is to be estimated by some ĝ, why not simply adopt a more traditional
estimated-score approach, based on the asymptotic reconstruction, via ∆∆∆(n)∗

ĝ , of the efficient
central sequence ∆∆∆(n)∗

g ?
We therefore propose, in Section 3.4, an original solution to this problem of estimating

Jk(f1, g1). Our solution, inspired by local likelihood maximization ideas, yields a genuine one-
step R-estimator V̂˜ (n)

f# asymptotically equivalent (under any P(n)
V;g) to the pseudo-estimator V˜ (n)

f#,
hence also to the signed rank statistic (3.9) based on the “genuine ranks”.

The asymptotic properties of the resulting R-estimators are thus the same as those of V˜ (n)
f#,

which we summarize in the following proposition: (i) they are asymptotically equivalent to a
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function of the genuine ranks and signs, asymptotically normal, and their covariance matrix is the
inverse of the covariance matrix characterizing the local powers of the optimal rank tests derived
in Hallin and Paindaveine (2004b); (ii) when based on f1-scores, they are semiparametrically
efficient at radial density f ; (iii) for finite n, they can be expressed as a linear combination of the
Tyler shape matrix and a rank-based shape matrix involving the Tyler ranks and signs; (iv) their
asymptotic covariance matrix, under any density, is proportional to the asymptotic covariance
matrices of the Gaussian estimator and of Tyler’s estimator (the Gaussian estimator is defined
in (iv)); the proportionality constant, which can be considered as a measure of asymptotic
relative efficiency, is provided in (v).

In order to obtain a simpler “Mk-free” expression for the asymptotic covariance matrix
of vec(V˜ (n)

f#) (cf. 3.14), define Qk(V) := [k(k + 2)]−1M′
kΥΥΥk(V)Mk. As shown in the proof of

Lemma 1 in Hallin and Paindaveine (2004b),

ΥΥΥk(V) = k(k + 2)NkQk(V)N′
k, (3.10)

where Nk is defined in Section 1.5.

Proposition 3.2 Let f and g belong to FA. Then,

(i) under P(n)
V;g, as n →∞,

n1/2ve
◦
ch
(
V˜ (n)

f#−V
)

=
(
ΓΓΓ∗f1,g1

(V)
)−1

∆∆∆(n)∗
f,g (V) + oP(1) (3.11)

=
(
ΓΓΓ∗f1,g1

(V)
)−1

∆∆∆˜ (n)
f (V) +oP(1) (3.12)

L−→ N
(
0,
(
Jk(f1)/J 2

k (f1, g1)
)

ΥΥΥk(V)
)

, (3.13)

or, in terms of vecV,

n1/2vec
(
V˜ (n)

f# −V
) L−→ N

(
0,
(
k(k + 2)Jk(f1)/J 2

k (f1, g1)
)
Qk(V)

)
; (3.14)

(ii) V˜ (n)
f# (equivalently, ve

◦
ch(V˜ (n)

f#) or vec(V˜ (n)
f#)) is semiparametrically efficient at

{
P(n)

V;f

∣∣∣V ∈ Vk

}
;

(iii) for all n,

V˜ (n)
f# =

(
1− k(k + 2)

Jk(f1, g1)
(
W˜ (n)

f#

)
11

)
V(n)

# +
(

k(k + 2)
Jk(f1, g1)

(
W˜ (n)

f#

)
11

)
W˜ (n)

f#

/(
W˜ (n)

f#

)
11

, (3.15)

where W˜ (n)
f# := W˜ (n)

f (V(n)
# ), with

W˜ (n)
f (V) := (V)1/2

[
1
n

n∑
i=1

Kf1

(
R

(n)
i (V)
n + 1

)
U(n)

i (V)U′(n)
i (V)

]
(V)1/2; (3.16)

(iv) the parametric Gaussian estimator is V(n)
G := ΣΣΣ(n)/(ΣΣΣ(n))11, with ΣΣΣ(n) := n−1∑n

i=1(Xi −
X̄)(Xi−X̄)′; provided that the kurtosis coefficient κk(g1) := (kEk(g1))/((k+2)D2

k(g1))−1
(where we let Ek(g1) :=

∫ 1
0 (G̃−1

1 (u))4 du and Dk(g1) :=
∫ 1
0 (G̃−1

1 (u))2 du) associated with
g1 is finite,

n1/2vec
(
V(n)
G −V

) L−→ N
(
0, (1 + κk(g1))Qk(V)

)
under P(n)

V;g as n →∞;
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(v) the ARE (i.e., the inverse ratio of the corresponding asymptotic variances), under P(n)
V;g

where g1 has finite moments of order four (resp., without any moment assumption on g1),

of V˜ (n)
f# with respect to V(n)

G (resp., V(n)
T ) is

1 + κk(g1)
k(k + 2)

J 2
k (f1, g1)
Jk(f1)

(resp.,
1
k2

J 2
k (f1, g1)
Jk(f1)

).

Proof. See Appendix (Section 6.2). �

Remark that the terminology “asymptotic relative efficiency” in part (v) of the proposition
can be used unambiguously, despite the multivariate setting, as all pseudo-estimators V˜ (n)

f#, the

Gaussian estimator V(n)
G , and Tyler’s estimator V(n)

T , have an asymptotic covariance matrix

proportional to ΥΥΥk(V) (see the proof of part (v) for the asymptotic distribution of V(n)
T ). The

relative performances of these estimators of shape thus can be described by a single number, a
fact that was already observed in Ollila, Hettmansperger, and Oja (2004); the situation is entirely
different for covariance matrices, where two numbers are required (see Tyler 1982, Ollila, Oja,
and Croux 2003, and Ollila, Croux, and Oja 2004).

Table 1 provides some numerical values, under various Student (tν) and normal (N ) radial
densities g1, of the AREs obtained in part (v) of Proposition 3.2. Note that, under Student
densities with less than 4 degrees of freedom, the ARE of V˜ (n)

f# with respect to V(n)
G is infinite, as

n1/2(V(n)
G −V) is not even OP(1). On the other hand, also note that under Student densities with

0.5 degrees of freedom, the AREs, with respect to Tyler’s V(n)
T , of V˜ ν# are relatively modest.

This is explained by the fact that, roughly speaking, “V(n)
T is optimal at t0 (the Student with

zero degrees of freedom).” In more rigorous terms, we have that, for any fixed n,

V˜ (n)
ν# −V(n)

T = o(1) P(n)-a.s., as ν → 0. (3.17)

Indeed, the scores Kν associated with the k-dimensional Student tν take the form

Kν(u) = k(k + ν)G−1
k,ν(u)/(ν + kG−1

k,ν(u)) u ∈ (0, 1),

where Gk,ν stands for the Fisher-Snedecor distribution function with k and ν degrees of freedom.
It is easily checked that G−1

k,ν(u)/ν →∞ as ν → 0, so that limν→0 Kν(u) = k, for all u ∈ (0, 1).

It follows that (with obvious notation) W˜ (n)
ν#−V(n)

# = o(1), P(n) -a.s. as ν → 0. This, in view of
(3.15), implies (3.17).

Using similar arguments, it can easily be shown that, for all fixed n and ν, V˜ (n)
ν#−V(n)

T = o(1)
P(n)-a.s., as k → ∞. This explains the fact that, for all fixed ν, the ARE of V˜ (n)

ν# with respect
to V(n)

T goes to 1 as k → ∞. Incidentally, this also holds for the van der Waerden—that is,
the Gaussian-score (Kf1 = Kφ1)—version of our pseudo-estimators: as the dimension k of the
observation space goes to infinity, the information contained in the radii di becomes negligible
when compared with that contained in the directions Ui.

3.3 Naive estimation of cross-information coefficients.

A simple consistent estimate of Jk(f1, g1) can be obtained through the asymptotic linearity
property in part (v) of Proposition 3.1. The idea we are exploiting here goes back, under its
simplest form (for traditional univariate ranks, in location and regression models), to Kraft and
van Eeden (1972) and Antille (1974); see page 321 of Jurečková and Sen (1996).
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underlying density
k t0.5 t3 t10 N
2 1.111 (∞) 1.246 (∞) 1.280 (0.853) 1.296 (0.648)
3 1.061 (∞) 1.145 (∞) 1.173 (0.939) 1.189 (0.713)

V˜ (n)
0.5#

4 1.038 (∞) 1.098 (∞) 1.121 (0.996) 1.136 (0.757)
6 1.020 (∞) 1.054 (∞) 1.070 (1.070) 1.083 (0.813)
10 1.008 (∞) 1.024 (∞) 1.034 (1.149) 1.044 (0.870)
2 0.969 (∞) 1.429 (∞) 1.651 (1.101) 1.792 (0.896)
3 0.972 (∞) 1.250 (∞) 1.400 (1.120) 1.507 (0.904)

V˜ (n)
3#

4 0.977 (∞) 1.667 (∞) 1.278 (1.136) 1.366 (0.911)
6 0.985 (∞) 1.091 (∞) 1.162 (1.162) 1.229 (0.921)
10 0.992 (∞) 1.040 (∞) 1.078 (1.198) 1.123 (0.936)
2 0.829 (∞) 1.376 (∞) 1.714 (1.143) 1.961 (0.980)
3 0.861 (∞) 1.212 (∞) 1.444 (1.156) 1.633 (0.979)

V˜ (n)
10#

4 0.887 (∞) 1.136 (∞) 1.313 (1.167) 1.468 (0.979)
6 0.921 (∞) 1.070 (∞) 1.185 (1.185) 1.304 (0.978)
10 0.955 (∞) 1.027 (∞) 1.091 (1.212) 1.174 (0.978)
2 0.720 (∞) 1.280 (∞) 1.681 (1.120) 2.000 (1.000)
3 0.757 (∞) 1.130 (∞) 1.415 (1.132) 1.667 (1.000)

V˜ (n)
vdW#

4 0.786 (∞) 1.063 (∞) 1.285 (1.142) 1.500 (1.000)
6 0.829 (∞) 1.005 (∞) 1.159 (1.159) 1.333 (1.000)
10 0.877 (∞) 0.973 (∞) 1.067 (1.186) 1.200 (1.000)

Table 1: AREs of the rank-based pseudo-estimators V˜ (n)
0.5#, V˜ (n)

3# , V˜ (n)
10#, and V˜ (n)

vdW# (associated
with t0.5, t3, t10, and Gaussian scores, respectively) with respect to Tyler’s estimator V(n)

T and,
in parentheses, with respect to the Gaussian estimator V(n)

G , under k-dimensional Student (with
0.5, 3, and 10 degrees of freedom) and normal densities, respectively, for k = 2, 3, 4, 6, and 10.
The same figures also hold for the R-estimators V̂˜ (n)

f# described in Section 3.4.

Asymptotic linearity implies that, for all f, g ∈ FA and k× k symmetric matrix v such that
v11 = 0,

∆∆∆˜ (n)
f (V(n)

# + n−1/2v)− ∆∆∆˜ (n)
f (V(n)

# ) = ∆∆∆˜ (n)
f (V + n−1/2v)− ∆∆∆˜ (n)

f (V) + oP(1) (3.18)

=: −Jk(f1, g1)ΥΥΥ−1
k (V)ve

◦
ch(v) + oP(1),

with ΥΥΥk(V) defined in (2.9). Thus, for any v,

J (n)
k (f1;v) :=

∥∥∥∥∆∆∆˜ (n)
f (V(n)

# + n−1/2v)− ∆∆∆˜ (n)
f (V(n)

# )
∥∥∥∥/∥∥∥ΥΥΥ−1

k (V(n)
# )ve

◦
ch(v)

∥∥∥ (3.19)

is a consistent estimate, under P(n)
V;g, of Jk(f1, g1).

Theoretical guidelines for the choice of a particular v would require some information on the
higher-order behavior of ∆∆∆˜ (n)

f (V + n−1/2v)− ∆∆∆˜ (n)
f (V). Since this information is not available,

we suggest the following heuristic choice. Let v∗ be such that ±ve
◦
ch(v∗) are the eigenvectors

associated with ΥΥΥ−1
k (V(n)

# )’s largest eigenvalue. Denoting by r−(V(n)
# ) and r+(V(n)

# ) the smallest
integers such that

∆∆∆˜ (n)
f (V(n)

# +n−1/2c−1
0 r+v∗)−∆∆∆˜ (n)

f (V(n)
# ) 6= 0 and ∆∆∆˜ (n)

f (V(n)
T −n−1/2c−1

0 r−v∗)−∆∆∆˜ (n)
f (V(n)

# ) 6= 0

(c0 is the constant that has been used in discretizing V(n)
T into V(n)

# ), choose

J (n)
k (f1) :=

1
2

(
J (n)

k (f1; r−v∗) + J (n)
k (f1; r+v∗)

)
.
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3.4 Optimal one-step R-estimation: consistency and efficiency.

A more sophisticated way of dealing with the estimation of Jk(f1, g1) can be obtained from
better exploiting the ULAN structure of the model. The basic intuition is that of solving a
local likelihood equation. Consistency however requires somewhat confusing discretization steps
which, as usual, are needed in formal proofs only. We therefore provide two descriptions of
our estimators. This section carefully goes through the details of discretization, and establishes
the asymptotic equivalence of the resulting estimator with the pseudo-estimator of Section 3.2,
while Section 3.5, where discretization is skipped, can be used for practical implementation.

Consider the sequence of (random) half-lines

D(n)
# = D(n)

# (V(n)
# ; ∆∆∆˜ (n)

f (V(n)
# )) =

{
ve
◦
ch(V˜ (n)

f#(α))
∣∣∣α ∈ R+

}
, n ∈ N

with equation

ve
◦
ch(V˜ (n)

f#(α)) := ve
◦
ch(V(n)

# ) + n−1/2αΥΥΥk(V
(n)
# )∆∆∆˜ (n)

f (V(n)
# ) (3.20)

= ve
◦
ch(V(n)

# ) + αk(k + 2)Nk

[
Ik2 − (vecV(n)

# )(ek2,1)
′
]
vec(W˜ (n)

f#),

where ek2,1 stands for the first vector of the canonical basis in Rk2
, and W˜ (n)

f# = W˜ (n)
f (V(n)

# );
the last equality is obtained exactly as in the proof of Proposition 3.2(iii). Each value of α

defines on D(n)
# a sequence of root-n consistent estimators V˜ (n)

f#(α) of V; one of them, namely

V˜ (n)
f#(J −1

k (f1, g1)), coincides with V˜ (n)
f# in (3.7), and is efficient at P(n)

f (actually, an estimator

V̂(n) is efficient iff V̂(n) −V˜ (n)
f# = oP(n−1/2) under P(n)

f ).

These estimators V˜ (n)
f#(α) however are not locally discrete, as the multivariate signs U(n)

i

in W˜ (n)
f# are not discretized (even though they are evaluated at V(n)

# ); we therefore discretize

further the estimators V˜ (n)
f#(α) by discretizing W˜ (n)

f#. Similarly as for the discretization of Tyler’s

estimator V(n)
T in Section 3.2, let W˜ (n)

f=/// be the k × k matrix obtained by mapping each com-

ponent w
(n)
i# of ve

◦
ch(W˜ (n)

f#) onto w
(n)
i=/// := c−1

1 sign(w(n)
i# )n−1/2dn1/2c1|w(n)

i# |e, where c1 > 0 is some
arbitrarily large constant. Replacing (3.20) with

ve
◦
ch(V˜ (n)

f#(α)) := ve
◦
ch(V(n)

# ) + c−1
2 ` k(k + 2)Nk

[
Ik2 − (vecV(n)

# )(ek2,1)
′
]
vec(W˜ (n)

f=///) (3.21)

=: ve
◦
ch(V(n)

# ) + n−1/2c−1
2 ` ΥΥΥk(V

(n)
# )∆∆∆˜ (n)

f#(V(n)
# ), ` ∈ N,

with α` := `/c2, where c2 > 0 is some arbitrarily large constant (but keeping the same notation
for the sake of simplicity) yields estimators V˜ (n)

f#(α`) that are root-n consistent and locally
discrete, in the sense that the number of possible values of ve

◦
ch(V˜ (n)

f#(α`)) in balls with O(n−1/2)

radius centered at ve
◦
ch(V) is bounded as n → ∞ (below we denote by D(n)

# this new sequence

D(n)
# (V(n)

# ; ∆∆∆˜ (n)
f#(V(n)

# )) of fully-discretized half-lines). Hence, for any ` ∈ N, V˜ (n)
f#(α`) again can

serve as the preliminary estimator in a rank-based one-step procedure: letting

ve
◦
ch(V˜ (n)

f#(α`; δ)) := ve
◦
ch(V˜ (n)

f#(α`)) + n−1/2δΥΥΥk(V˜ (n)
f#(α`))∆∆∆˜ (n)

f#(V˜ (n)
f#(α`)),

ve
◦
ch(V˜ (n)

f#(α`;J −1
k (f1, g1))) thus is such that

16



ve
◦
ch(V˜ (n)

f#(α`;J −1
k (f1, g1)))− ve

◦
ch(V˜ (n)

f#) = oP(n−1/2) (3.22)

under P(n)
V;g. However, ve

◦
ch(V˜ (n)

f#(α`;J −1
k (f1, g1))) still cannot be computed from the observa-

tions.
Denote by uD the unit vector along D(n)

# (corresponding to D(n)
# ’s natural orientation as a

half-line), and define

`+ := min
{

` ∈ N0

∣∣∣∣h#(α`) := u′DΥΥΥ(V˜ (n)
f#(α`))∆∆∆˜ (n)

f#(V˜ (n)
f#(α`)) ≤ 0

}
, (3.23)

`− := `+ − 1, and α± := α`± . The integers `± are random; in order for V˜ (n)
f#(α±) to remain

root-n consistent and locally discrete, it is sufficient to check that `± is OP(1). This indeed
does imply that, for any ε > 0, there exist integers Lε and Nε such that, for all n ≥ Nε,
the minimization in (3.23) with probability larger than 1 − ε only runs over the finite set ` ∈
{1, . . . , Lε} (equivalently, over the finite set α ∈ {α1, . . . , αLε}). In order to show this, let us
assume that `± is not OP(1). Then, there exists ε > 0 and a sequence ni ↑ ∞ such that, for all
L ∈ N, P(ni)

V;g [`− > L] > ε. This and Pythagoras’ Theorem implies that, for L > c2J −1
k (f1, g1),

with P(ni)
V;g -probability larger than ε,∥∥∥∥ve

◦
ch(V˜ (ni)

f# (αL;J −1
k (f1, g1)))− ve

◦
ch(V˜ (ni)

f# )
∥∥∥∥ ≥ ∥∥∥∥ve

◦
ch(V(ni)

# (αL))− ve
◦
ch(V˜ (ni)

f# )
∥∥∥∥

= n
−1/2
i (c−1

2 L− J −1
k (f1, g1))

∥∥∥∥ΥΥΥk(V
(ni)
# )∆∆∆˜ (ni)

f# (V(ni)
# )

∥∥∥∥ ,

which is clearly incompatible with the fact that (3.22) holds for ` = L. Thus, `± are OP(1), and
V˜ (n)

f#(α±) also can serve as initial estimators in a one-step strategy.

The final step in the construction of our estimator V̂˜ (n)
f# then is a “fine tuning” step, which

consists in selecting an intermediate point between α− and α+. This intermediate value, as we
shall see, turns out to consistently estimate J −1(f1, g1). Denote by πππ

(n)
± (δ) the projection on

D(n)
# of ve

◦
ch(V˜ (n)

f#(α±; δ)), and let π
(n)
± (δ) := ‖πππ(n)

± (δ) − ve
◦
ch(V(n)

# )‖. Note that δ 7→ π
(n)
− (δ)

(resp., δ 7→ π
(n)
+ (δ)) is P(n)-a.e. continuous and strictly monotone increasing (resp., decreasing).

Therefore, there exists a unique δ∗ such that πππ
(n)
− (δ∗) = πππ

(n)
+ (δ∗). The proposed R-estimator of

V is the shape matrix V̂˜ (n)
f# characterized by ve

◦
ch(V̂˜ (n)

f#) := πππ
(n)
± (δ∗).

Let us show indeed that πππ
(n)
± (δ∗) − ve

◦
ch(V˜ (n)

f#) = oP(n−1/2). Either π
(n)
− (J −1

k (f1, g1)) ≤
π

(n)
+ (J −1

k (f1, g1)), and π
(n)
− (J −1

k (f1, g1)) ≤ π
(n)
± (δ∗) ≤ π

(n)
+ (J −1

k (f1, g1)); or, π
(n)
− (J −1

k (f1, g1)) >

π
(n)
+ (J −1

k (f1, g1)), and π
(n)
+ (J −1

k (f1, g1)) < π
(n)
± (δ∗) ≤ π

(n)
− (J −1

k (f1, g1)). In both cases, thus,
πππ

(n)
± (δ∗) belongs to the interval [πππ(n)

− (J −1
k (f1, g1)), πππ

(n)
+ (J −1

k (f1, g1))]. Now, both πππ
(n)
− (J −1

k (f1, g1))
and πππ

(n)
+ (J −1

k (f1, g1)) are efficient estimators satisfying (3.8) and (3.9). Indeed, from Pythago-
ras’ Theorem,∥∥∥∥πππ(n)
± (J −1

k (f1, g1))− ve
◦
ch(V˜ (n)

f#)
∥∥∥∥ ≤

∥∥∥∥ve
◦
ch(V˜ (n)

f#(α`± ;J −1
k (f1, g1)))− ve

◦
ch(V˜ (n)

f#)
∥∥∥∥ = oP(n−1/2).

As a convex linear combination of πππ(n)
− (J −1

k (f1, g1)) and πππ
(n)
+ (J −1

k (f1, g1)), ve
◦
ch(V̂˜ (n)

f#) = πππ
(n)
± (δ∗)

thus also is an efficient estimator satisfying (3.8) and (3.9). And, contrary to πππ
(n)
± (J −1

k (f1, g1)),
it is computable from the sample. As a by-product,

Ĵ (n)
k (f1) := n−1/2‖ΥΥΥk(V

(n)
# )∆∆∆˜ (n)

f#(V(n)
# )‖

/∥∥∥πππ(n)
± (δ∗)− ve

◦
ch(V(n)

# )
∥∥∥ (3.24)

17



and
(
Jk(f1)/(Ĵ (n)

k (f1))2
)

ΥΥΥk(V̂˜ (n)
f#) yield consistent estimators of Jk(f1, g1) and the asymptotic

covariance matrix of the R-estimate ve
◦
ch(V̂˜ (n)

f#), respectively.

3.5 Optimal one-step R-estimation: practical implementation.

As usual, the discretization technique which complicates the proofs of asymptotic results and
obscures the definition of the estimator makes little sense in practice, where n is fixed. Also

recall that the ranks R
(n)
i = R

(n)
i (θ̂θθ

(n)
,V) and the signs U(n)

i = U(n)
i (θ̂θθ

(n)
,V) in practice should

take into account the estimation of location.
Discretization in the previous sections was achieved in three steps: discretization of Tyler’s

V(n)
T into V(n)

# (based on c0), discretization of ∆∆∆˜ (n)
f (V(n)

# ) into ∆∆∆˜ (n)
f#(V(n)

# ) (based on c1), and

discretization of α into α` (based on c2). The “undiscretized version” V̂˜ (n)
f of V̂˜ (n)

f# corresponds to

arbitrarily large values of these three discretization constants, leaving V(n)
T and ∆∆∆˜ (n)

f unchanged,

and bringing (for the sample size at hand) α+ and α− so close to each other that the final tuning
(involving the solution δ∗ of πππ

(n)
− (δ) = πππ

(n)
+ (δ)) becomes numerically meaningless. Alternatively,

denoting by V̂˜ (n)
f#(c) the estimator associated with the discretization constants c = (c0, c1, c2),

we have V̂˜ (n)
f := limc→∞ V̂˜ (n)

f#(c), where c →∞ means that ci →∞ for i = 0, 1, and 2.

This practical implementation V̂˜ (n)
f of V̂˜ (n)

f# can be obtained more directly as follows. Letting

ve
◦
ch(V˜ (n)

f (α)) :=ve
◦
ch(V(n)

T ) + n−1/2αΥΥΥk(V
(n)
T )∆∆∆˜ (n)

f (V(n)
T ), α∈R+

(the undiscretized version of ve
◦
ch(V˜ (n)

f#(α`))), consider the P(n)-a.e. piecewise continuous func-
tion

α 7→ h(α) :=
(
∆∆∆˜ (n)

f (V(n)
T )

)′
ΥΥΥk(V

(n)
T )ΥΥΥk(V˜ (n)

f (α))∆∆∆˜ (n)
f (V˜ (n)

f (α)), α ∈ R+, (3.25)

and put α∗ := inf {α > 0 |h(α) ≤ 0} , α∗− := α∗−0, and α∗+ := α∗+0. The matrices V˜ (n)
f (α∗−)

and V˜ (n)
f (α∗+) clearly are the “undiscretized counterparts” of V˜ (n)

f#(α−) and V˜ (n)
f#(α+), respec-

tively. However, α 7→ V˜ (n)
f (α) being continuous, V˜ (n)

f (α∗−) = V˜ (n)
f (α∗+). The proposed esti-

mator, in Section 3.4, lies between V˜ (n)
f#(α−) and V˜ (n)

f#(α+); accordingly, the R-estimator we

are proposing in practice is V̂˜ (n)
f := V˜ (n)

f (α∗) = V˜ (n)
f (α∗±), while α∗ provides the corresponding

estimator of J −1
k (f1, g1)—the “undiscretized” version of (3.24).

Let us stress however the fact that all asymptotic properties—among which asymptotic
optimality—belong to the discretized estimators V̂˜ (n)

f#, whereas nothing can be said about the
asymptotics of the practical implementation V̂˜ (n)

f .

4 Asymptotic affine-equivariance.

An estimator V̂(n) of the shape matrix V is said to be (strictly, that is, for any fixed n) affine-
equivariant iff, for all invertible k × k matrix M,

V̂(n)(M) =
(
MV̂(n)M′

)/(
MV̂(n)M′

)
11

, (4.1)
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where we denote by V̂(n)(M) the value of the statistic V̂(n) computed from the transformed
sample MX1, . . . ,MXn. Note that, if V̂(n) is affine-equivariant, then its square-root satisfies
the equivariance relation

(V̂(n)(M))1/2 = dM(V̂(n))1/2O (4.2)

for some positive scalar d and some k×k orthogonal matrix O (see Randles 2000, page 1267 for
a proof). Both Tyler’s estimator V(n)

T and the Gaussian estimator V(n)
G are affine-equivariant.

Unfortunately, the final estimator V̂˜ (n)
f proposed in Section 3.5 is not.

One could wonder whether V̂˜ (n)
f at least is asymptotically affine-equivariant, that is, whether

V̂˜ (n)
f is asymptotically equivalent to some stricly affine-equivariant sequence—not necessarily a

sequence of estimators: for all practical purposes, a sequence of pseudo-estimators, or simply
a sequence of random shape matrices would be fine. A closer inspection of this idea however
reveals a major conceptual problem. Recall indeed that all asymptotic results belong to the
discretized estimators V̂˜ (n)

f#, while nothing can be said about the asymptotics of V̂˜ (n)
f : a definition

of asymptotic equivariance relying on the asymptotic behavior of V̂˜ (n)
f is thus totally ineffective.

We therefore propose the following, somewhat weaker, definition. Denote by

S(n) :=
{
S(n)

m (X(n)) |m ∈ N
}

and T (n) :=
{
T(n)

m (X(n)) |m ∈ N
}

, n ∈ N,

two countable classes of sequences of X(n)-measurable random vectors. Assume that both classes
are asymptotically equivalent as n →∞, meaning that

(i) for all m, S(n)
m (X(n))−T(n)

m (X(n)) = oP(n−1/2) as n →∞.

Assume moreover that

(ii) the almost sure limits S(n) := limm→∞ S(n)
m (X(n)) and T(n) := limm→∞T(n)

m (X(n)) exist
for all fixed n.

Then, if, for fixed n, S(n) is equivariant (in the sense, for instance, of (4.1)), we may consider
that T(n) somehow inherits, in an approximate or asymptotic form, this equivariance property:
we say that T(n) is weakly asymptotically equivariant.

In order to show that the proposed estimators V̂˜ (n)
f := limc→∞ V̂˜ (n)

f#(c) are weakly asymp-
totically affine-equivariant, consider the class T (n) := {V̂˜ (n)

f#(cm)|m ∈ N}, where the sequence
cm = (cm,0, cm,1, cm,2) is such that limm→∞ cm = ∞, and let us construct a class S(n) such that
conditions (i) and (ii) for weak asymptotic equivariance are satisfied. Incidently, note that a
choice of the form S(n) := {V˜ (n)

f#(c0,m)|m ∈ N} (with c0,m → ∞), where V˜ (n)
f#(c0) denotes the

pseudo-estimator defined in (3.7), is not suitable, since the corresponding practical implemen-
tation V˜ (n)

f := limc0→∞V˜ (n)
f#(c0) is not strictly affine-equivariant.

Inspired by V˜ (n)
f#’s representation (3.15) as a linear combination of V(n)

# and the rank-based

shape matrix W˜ (n)
f# defined in (3.16), rather consider

V˜̃ (n)
f# = V˜̃ (n)

f#(c0) := B˜ (n)
f#

/(
B˜ (n)

f#

)
11

, with B˜ (n)
f# :=

(
1− k(k + 2)

Jk(f1, g1)

)
V(n)

# +
k(k + 2)
Jk(f1, g1)

W˜ (n)
f#, (4.3)

where c0 denotes the constant used in the discretization of Tyler’s estimator. The class S(n)

allowing to establish the weak asymptotic affine-equivariance of V̂˜ (n)
f is then S(n) := {V˜̃ (n)

f#(c0,m)}.
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Because of discretization, neither V(n)
# nor V˜̃ (n)

f# are affine-equivariant for fixed n. However, in
view of (4.2), one easily can check that the practical implementation V˜̃ (n)

f := limm→∞V˜̃ (n)
f#(c0,m)

(which is based on V(n)
T and W˜ (n)

f (V(n)
T ) instead of V(n)

# and W˜ (n)
f#) is. The weak asymptotic

affine-equivariance of V̂˜ (n)
f thus readily follows from the following proposition.

Proposition 4.1 Denote by V˜̃ (n)
f# := V˜̃ (n)

f#(c0) and by V̂˜ (n)
f# := V̂˜ (n)

f#(c) the pseudo-estimator

defined in (4.3) and the estimator defined in Section 3.4, respectively. Then, V˜̃ (n)
f# − V̂˜ (n)

f# =

oP(n−1/2) under P(n), as n →∞.

Proof. See Section 6.3. �

Whether weak asymptotic equivariance is a satisfactory property or not is a matter of statis-
tical taste. If it is, this section shows that V̂˜ (n)

f is the estimator to be used. The reader who feels
that strict equivariance of the practical implementation is an essential requirement is referred
to Hallin, Oja and Paindaveine (2004), where we show that an adequate modification of V̂˜ (n)

f

into a strictly equivariant V̂˜̃ (n)
f is possible—at the price, however, of some technicalities, and a

weakening of the relation to the class of optimal discretized estimators
{
V̂˜ (n)

f#(c) | c ∈ (R+
0 )3

}
.

5 Simulations.

In this section, we conduct a Monte-Carlo study in order to compare the finite-sample perfor-
mances of the one-step R-estimators V̂˜ (n)

f proposed in Section 3.5 to those of Tyler’s estima-
tor V(n)

T and the Gaussian estimator V(n)
G . We restrict to the bivariate spherical case (V = I2).

We generated M = 1, 000 samples of i.i.d. observations X1, . . . ,Xn with sizes n = 250 and
n = 50, from the bivariate standard normal (N ), Student distributions (t0.5), (t3), and (t10)
(with 0.5, 3, and 10 degrees of freedom), and power-exponential distributions (e3) and (e5)
(with parameters η = 3 and 5); recall that power-exponential distributions are associated with
standardized radial densities of the form f1(r) = fe

1,η(r) := exp(−bk,ηr
2η), where bk,η > 0 is

such that (2.3) is satisfied. Student and power-exponential distributions allow for considering
heavier-than-normal and lighter-than-normal tail distributions, respectively.

For each replication, we computed V(n)
T , V(n)

G , and the V(n)
T - and V(n)

G -based one-step R-
estimators V̂˜ (n)

vdW, V̂˜ (n)
0.5, V̂˜ (n)

3 , and V̂˜ (n)
10 corresponding to semiparametric efficiency at Gaussian

and Student densities with .5, 3, and 10 degrees of freedom, respectively. In Tables 2 (sample size
n = 250) and 3 (sample size n = 50), we report, for each of these estimates, the two components
of the average bias

BIAS(n) :=
1
M

M∑
i=1

ve
◦
ch(V(n)(i)) =

1
M

M∑
i=1

(
V

(n)
12 (i), V (n)

22 (i)− 1
)′

and the two components of the mean square error

MSE(n) :=
1
M

M∑
i=1

(
(V (n)

12 (i))2, (V (n)
22 (i)− 1)2

)′
.
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These simulations show that the proposed rank-based estimators behave remarkably well
under all distributions under consideration and significantly improve on Tyler’s estimator. They
confirm the optimality of the Tyler-based f -score R-estimators under density f , and essentially
agree with the ARE rankings presented in Table 1. Also, the van der Waerden rank-based
estimator (based on preliminary estimator V(n)

T or V(n)
G ) uniformly dominates the parametric

Gaussian estimator V(n)
G , and competes evenly with it in the normal case; this dominance

over V(n)
G , which is observed both under lighter-than-normal and under heavier-than-normal

tail distributions, provides an empirical validation of the Chernoff-Savage result established in
Paindaveine (2004).

The behavior of one-step rank-based estimators does not seem to depend very much on the
preliminary estimator used (V(n)

T or V(n)
G ), which confirms that the influence of the preliminary

estimator is asymptotically nil. More surprising is the fact that R-estimator based on V(n)
G

behave reasonably well under heavy tails (under t0.5), although V(n)
G is not even root-n consistent

there (which explains the total collapse under t0.5 of V(n)
G ).

These conclusions are equally valid for small (n = 50) as for large (n = 250) sample sizes.

6 Appendix.

6.1 Local asymptotic linearity.

Rather than Proposition 3.1(v), we actually prove in this section a more general asymptotic
linearity result in which not only the shape, but also the location parameter, are perturbed
locally.

Proposition 6.1 For any bounded sequence of k-dimensional vectors t(n) and symmetric ma-
trices v(n) satisfying v

(n)
11 = 0, and for any g ∈ FA, the central sequence ∆∆∆˜ (n)

f (θθθ,V) satisfies,

under P(n)
θθθ,V;g, as n →∞, the asymptotic linearity property

∆∆∆˜ (n)
f (θθθ + n−1/2t(n),V + n−1/2v(n))− ∆∆∆˜ (n)

f (θθθ,V) = −ΓΓΓ∗f1,g1
(V) ve

◦
ch(v(n)) + oP(1). (6.4)

The proof of Proposition 6.1 relies on a series of lemmas. In this section, we let θθθn :=
θθθ + n−1/2t(n) and Vn := V + n−1/2v(n). Accordingly, let Z0

i := V−1/2(Xi − θθθ), d0
i := ‖Z0

i ‖,
U0

i := Z0
i /d0

i , Zn
i := (Vn)−1/2(Xi − θθθn), dn

i := ‖Zn
i ‖, and Un

i := Zn
i /dn

i . We begin with the
following preliminary result.

Lemma 6.1 For all i, as n →∞, under P(n)
θθθ,V;g

(i) |dn
i − d0

i | = oP(1) and

(ii) ‖Un
i −U0

i ‖ = oP(1).

Proof of Lemma 6.1. First note that, denoting by ‖M‖L := sup{‖Mx‖ | ‖x‖ = 1} the
operator norm of the square matrix M, we have

‖Zn
i − Z0

i ‖ ≤ ‖(Vn)−1/2(θθθ − θθθn)‖+ ‖((Vn)−1/2 −V−1/2)(X− θθθ)‖
≤ n−1/2‖(Vn)−1/2‖L ‖t(n)‖+ ‖(Vn)−1/2 −V−1/2‖L ‖V1/2‖L d0

i ,

≤ C(n) (1 + d0
i ),
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for some positive sequence C(n), with C(n) = o(1) as n → ∞. Now, since, for all δ > 0,
P(n)

θθθ,V;g[C(n)(d0
i )

a > δ] = o(1) as n → ∞ (a = −1, 0, 1), we obtain that ‖Zn
i − Z0

i ‖ and ‖Zn
i −

Z0
i ‖/d0

i are oP(1) as n → ∞, under P(n)
θθθ,V;g. The result follows since (i) |dn

i − d0
i | ≤ ‖Zn

i − Z0
i ‖

and (ii) ‖Un
i −U0

i ‖ ≤ |(1/dn
i − 1/d0

i )| ‖Zn
i ‖+ ‖Zn

i − Z0
i ‖/d0

i ≤ 2 ‖Zn
i − Z0

i ‖/d0
i . �

Proof of Proposition 6.1. We first consider the following truncation of the score function Kf1 .
For all ` ∈ N0, define

K
(`)
f1

(u) := Kf1

(
1
`

)
I[u≤ 1

`
] + Kf1(u) I[ 1

`
<u≤1− 1

`
] + Kf1

(
1− 1

`

)
I[u>1− 1

`
],

where IA denotes the indicator function of A. Since u 7→ Kf1(u) is continuous, the functions
u 7→ K

(`)
f1

(u) are also continuous on (0, 1). It follows that—even for unbounded scores Kf1—the

truncated scores K
(`)
f1

are bounded for all `. Clearly, it can safely be assumed that Kf1 is a
monotone increasing function (rather than the difference of two monotone increasing functions),
so that (at least for ` sufficiently large) |K(`)

f1
| is bounded by |Kf1 | uniformly in ` and u, i.e.,

there exists some L such that |K(`)
f1

(u)| ≤ |Kf1(u)| for all u ∈ (0, 1) and all ` ≥ L.

We have to prove that, under P(n)
θθθ,V;g, as n →∞,

∆∆∆˜ (n)
f (θθθn,Vn)− ∆∆∆˜ (n)

f (θθθ,V) + Jk(f1, g1)ΥΥΥ−1
k (V) ve

◦
ch(v(n)) (6.5)

is oP(1). Proposition 3.1(ii) shows that ∆∆∆˜ (n)
f (θθθ,V)−∆∆∆(n)∗

f,g (θθθ,V) is oP(1), as n →∞, under the

same sequence of hypotheses. Similarly,

∆∆∆˜ (n)
f (θθθn,Vn)−∆∆∆(n)∗

f,g (θθθn,Vn) (6.6)

is oP(1) as n → ∞, under P(n)
θθθn,Vn;g. It follows from contiguity that (6.6) is also oP(1) under

P(n)
θθθ,V;g, as n →∞. Consequently, the difference (6.5) is asymptotically equivalent, under P(n)

θθθ,V;g,
to

∆∆∆(n)∗
f,g (θθθn,Vn)−∆∆∆(n)∗

f,g (θθθ,V) + Jk(f1, g1)ΥΥΥ−1
k (V) ve

◦
ch(v(n)). (6.7)

Now, putting J⊥k := Ik2 − (1/k)Jk, n−1/2J⊥k vec
[∑n

i=1 Kf1(G̃1k(dn
i /σ))Un

i U
n′
i

]
, under P(n)

θθθn,Vn;g,
is asymptotically k2-normal as n → ∞, with mean zero and covariance matrix (k(k + 2))−1

Jk(f1)[Ik2 + Kk − 2
kJk], so that

1
2

n−1/2Mk

[(
(Vn)⊗2

)−1/2
−
(
V⊗2

)−1/2
]
J⊥k vec

[
n∑

i=1

Kf1(G̃1k(dn
i /σ))Un

i U
n′
i

]

is oP(1), as n →∞, under P(n)
θθθn,Vn;g, as well as under P(n)

θθθ,V;g (by contiguity). Consequently, (6.7)

is asymptotically equivalent, under P(n)
θθθ,V;g, to

C(n) :=
1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

Kf1(G̃1k(dn
i /σ))Un

i U
n′
i

]
(6.8)

−1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

Kf1(G̃1k(d0
i /σ))U0

i U
0′
i

]
+ Jk(f1, g1)ΥΥΥ−1

k (V) (ve
◦
chv(n)),
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and we only have to prove that C(n) is oP(1) under P(n)
θθθ,V;g, as n → ∞. Now, decompose C(n)

into C(n) = D(n;`)
1 +D(n;`)

2 −R(n;`)
1 +R(n;`)

2 +R(n;`)
3 where, denoting by E0 the expectation under

P(n)
θθθ,V;g and defining J (`)

k (f1; g1) :=
∫ 1
0 K

(`)
f1

(u)Kg1(u) du,

D(n;`)
1 :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

K
(`)
f1

(G̃1k(dn
i /σ))Un

i U
n′
i

]

−1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

K
(`)
f1

(G̃1k(d0
i /σ))U0

i U
0′
i

]

−1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k E0

[
vec

[
n∑

i=1

K
(`)
f1

(G̃1k(dn
i /σ))Un

i U
n′
i

]]
,

D(n;`)
2 :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k E0

[
vec

[
n∑

i=1

K
(`)
f1

(G̃1k(dn
i /σ))Un

i U
n′
i

]]

+J (`)
k (f1; g1)ΥΥΥ−1

k (V) (ve
◦
chv(n)),

R(n;`)
1 :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

[
Kf1(G̃1k(d0

i /σ))−K
(`)
f1

(G̃1k(d0
i /σ))

]
U0

i U
0′
i

]
,

R(n;`)
2 :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

[
Kf1(G̃1k(dn

i /σ))−K
(`)
f1

(G̃1k(dn
i /σ))

]
Un

i U
n′
i

]
,

and
R(n;`)

3 :=
(
Jk(f1, g1)− J (`)

k (f1; g1)
)

ΥΥΥ−1
k (V) (ve

◦
chv(n)).

We prove that C(n) = oP(1), under P(n)
θθθ,V;g, as n → ∞ (thus completing the proof of Proposi-

tion 6.1) by establishing that D(n;`)
1 and D(n;`)

2 are oP(1) under P(n)
θθθ,V;g, as n → ∞, for fixed `,

and that R(n;`)
1 , R(n;`)

2 and R(n;`)
3 are oP(1) under the same sequence of hypotheses, as ` →∞,

uniformly in n. For the sake of convenience, these three results are treated as separate lemmas
(Lemmas 6.2 and 6.3, and Lemma 6.4, respectively).

Lemma 6.2 For any fixed `, E0

[∥∥∥D(n;`)
1

∥∥∥2
]

= o(1) as n →∞, under P(n)
θθθ,V;g.

Lemma 6.3 For any fixed `, D(n;`)
2 = o(1) as n →∞.

Lemma 6.4 (i) Under P(n)
θθθ,V;g, R(n;`)

1 is oP(1) as ` →∞, uniformly in n.

(ii) Under P(n)
θθθ,V;g, R(n;`)

2 is oP(1) as ` →∞, uniformly in n (for n sufficiently large).

(iii) R(n;`)
3 is o(1) as ` →∞, uniformly in n.
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Proof of Lemma 6.2. First note that

D(n;`)
1 =

1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k

n∑
i=1

[
T(n;`)

i − E0
[
T(n;`)

i

]]
,

where Ti :=vec
[
K

(`)
f1

(G̃1k(dn
i /σ))Un

i U
n′
i −K

(`)
f1

(G̃1k(d0
i /σ))U0

i U
0′
i

]
, i = 1, . . . , n are i.i.d. under

P(n)
θθθ,V;g. Consequently, D(n;`)

1 is centered under the same sequence of hypotheses, and therefore

(writing Var0 for variances under P(n)
θθθ,V;g)

E0

[∥∥∥D(n;`)
1

∥∥∥2
]

= tr
[
E0

[(
D(n;`)

1

) (
D(n;`)

1

)′]]
= tr

[
Var0

[
D(n;`)

1

]]
≤ Cn−1tr

[
Var0

[ n∑
i=1

T(n;`)
i

]]
= C tr

[
Var0

[
T(n;`)

1

]]
= C E0

[ (
T1 − E0

[
T1
])′ (

T1 − E0
[
T1
])

] ≤ C E0[‖T1‖2 ],
so that it remains to show that

E0

[
‖T1‖2

]
= E0

[∥∥∥K(`)
f1

(G̃1k(dn
1/σ)) vec

[
Un

1U
n′
1

]
−K

(`)
f1

(G̃1k(d0
1/σ)) vec

[
U0

1U
0′
1

]∥∥∥2
]

= o(1)

(6.9)
as n →∞.

Now, noting that ‖vec (uv′)‖ = ‖u‖‖v‖, we have∥∥∥K(`)
f1

(G̃1k(dn
1/σ)) vec

[
Un

1U
n′
1

]
−K

(`)
f1

(G̃1k(d0
1/σ)) vec

[
U0

1U
0′
1

]∥∥∥2

≤ 2 |K(`)
f1

(G̃1k(dn
1/σ))−K

(`)
f1

(G̃1k(d0
1/σ))|2 ‖vec

[
Un

1U
n′
1

]
‖2

+2 |K(`)
f1

(G̃1k(d0
1/σ))|2 ‖vec

[
Un

1U
n′
1 −U0

1U
0′
1

]
‖2

≤ C |K(`)
f1

(G̃1k(dn
1/σ))−K

(`)
f1

(G̃1k(d0
1/σ))|2 + C ‖Un

1 −U0
1‖2,

for some constant C. Lemma 6.1(i) and the continuity of K
(`)
f1

◦ G̃1k imply that K
(`)
f1

(G̃1k(dn
1/σ))−

K
(`)
f1

(G̃1k(d0
1/σ)) = oP(1) as n → ∞, under P(n)

θθθ,V;g. Since K
(`)
f1

is bounded, this convergence to
zero also holds in quadratic mean. Similarly, using Lemma 6.1(ii) and the boundedness of U0

1

and Un
1 , we obtain that ‖Un

1 −U0
1‖ is o(1) in quadratic mean, as n → ∞, under P(n)

θθθ,V;g. The
convergence in (6.9) follows. �

Proof of Lemma 6.3. Letting

B(n;`)
1 :=

1
2

n−1/2Mk

(
V⊗2

)−1/2
J⊥k vec

[
n∑

i=1

K
(`)
f1

(G̃1k(d0
i /σ))U0

i U
0′
i

]
,

one can show that
B(n;`)

1
L−→ Nk2

(
0,E[(K(`)

f1
(U))2]ΥΥΥ−1

k (V)
)

(6.10)

as n →∞, under P(n)
θθθ,V;g. Under the sequence of local alternatives P(n)

θθθn,Vn;g, as n →∞,

B(n;`)
1 − J (`)

k (f1, g1)ΥΥΥ−1
k (V) (ve

◦
chv(n)) L−→ Nk2

(
0,E[(K(`)

f1
(U))2]ΥΥΥ−1

k (V)
)

.
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Defining B(n;`)
2 := 1

2 n−1/2Mk

(
V⊗2

)−1/2 J⊥k vec
[∑n

i=1 K
(`)
f1

(G̃1k(dn
i /σ))Un

i U
n′
i

]
, it follows from

uniform local asymptotic normality that

B(n;`)
2 + J (`)

k (f1, g1)ΥΥΥ−1
k (V) (ve

◦
chv(n)) L−→ Nk2

(
0,E[(K(`)

f1
(U))2]ΥΥΥ−1

k (V)
)

, (6.11)

as n →∞, under P(n)
θθθ,V;g.

Now, from (6.10) and the fact that, under P(n)
θθθ,V;g, D

(n;`)
1 = B(n;`)

2 −B(n;`)
1 −E0

[
B(n;`)

2

]
= oP(1)

as n →∞ (Lemma 6.2), we obtain that

B(n;`)
2 − E0

[
B(n;`)

2

] L−→ Nk2

(
0,E[(K(`)

f1
(U))2]ΥΥΥ−1

k (V)
)

,

as n →∞, under P(n)
θθθ,V;g. Comparing with (6.11), it follows that

D(n;`)
2 = E0

[
B(n;`)

2

]
+ J (`)

k (f1, g1)ΥΥΥ−1
k (V) (ve

◦
chv(n))

is o(1), as n →∞, as was to be proved. �

We now complete the proof of Proposition 6.1 by proving Lemma 6.4.

Proof of Lemma 6.4. (i) In view of the independence, under P(n)
θθθ,V;g, between the d0

i ’s and the
U0

i ’s, we obtain, for all n,

E0
[
‖R(n;`)

1 ‖2] ≤ C

n

n∑
i=1

E0

[[
Kf1(G̃1k(d0

i /σ))−K
(`)
f1

(G̃1k(d0
i /σ))

]2]
E0

[[
vecU0

i U
0′
i

]′
J⊥k
[
vecU0

i U
0′
i

]]

=
2C(k − 1)

kn

n∑
i=1

E0

[[
Kf1(G̃1k(d0

i /σ))−K
(`)
f1

(G̃1k(d0
i /σ))

]2]

=
2C(k − 1)

k

∫ 1

0

[
Kf1(u)−K

(`)
f1

(u)
]2

du. (6.12)

Now, K
(`)
f1

(u) converges to Kf1(u), for all u∈ (0, 1). Also, since |K(`)
f1

(u)| ≤ |Kf1(u)|, for all ` ≥ L,
the integrand in (6.12) is bounded (uniformly in `) by 4 |Kf1(u)|2, which is integrable on (0, 1).
Consequently, the Lebesgue dominated convergence theorem yields that E0

[
‖R(n;`)

1 ‖2
]

= o(1),
as ` → ∞. This convergence is of course uniform in n, since the constant C above does not
depend on n.

(ii) The claim in (ii) is the same as in (i), except that dn
i and Un

i replace d0
i and U0

i ,
respectively. Accordingly, (ii) holds under P(n)

θθθn,Vn;g. That it also holds under P(n)
θθθ,V;g follows from

Lemma 3.5 in Jurečková (1969).

(iii) Note that

|Jk(f1, g1)− J (`)
k (f1; g1)|2 =

∣∣∣∣∫ 1

0

(
Kf1(u)−K

(`)
f1

(u)
)

Kg1(u) du

∣∣∣∣2
≤ Jk(g1)

∫ 1

0

∣∣∣Kf1(u)−K
(`)
f1

(u)
∣∣∣2 du.

Again, |K(`)
f1

(u)−Kf1(u)|2 ≤ 4|Kf1(u)|2, with
∫ 1
0 |Kf1(u)|2 du < ∞. Consequently, the pointwise

convergence of (K(`)
f1

) to K implies that Jk(f1, g1) − J (`)
k (f1; g1) = o(1) as ` → ∞. The result

then follows from the boundedness of the sequence (v(n)). �
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6.2 Proof of Proposition 3.2.

Proof of Proposition 3.2. (i) The asymptotic representations (3.11) are just a restatement of
(3.8) and (3.9), where we refer to for the proof; (3.13) then readily results from part (iii) of Propo-
sition 3.1. As for (3.14), it directly follows from the fact that vec(V˜ (n)

f#−V) = M′
kve

◦
ch(V˜ (n)

f#−V)
and the definition of Qk(V).

(ii) Semiparametric efficiency is a consequence of the fact that Jk(f1, f1) = Jk(f1), so that
under P(n)

V;f , the asymptotic variance in (3.13) reduces to Jk(f1)−1ΥΥΥk(V) = (ΓΓΓ∗f1
(V))−1, i.e., to

the efficient information matrix.
(iii) By using (3.3) and (3.10) in (3.7), we obtain

ve
◦
ch(V˜ (n)

f#) = ve
◦
ch(V(n)

# ) +
k(k + 2)√
nJk(f1, g1)

NkQk(V
(n)
# )N′

k ∆∆∆˜ (n)
f (V(n)

# )

= ve
◦
ch(V(n)

# ) +
k(k + 2)

2nJk(f1, g1)
NkQk(V

(n)
# )

(
(V(n)

# )⊗2
)−1/2

×
n∑

i=1

Kf1

(
Ri

n + 1

)
vec

(
UiU′

i

)
−

m
(n)
f1

k
vec (Ik)

 ,

where we used the fact that (see Section 3.4 for the definition of ek2,1)

Qk(V)N′
kMk = Qk(V) =

[
Ik2 − (vecV) (ek2,1)

′
]
[Ik2 + Kk] (V⊗2)

[
Ik2 − (vecV) (ek2,1)

′
]′

= [Ik2 + Kk] (V⊗2)− 2(V⊗2) ek2,1 (vecV)′ − 2 (vecV) (ek2,1)
′(V⊗2) + 2 (vecV) (vecV)′ ;

see the proof of Lemma 1 in Hallin and Paindaveine (2004b). Now, routine algebra yields

ve
◦
ch(V˜ (n)

f#) = ve
◦
ch(V(n)

# ) +
k(k + 2)
Jk(f1, g1)

Nk

[
Ik2 − (vecV(n)

# )(ek2,1)
′
] (

(V(n)
# )⊗2

)1/2

×
(

1
n

n∑
i=1

Kf1

(
Ri

n + 1

)
vec

(
UiU′

i

))

= ve
◦
ch(V(n)

# ) +
k(k + 2)
Jk(f1, g1)

Nk

[
Ik2 − (vecV(n)

# )(ek2,1)
′
]
vec(W˜ (n)

f#)

= ve
◦
ch(V(n)

# ) +
k(k + 2)
Jk(f1, g1)

Nkvec
(
W˜ (n)

f# −
(
W˜ (n)

f#

)
11

V(n)
#

)
, (6.1)

which establishes the result, since ve
◦
chv = ve

◦
chw if and only if v = w, for all k × k symmetric

matrices v = (vij), w = (wij) such that v11 = w11.
(iv) Due to the identification constraints adopted, the population covariance matrix under

P(n)
V;g = P(n)

V;σ2,g1
with finite second-order moments, is not ΣΣΣ := σ2V, but ηΣΣΣ := k−1σ2Dk(g1)V

(hence η = k−1Dk(g1) = k−1
∫ 1
0

(
G̃−1

1 (u)
)2

du). Provided that κk(g1) < ∞, the multivariate

Central Limit Theorem yields n1/2vec
(
ΣΣΣ(n) − ηΣΣΣ

) L−→ N (0,A) , where

A :=
σ4Ek(g1)
k(k + 2)

[Ik2 + Kk] (V⊗2) +
σ4κk(g1)D2

k(g1)
k2

(vecV) (vecV)′ .
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Now, applying Slutzky’s Lemma, we obtain, as n →∞, under P(n)
V;g,

n1/2vec
(
V(n)
G −V

)
=

1
ηΣ11

[
Ik2 − (vecV) (ek2,1)

′
][

n1/2vec
(
ΣΣΣ(n) − ηΣΣΣ

)]
+ oP(1)

L−→ N
(
0,

1
η2σ4

[
Ik2 − (vecV) (ek2,1)

′
]
A
[
Ik2 − (vecV) (ek2,1)

′
]′)

,

where the covariance matrix, after lengthy but standard algebra, reduces to (1+κk(g1))Qk(V),
yielding the desired result; see also Ollila, Hettmansperger, and Oja (2004).

(v) The asymptotic covariance matrices of vec(V˜ (n)
f#) and vec(V(n)

G ) (in (3.14) and (iv), re-
spectively) are proportional. The ARE with respect to V(n)

G in (v) thus directly follow by
computing the inverse of the corresponding ratio of proportionality factors. As for AREs
with respect to V(n)

T , they follow from the fact that, in the adopted normalization (for which
(V(n)

T )11 = 1),
√

n vec(V(n)
T −V) is asymptotically normal with mean zero and covariance ma-

trix ((k + 2)/k)Qk(V). �

6.3 Proof of Proposition 4.1.

Proof of Proposition 4.1. We first prove that

W˜ (n)
f# −V(n)

# = OP(n−1/2), (6.2)

under P(n), as n →∞ (recall that W˜ (n)
f# := W˜ (n)

f (V(n)
# )). To this end, define

T˜(n)
f (V) := n−1/2

(
V⊗2

)1/2
n∑

i=1

Kf1

(
Ri

n + 1

)
vec

(
UiU′

i

)
−

m
(n)
f1

k
vec (Ik)


(with Ri = R

(n)
i (V) and Ui = U(n)

i (V)), which is asymptotically normal with mean zero and
covariance matrix Jk(f1)Hk(V), where

Hk(V) :=
1

k(k + 2)

(
V⊗2

)1/2
[
Ik2 + Kk −

2
k
Jk

] (
V⊗2

)1/2
.

Working exactly as in the proof of Proposition 6.1, we obtain that, for any bounded sequence
v(n) of symmetric matrices such that v

(n)
11 = 0,

T˜(n)
f (V + n−1/2v(n))−T˜(n)

f (V) +
1
2
Jk(f1, g1)Hk(V)

(
V⊗2

)−1/2
vec(v(n)) = oP(1) (6.3)

under P(n)
V;g, as n →∞. The local discreteness of V(n)

# allows to replace the nonrandom quantity

V(n) = V + n−1/2v(n) with the random one V(n)
# in (6.3) (see, e.g., Kreiss 1987, Lemma 4.4),

yielding

T˜(n)
f (V(n)

# )−T˜(n)
f (V) +

1
2
Jk(f1, g1)Hk(V)

(
V⊗2

)−1/2
vec

(√
n(V(n)

# −V)
)

= oP(1),

under P(n)
V;g, as n →∞. This establishes (6.2), since
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√
n vec

(
W˜ (n)

f# −V(n)
#

)
= T˜(n)

f (V(n)
# ) +

√
n k−1

(
m

(n)
f1

− k
)

vec
(
V(n)

#

)
(6.4)

=
√

n k−1
(
m

(n)
f1

− k
)

vec
(
V(n)

#

)
+T˜(n)

f (V)

−1
2
Jk(f1, g1)Hk(V)

(
V⊗2

)−1/2
vec

(√
n(V(n)

# −V)
)

+ oP(1),

(still under P(n)
V;g, as n →∞), and since the square-integrability of Kf1 on (0, 1) implies that

m
(n)
f1

− k = m
(n)
f1

−
∫ 1

0
Kf1(u) du = o(n−1/2)

(see the proof of part (i) of Proposition 3.2 in Hallin, Vermandele, and Werker 2003).
Now, denoting byV˜ (n)

f# := V˜ (n)
f#(c0) the pseudo-estimator defined in (3.7), it follows, from (6.2),

that

vec(V˜̃ (n)
f# −V˜ (n)

f#) =
−b2(W˜ (n)

f# −V(n)
# )11

1 + b (W˜ (n)
f# −V(n)

# )11

[
Ik2 − (vecV(n)

# )(ek2,1)
′
]
vec(W˜ (n)

f# −V(n)
# )

(with b := k(k + 2)J −1
k (f1, g1)) is oP(n−1/2) under P(n) as n →∞. This yields the result, since

we proved in Section 3.4 that V˜ (n)
f# − V̂˜ (n)

f# = oP(n−1/2) under P(n), as n →∞. �
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preliminary BIAS250

estimator
t0.5 t0.3 t10 N e3 e5

– V
(n)
T -0.0043 -0.0043 0.0003 -0.0030 0.0070 -0.0023

0.0207 0.0219 0.0062 0.0024 0.0201 0.0072

– V
(n)
G -0.0522 -0.0005 -0.0010 0.0005 0.0021 -0.0021

20.6781 0.0410 0.0058 0.0024 0.0041 0.0006

V
(n)
T -0.0024 -0.0031 -0.0006 -0.0019 0.0043 -0.0026

V̂˜ (n)

0.5 0.0183 0.0180 0.0031 0.0030 0.0115 0.0037

V
(n)
G 0.0021 -0.0030 -0.0006 -0.0019 0.0043 -0.0026

0.0171 0.0178 0.0032 0.0032 0.0116 0.0037

V
(n)
T -0.0014 -0.0017 -0.0009 -0.0004 0.0022 -0.0022

V̂˜ (n)

3 0.0216 0.0142 0.0024 0.0028 0.0047 0.0006

V
(n)
G 0.0051 -0.0017 -0.0009 -0.0004 0.0023 -0.0021

0.0219 0.0140 0.0023 0.0030 0.0043 0.0006

V
(n)
T -0.0008 -0.0015 -0.0008 0.0001 0.0014 -0.0021

V̂˜ (n)

10 0.0250 -0.0261 0.0029 0.0026 0.0032 0.0000

V
(n)
G 0.0075 -0.0014 -0.0008 0.0001 0.0016 -0.0020

0.0254 0.0128 0.0028 0.0028 0.0032 -0.0000

V
(n)
T -0.0003 -0.0014 -0.0007 0.0003 0.0011 -0.0020

V̂˜ (n)

vdW 0.0281 0.0124 0.0036 0.0025 0.0026 -0.0000

V
(n)
G 0.0091 -0.0013 -0.0007 0.0004 0.0013 -0.0019

0.0284 0.0122 0.0036 0.0026 0.0026 -0.0001

MSE250

t0.5 t0.3 t10 N e3 e5

– V
(n)
T 0.0083 0.0081 0.0075 0.0075 0.0080 0.0085

0.0392 0.0357 0.0337 0.0369 0.0337 0.0320

– V
(n)
G 11.3416 0.0329 0.0050 0.0038 0.0028 0.0029

42,948 0.2358 0.0211 0.0175 0.0115 0.0109

V
(n)
T 0.0075 0.0065 0.0058 0.0058 0.0057 0.0061

V̂˜ (n)

0.5 0.0339 0.0285 0.0258 0.0282 0.0233 0.0223

V
(n)
G 0.0278 0.0065 0.0057 0.0058 0.0057 0.0061

0.0566 0.0284 0.0258 0.0281 0.0233 0.0223

V
(n)
T 0.0090 0.0057 0.0044 0.0042 0.0031 0.0030

V̂˜ (n)

3 0.0371 0.0247 0.0199 0.0198 0.0127 0.0112

V
(n)
G 0.0295 0.0058 0.0044 0.0042 0.0031 0.0030

0.0598 0.0247 0.0199 0.0197 0.0128 0.0112

V
(n)
T 0.0106 0.0060 0.0043 0.0039 0.0025 0.0022

V̂˜ (n)

10 0.0428 1.5539 0.0191 0.0180 0.0102 0.0084

V
(n)
G 0.0339 0.0060 0.0043 0.0039 0.0025 0.0022

0.0662 0.0253 0.0191 0.0180 0.0101 0.0083

V
(n)
T 0.0121 0.0064 0.0044 0.0039 0.0022 0.0019

V̂˜ (n)

vdW 0.0486 0.0267 0.0192 0.0176 0.0092 0.0073

V
(n)
G 0.0377 0.0064 0.0044 0.0039 0.0022 0.0018

0.0726 0.0266 0.0192 0.0175 0.0092 0.0072

Table 2: Empirical bias and mean-square error, under various bivariate t-, power-exponential,
and normal densities, of the preliminary estimators V(n)

G and V(n)
T , and the corresponding one-

step R-estimators V̂˜ (n)
0.5, V̂˜ (n)

3 , V̂˜ (n)
10, and V̂˜ (n)

vdW . The simulation is based on 1000 replications;
sample size is n = 250.
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preliminary BIAS50

estimator
t0.5 t0.3 t10 N e3 e5

– V
(n)
T 0.0042 -0.0038 -0.0016 0.0006 0.0067 -0.0070

0.0830 0.0973 0.0865 0.0895 0.1118 0.0906

– V
(n)
G -0.6148 0.0012 -0.0003 -0.0058 0.0025 -0.0024

310.8334 0.1782 0.0497 0.0375 0.0484 0.0308

V
(n)
T 0.0034 -0.0004 0.0004 -0.0006 0.0039 -0.0030

V̂˜ (n)

0.5 0.0771 0.0806 0.0619 0.0674 0.0821 0.0664

V
(n)
G 0.0001 0.0004 -0.0005 -0.0007 0.0033 -0.0036

0.0798 0.0782 0.0612 0.0671 0.0820 0.0661

V
(n)
T 0.0002 0.0019 0.0005 -0.0024 0.0023 -0.0017

V̂˜ (n)

3 0.0861 0.0680 0.0438 0.0444 0.0533 0.0338

V
(n)
G 0.0014 0.0028 0.0002 -0.0021 0.0023 -0.0019

0.1717 0.0665 0.0433 0.0442 0.0531 0.0336

V
(n)
T -0.0001 0.0025 0.0004 -0.0036 0.0023 -0.0019

V̂˜ (n)

10 0.0962 0.0681 0.0427 0.0395 0.0441 0.0253

V
(n)
G 0.0037 0.0034 0.0001 -0.0031 0.0023 -0.0019

0.1074 0.0672 0.0419 0.0398 0.0440 0.0250

V
(n)
T 0.0005 0.0027 0.0005 -0.0044 0.0024 -0.0024

V̂˜ (n)

vdW 0.1057 0.0702 0.0441 0.0387 0.0404 0.0217

V
(n)
G 0.0034 0.0035 -0.0001 -0.0041 0.0024 -0.0022

0.1164 0.0696 0.0435 0.0392 0.0402 0.0211

MSE50

t0.5 t0.3 t10 N e3 e5

– V
(n)
T 0.0410 0.0407 0.0408 0.0404 0.0444 0.0423

0.2009 0.2467 0.2192 0.2311 0.2163 0.2031

– V
(n)
G 298.8463 0.1033 0.0265 0.0183 0.0155 0.0138

80,313,350 0.7141 0.1247 0.0941 0.0624 0.0617

V
(n)
T 0.0368 0.0328 0.0312 0.0307 0.0320 0.0296

V̂˜ (n)

0.5 0.1862 0.1879 0.1629 0.1701 0.1425 0.1411

V
(n)
G 0.1152 0.0337 0.0308 0.0309 0.0318 0.0294

0.2700 0.1852 0.1614 0.1686 0.1416 0.1398

V
(n)
T 0.0419 0.0290 0.0238 0.0208 0.0178 0.0149

V̂˜ (n)

3 0.2239 0.1546 0.1169 0.1138 0.0715 0.0676

V
(n)
G 0.1184 0.0296 0.0235 0.0209 0.0175 0.0146

5.6092 0.1537 0.1162 0.1132 0.0709 0.0668

V
(n)
T 0.0490 0.0300 0.0234 0.0191 0.0147 0.0118

V̂˜ (n)

10 0.2701 0.1579 0.1117 0.1005 0.0568 0.0519

V
(n)
G 0.1307 0.0306 0.0232 0.0190 0.0143 0.0114

0.3796 0.1583 0.1108 0.1006 0.0562 0.0511

V
(n)
T 0.0552 0.0316 0.0238 0.0187 0.0135 0.0106

V̂˜ (n)

vdW 0.3134 0.1652 0.1129 0.0964 0.0518 0.0457

V
(n)
G 0.1406 0.0322 0.0238 0.0185 0.0131 0.0102

0.4237 0.1665 0.1121 0.0967 0.0511 0.0449

Table 3: Empirical bias and mean-square error, under various bivariate t-, power-exponential,
and normal densities, of the preliminary estimators V(n)

G and V(n)
T , and the corresponding one-

step R-estimators V̂˜ (n)
0.5, V̂˜ (n)

3 , V̂˜ (n)
10, and V̂˜ (n)

vdW . The simulation is based on 1000 replications;
sample size is n = 50.
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