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Abstract

In this paper we study the problem of testing whether two populations have

the same law, by comparing kernel estimators of the two density functions. The

proposed test statistic is based on a local empirical likelihood approach. We obtain

the asymptotic distribution of the test statistic and propose a bootstrap approxima-

tion to calibrate the test. A simulation study is carried out, in which the proposed

method is compared with two competitors, and a procedure to select the bandwidth

parameter is studied. The proposed test can be extended to more than two samples

and to multivariate distributions.

Key Words: Bandwidth selection; Bootstrap; Comparison of two populations; Kernel

method; Local empirical likelihood.
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1 Motivation and background

A very common problem in statistics is testing whether two populations have the same

distribution. It is typically assumed that we are given a random sample from each of

these populations. This testing problem, often known as the two-sample problem, has

been dealt with using many different approaches. Let us briefly mention the classical

Mann-Whitney test, Smirnov’s edf test, and Cramér-von Mises type tests. There exists

a vast literature dealing with these type of tests, including multivariate settings, during

the past decades. The papers by Kim and Foutz (1987), Einmahl and Khmaladze (2001)

and Henze and Nikitin (2003) are a small sample of it.

If the two distributions are assumed to be absolutely continuous it is also natural

to base a test on some functional distance between nonparametric estimates of the two

densities. Assume that we are given two random samples: X1, . . . , Xn, with common

distribution F1 and density f1, and Y1, . . . , Ym, with distribution F2 and density f2. We

are interested in testing the hypothesis H0: f1 = f2, versus the alternative that the

two densities are different. Anderson, Hall and Titterington (1994) have studied the

behaviour of an L2-type test based on kernel density estimates that addresses the two

sample problem, while Louani (2000) uses an L1 and L∞ approach.

More recently, a number of papers have dealt with the two-sample problem by using

an empirical likelihood approach. The method of empirical likelihood can be viewed as

a nonparametric counterpart of the classical parametric likelihood theory, and as such, it

enjoyes the same advantages as the parametric method. It creates e.g. confidence regions

that respect the range of the parameter space, that are invariant under transformations

and whose shape is determinded by the data, it avoids in many situations the estima-

tion of the variance by studentizing internally, and is often Bartlett correctable. For a

comprehensive study of this method, see Owen (2001).

Some recent papers that deal with the two-sample problem via an empirical likelihood

approach are Qin (1994), Jing (1995) and Zhang (2000) (comparison of the mean of two

populations), McKeague and Zhao (1996) (confidence band for the ratio of two survival

functions), Einmahl and McKeague (1999) (confidence tubes for QQ-plots), Einmahl and
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McKeague (2003) (comparison of the distribution of two populations) and Claeskens, Jing,

Peng and Zhou (2003) (point and interval estimation for ROC curves and PP-plots).

None of these is concerned with the density view of the two-sample problem. However,

for the one-sample problem, there are some papers related to empirical likelihood for den-

sity estimation, like, for instance, Hall and Owen (1993) and Chen (1996). In this paper

we propose a local empirical likelihood test for the two-sample problem that is based on

the pointwise comparison of kernel estimators of the density of the two populations. An

omnibus test statistic is then obtained by integrating the local log-likelihood process over

an appropriate interval. We propose a bootstrap procedure to approximate the distri-

bution of the test statistic. The testing procedure can be extended in a straightforward

way to the case of more than two populations and to the comparison of multivariate

distributions (but the asymptotic properties are more cumbersome to obtain and are not

considered in this paper).

The rest of the paper is organized as follows. The empirical likelihood density based

test is constructed in Section 2, whereas the main result is stated in Section 3. Some

simulations, to illustrate the theory, are included in Section 4. Finally, Section 5 contains

the proofs.

2 Test statistic

The null hypothesis H0 : f1 = f2, considered above, is equivalent to f1(x) = nf1(x)+mf2(x)
n+m

=

f2(x) for all x, and, when h tends to zero, also to the condition

∫
Kh (x− y) dF1 (y)

=
n

n+m

∫
Kh (x− y)dF1 (y) +

m

n +m

∫
Kh (x− y) dF2 (y)

=

∫
Kh (x− y) dF2 (y) , (1)

for all x, where K is a kernel function (typically a density function), h is the bandwidth,

or smoothing parameter, and Kh (u) = 1
h
K
(
u
h

)
. Instead of considering condition (1) for
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all x, we replace the middle expression in (1) by an unbiased estimator:
∫
Kh (x− y)dF1 (y) = f̂12 (x) =

∫
Kh (x− y) dF2 (y) , (2)

where

f̂12 (x) =
1

n+m

[
n∑

i=1

Kh (x−Xi) +

m∑

j=1

Kh (x− Yi)
]

=
nf̂1 (x) +mf̂2 (x)

n +m
,

with

f̂1 (x) =
1

n

n∑

i=1

Kh (x−Xi) ,

f̂2 (x) =
1

m

m∑

j=1

Kh (x− Yj) .

Now, the empirical likelihood pertaining to condition (2) may be written as

EL (x) =
sup

{
L
(
F̃1, F̃2

)
: F̃1 and F̃2 are cdf’s and (2) holds

}

sup
{
L
(
F̃1, F̃2

)
: F̃1 and F̃2 are cdf’s

} , (3)

where

L
(
F̃1, F̃2

)
= L1

(
F̃1

)
· L2

(
F̃2

)
,

L1

(
F̃1

)
=

n∏

i=1

pi,

L2

(
F̃2

)
=

m∏

j=1

qj,

with

pi = F̃1 (Xi)− F̃1

(
X−i
)

, for i = 1, . . . , n,

qj = F̃2 (Yj)− F̃2

(
Y −j
)

, for j = 1, . . . , m.

Standard Lagrange multiplier methods can be used to obtain the suprema in the

numerator and denominator of (3), which leads to

−2 logEL (x) = 2

n∑

i=1

log
[
1 + η1

(
K1,i − f̂12 (x)

)]
(4)

+2
m∑

j=1

log
[
1 + η2

(
K2,j − f̂12 (x)

)]
,
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where
n∑

i=1

1

1 + η1

(
K1,i − f̂12 (x)

) = n, (5)

m∑

j=1

1

1 + η2

(
K2,j − f̂12 (x)

) = m, (6)

with

K1,i = K1,i (x) = Kh (x−Xi) , for i = 1, 2, . . . , n, (7)

K2,j = K2,j (x) = Kh (x− Yj) , for j = 1, 2, . . . , m. (8)

For fixed kernel K and bandwidth h, equations (5) and (6) can be solved numerically

in η1 and η2 to find the value of −2 logEL (x) in (4). Now, a global empirical likelihood

statistic can be defined as

Tn,m = −2

∫

C

logEL (x) dF̂12 (x)

= − 2

n +m

[
n∑

i=1

logEL (Xi) 1C (Xi) +
m∑

j=1

logEL (Yj) 1C (Yj)

]
,

for some C ⊂ R, where

F̂12(x) =
1

n+m

[ n∑

i=1

I(Xi ≤ x) +
m∑

j=1

I(Yj ≤ x)
]
,

and 1C(x) equals 1 when x belongs to C and 0 otherwise. The integration is restricted

to the set C (which satisfies condition A2 below) for technical reasons. Note that in Hall

and Owen (1993) and Chen et al. (1996) a similar setup is used, whereas Einmahl and

McKeague (2003) allow for integration over the full real line.

The hypothesis H0 will be rejected for large values of Tn,m. In order to determine how

large a value should be to reject the null hypothesis, the limit distribution of the test

statistic, under H0, will be found in the next section.

3 Main result

Let us consider the following assumptions :
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A1. As the sample sizes tend to infinity, n
m
→ κ2 ∈ (0,∞), h → 0, nh4(logn)−2

(log log n)−1 →∞, n1−αh5/2 →∞ and n2αh→ 0 for some α > 0.

A2. The common density (under H0), f , is bounded in R and bounded away from zero

in C, which is a compact interval.

A3. The kernel, K, is a Lipschitz continuous symmetric density function of bounded

variation with compact support.

A4. The common density f is twice differentiable, with f ′′ bounded.

We introduce the notations R (g) =
∫
g2 and RC (g) =

∫
C
g2 for any square integrable

function g, and

µn,m (C) =

∫

C

dF̂12 (x) =
1

n+m

(
n∑

i=1

1C (Xi) +

m∑

j=1

1C (Yj)

)
.

Let us start with a preliminary lemma.

Lemma 1 Assume conditions A1-A3 and hypothesis H0. Then, for any x in C,

−2 logEL (x) =
nmh

(n+m)R (K) f(x)

(
f̂1 (x)− f̂2 (x)

)2

+OP

(
h+ n−1/2h−1/2 + n−1h−2

)
.

and,

−2

∫

C

logEL (x) dF (x) =
nmh

(n +m)R (K)

∫

C

(
f̂1 (x)− f̂2 (x)

)2

dx

+OP

(
nα
(
h+ n−1/2h−1/2 + n−1h−2

))

(with α > 0 defined in condition A1).

We now state our main result.

Theorem 2 Assume conditions A1-A4 and hypothesis H0. Then,

R(K)√
2hRC (f)R(K ∗K)

[Tn,m − µn,m(C)]
d→ N (0, 1) ,

where K ∗K denotes the convolution of K with itself.
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As an alternative to the normal approximation, we now explain how the distribution

of the test statistic Tn,m can be approximated using a smoothed bootstrap procedure. The

bootstrap approximation will be used to determine the critical value of the test, whereas

the shape of the rejection region is completely determined by the empirical likelihood

method.

Let g be a second bandwidth, possibly different from h, and let f̂12,g be the kernel

density estimator of the pooled data :

f̂12,g(x) =
1

n+m

[
n∑

i=1

Kg (x−Xi) +
m∑

j=1

Kg (x− Yi)
]
.

Define resamples {X∗1 , . . . , X∗n} and {Y ∗1 , . . . , Y ∗m}, drawn independently from f̂12,g. Using

these bootstrap data, calculate the bootstrap statistic T ∗n,m (repeat the same procedure

as for the construction of Tn,m, but use the resamples instead of the original samples),

and let c∗ be determined by

P (T ∗n,m ≤ c∗|X1, . . . , Xn, Y1, . . . , Ym) = 1− α,

where α represents here the level of the test. The null hypothesis H0 is now rejected if

Tn,m ≥ c∗.

4 Simulations

In this section we study the practical behavior of the proposed testing procedure by means

of some simulations. We also compare our method with the test of Anderson, Hall and

Titterington (1994) (based on the L2-distance between f̂1 and f̂2) and the test of Einmahl

and McKeague (2003), which is an empirical likelihood test based on the comparison

of two distribution functions (whereas the proposed test is based on the comparison of

two density functions). Throughout the simulation study the density f1 is the standard

normal density. For the density f2 we consider the following models :

Model 0 : Y ∼ N(0, 1) (null model)

Model 1 : Y ∼ N(a, 1), for a = 0.3 and 0.6

7



Model 2 : Y ∼ N(0, (1 + a)2), for a = 0.5 and 0.75

Model 3 : Y ∼ (χ2
1/a − 1/a)/

√
2/a, for a = 0.3 and 0.5

Model 4 : Y ∼ t2/a
√

1− a, for a = 0.6 and 0.8

Model 5 : Y ∼ (1− a)N(0, 1) + aN(2, 1), for a = 0.2 and 0.4

Model 6 : f2(y) = (1− sin(πy/
√

2)a)f1(y), for a = 0.5 and 1

Graphs of these densities are shown in Figure 1. Note that for each of the models 1 to 6,

the parameter a represents the departure from the null distribution, in the sense that the

larger the value of a, the larger the deviation from the null model (also note that when a

tends to zero, the null model is found back). In models 1 to 4 the parameter a controls the

j-th moment of the density f2 (j = 1, 2, 3, 4). The densities in these models are normalized

in such a way that all moments up to order j−1 coincide with the corresponding moments

of f1.

The results are obtained for several values of n,m and h. The interval C is chosen as

the union of C1 and C2, where Cj = [F−1
j (0.005), F−1

j (0.995)] (j = 1, 2). Note that this

choice of C satisfies the conditions of Section 3. The results, shown in Table 1 below,

are obtained from 500 simulation runs, and for each sample 500 bootstrap samples are

generated. The bandwidth g used in the bootstrap procedure equals (n + m)−0.15, and

the level of significance is 0.05.

Table 1 shows that the level is well respected by all three methods and for all band-

widths. For the different alternative models and for most sample sizes and bandwidths

chosen, the results seem to suggest that the proposed test outperforms the two other tests

for models 3, 4 and 6, that for models 1 and 5, the test of Einmahl and McKeague is

the best, and for model 2 there is no clear winner. In summary the test by Einmahl and

McKeague is very well suited for situations where one of the distributions stochastically

dominates the other, while the new test is the best when one of the densities presents

some local deviation with respect to the other.

Additional simulations (not shown here) indicate that the choice of the interval C does

not have much impact on the level of the test, but it does influence the power. In practice

we recommend to choose C as large as possible. The pilot bandwidth g used to generate

resamples, seems to have only a minor effect on the rejection probabilities. The choice of
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h is however important for the power, as is explained in the next remark.
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Figure 1: Graph of the densities under models 1 to 6. The dotted curve represents the

density under the null model, the full curves represent the densities under the alternative

models.
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Mod. a h n = 50, m = 50 n = 50, m = 100 n = 100, m = 100

New AHT EM New AHT EM New AHT EM

0 0 1 .056 .054 .050 .054 .038 .050 .044 .040 .050

1.5 .056 .056 .042 .040 .046 .052

1 0.3 1 .188 .186 .314 .250 .256 .402 .294 .328 .568

1.5 .234 .252 .298 .318 .390 .426

0.6 1 .594 .640 .806 .710 .770 .918 .880 .928 .990

1.5 .680 .726 .810 .842 .942 .958

2 0.5 1 .366 .358 .242 .496 .464 .416 .702 .678 .650

1.5 .450 .428 .606 .532 .762 .768

0.75 1 .598 .664 .630 .700 .788 .790 .880 .940 .962

1.5 .708 .744 .794 .872 .922 .982

3 0.3 1 .424 .356 .174 .572 .560 .322 .780 .732 .534

1.5 .344 .288 .472 .430 .670 .610

0.5 1 .658 .632 .448 .812 .792 .622 .924 .918 .884

1.5 .542 .464 .684 .666 .874 .826

4 0.6 1 .290 .278 .100 .326 .332 .154 .472 .462 .230

1.5 .246 .202 .308 .288 .432 .358

0.8 1 .738 .732 .496 .868 .870 .574 .960 .950 .806

1.5 .702 .624 .846 .828 .946 .924

5 0.2 1 .216 .198 .318 .284 .248 .526 .392 .392 .700

1.5 .290 .258 .324 .352 .490 .518

0.4 1 .636 .762 .918 .726 .886 .986 .878 .984 .998

1.5 .758 .864 .790 .940 .912 .992

6 0.5 1 .298 .264 .128 .390 .364 .196 .546 .516 .282

1.5 .226 .200 .294 .272 .416 .388

1 1 .856 .846 .464 .936 .944 .712 .992 .990 .908

1.5 .750 .706 .860 .840 .978 .960

Table 1: Rejection probabilities for the new method, the method of Anderson, Hall, and

Titterington (1994)(AHT) and the one of Einmahl and McKeague (2003) (EM).
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Remark (choice of h). The above simulations suggest that the bandwidth h has only

a minor effect on the theoretical level of the test, but it does influence the power. We

therefore propose to select h by means of the following procedure, which estimates the

bandwidth that maximizes the power by means of a double-bootstrap procedure :

1. Let {h1, . . . , hk} be a grid of h-values among which to select the optimal one.

2. GenerateB resamples X∗i1, . . . , X
∗
in (i = 1, . . . , B) from f̂1g(·) = n−1

∑n
j=1Kg(·−Xj),

and similarly, generate B resamples Y ∗i1, . . . , Y
∗
im (i = 1, . . . , B) from f̂2g(·) (note that

since we aim at maximizing the power (and not the level), we generate resamples

from the two samples separately).

3. For each i = 1, . . . , B and each j = 1, . . . , k :

(a) Calculate T ∗n,m(i, j) (i.e. test statistic based on X∗i1, . . . , X
∗
in, Y

∗
i1, . . . , Y

∗
im and

on bandwidth hj)

(b) Determine critical value c∗∗(i, j) by generating (second level) bootstrap samples

under H0 (see Section 3 for a detailed description of the approximation of this

critical value).

4. For each j = 1, . . . , k, calculate

p̂ower(hj) = B−1

B∑

i=1

I{T ∗n,m(i, j) > c∗∗(i, j)}

5. Estimate the optimal bandwidth by

ĥopt = argmax1≤j≤kp̂ower(hj).

Table 2 summarizes the results of a small simulation study, which illustrates the above

procedure. Given the computational complexity of the double bootstrap procedure, we

limit here to 50 simulation runs, 50 bootstrap samples and also 50 second level bootstrap

samples. The sample sizes are n = m = 50 and the level equals α = 0.10. The table

indicates that the power for the estimated bandwidth is for all models close to the maximal

power, and that the level is well respected. These results also suggest that the power of the
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new method shown in Table 1, is possibly underestimated, since the table only gives the

power for two fixed values of h (h = 1 and 1.5). The power at ĥopt might be substantially

larger.

Mod. a Rej. Prob(h) ĥopt

ĥopt 1 1.25 1.5 1.75 2 Mean Var

0 0 0.12 0.08 0.08 0.08 0.12 0.12 1.65 0.15

1 0.6 0.74 0.64 0.66 0.68 0.74 0.74 1.93 0.04

2 0.75 0.86 0.70 0.82 0.86 0.86 0.88 1.89 0.04

3 0.5 0.72 0.68 0.76 0.66 0.60 0.46 1.35 0.11

4 0.8 0.58 0.68 0.68 0.58 0.54 0.50 1.62 0.12

5 0.4 0.92 0.84 0.78 0.88 0.88 0.92 1.93 0.04

6 1 0.92 0.94 0.92 0.90 0.86 0.80 1.38 0.12

Table 2: Rejection probabilities for the new method for five fixed bandwidths, as well as

for the estimator ĥopt of the optimal bandwidth. The last two columns give the mean and

variance of ĥopt over the 50 simulation runs.

5 Proofs

Proof of Lemma 1. Equation (5) may be rewritten as

n =
n∑

i=1

1 + η1

(
K1,i − f̂12 (x)

)

1 + η1

(
K1,i − f̂12 (x)

) − η1

n∑

i=1

K1,i − f̂12 (x)

1 + η1

(
K1,i − f̂12 (x)

) ,

which implies
n∑

i=1

K1,i − f̂12 (x)

1 + η1

(
K1,i − f̂12 (x)

) = 0. (9)
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Now, direct manipulations on equation (9) gives

0 =
sign (η1)

n

n∑

i=1

(
K1,i − f̂12 (x)

)
− sign (η1)

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

η1

1 + η1

(
K1,i − f̂12 (x)

)

≤ sign (η1)
(
f̂1 (x)− f̂12 (x)

)

− |η1|
1 + |η1|maxi

∣∣∣K1,i − f̂12 (x)
∣∣∣

1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

,

which leads to

|η1|
1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

≤
(

1 + |η1|max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣
)

×sign (η1)
(
f̂1 (x)− f̂12 (x)

)
,

or, equivalently,

|η1|
[

1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

−max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣ sign (η1)

(
f̂1 (x)− f̂12 (x)

)]

≤ sign (η1)
(
f̂1 (x)− f̂12 (x)

)
. (10)

Using H0 we have E
(
f̂1 (x)

)
= E

(
f̂12 (x)

)
and, consequently,

f̂1 (x)− f̂12 (x) = OP

(
1√
nh

)
. (11)

On the other hand

0 ≤ max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣ ≤ h−1 sup

u∈ �
|K (u)|+ f̂12 (x) = OP

(
h−1
)

,

which, together with (11) gives

max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣ sign (η1)

(
f̂1 (x)− f̂12 (x)

)
= OP

(
n−1/2h−3/2

)
. (12)

Similar arguments lead to

1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

= R (K) h−1f (x) +OP (1) +OP

(
n−1/2h−3/2

)
. (13)

Finally, (11), (12) and (13) can be applied to (10) to derive the rate

|η1| = OP

(
n−1/2h1/2

)
. (14)
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We now start from (9) to obtain

0 =
1

n

n∑

i=1

(
K1,i − f̂12 (x)

)

1− η1

(
K1,i − f̂12 (x)

)
+

η2
1

(
K1,i − f̂12 (x)

)2

1 + η1

(
K1,i − f̂12 (x)

)




= f̂1 (x)− f̂12 (x)− η1
1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

+η2
1

1

n

n∑

i=1

(
K1,i − f̂12 (x)

)3

1 + η1

(
K1,i − f̂12 (x)

) . (15)

Its last term can be easily bounded:

∣∣∣∣∣∣∣
η2

1

1

n

n∑

i=1

(
K1,i − f̂12 (x)

)3

1 + η1

(
K1,i − f̂12 (x)

)

∣∣∣∣∣∣∣

≤ η2
1

(
max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣
) 1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

1 + η1

(
K1,i − f̂12 (x)

)

≤ η2
1

(
max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣
)

×




1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

+
1

n
|η1|

n∑

i=1

∣∣∣K1,i − f̂12 (x)
∣∣∣
3

1 + η1

(
K1,i − f̂12 (x)

)




≤ η2
1

(
max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣
) 1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

+ |η1|3
(

max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣
)4 1

n

n∑

i=1

1

1 + η1

(
K1,i − f̂12 (x)

)

≤ η2
1

(
max
i

∣∣∣K1,i − f̂12 (x)
∣∣∣
) 1

n

n∑

i=1

(
K1,i − f̂12 (x)

)2

+OP

(
n−3/2h−5/2

)

= OP

(
n−1h−1

)
+OP

(
n−3/2h−5/2

)
. (16)

Now (13), (15) and (16), lead to

η1 =
f̂1 (x)− f̂12 (x)

1
n

∑n
i=1

(
K1,i − f̂12 (x)

)2 +OP

(
n−1
)

+OP

(
n−3/2h−3/2

)
. (17)
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Similar calculations for the second sample give

η2 =
f̂2 (x)− f̂12 (x)

1
m

∑m
j=1

(
K2,j − f̂12 (x)

)2 +OP

(
m−1

)
+OP

(
m−3/2h−3/2

)
. (18)

Starting from expression (4), using Taylor expansions, equations (17) and (18) and

direct derivations it is not difficult to conclude

−2 logEL (x) =
n
(
f̂1 (x)− f̂12 (x)

)2

1
n

∑n
i=1

(
K1,i − f̂12 (x)

)2 +
m
(
f̂2 (x)− f̂12 (x)

)2

1
m

∑m
j=1

(
K2,j − f̂12 (x)

)2

+A1 + A2 +OP

(
n−1/2h−1/2

)
+OP

(
n−1h−2

)
, (19)

where

A1 =
2

3
η3

1

n∑

i=1

(
K1,i − f̂12 (x)

)3

(1 + ξ1,i)
3 ,

A2 =
2

3
η3

2

m∑

j=1

(
K2,j − f̂12 (x)

)3

(1 + ξ2,i)
3 ,

with ξ1,i some intermediate point between 0 and η1

(
K1,i − f̂12 (x)

)
and ξ2,j some interme-

diate point between 0 and η2

(
K2,j − f̂12 (x)

)
. Now equations (13) and (14) and standard

manipulations can be used to obtain

A1 = OP

(
n−1/2h−1/2

)
(20)

and similarly

A2 = OP

(
m−1/2h−1/2

)
. (21)

Now, using (13), (20) and (21) in (19) gives, after straightforward calculations,

−2 logEL (x) =

nmh
n+m

(
f̂1 (x)− f̂2 (x)

)2

R (K) f (x)
+OP

(
h + n−1/2h−1/2 + n−1h−2

)
,

which proves the first statement in the lemma.

The proof of the second part relies on showing that

−2 logEL (x) =

nmh
n+m

(
f̂1 (x)− f̂2 (x)

)2

R (K) f (x)
+OP

(
nα
(
h+ n−1/2h−1/2 + n−1h−2

))
, (22)
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uniformly in x ∈ C. A careful inspection of the rates obtained in the first part of the

proof leads to parallel uniform orders but with the extra factor nα. To do this, condition

A3 and Bernstein inequality can be used as in Stone (1984). This is illustrated by stating

and proving next, only one of the uniform results needed. �

Lemma 3 Assume the conditions in Lemma 1. Then,

sup
x∈C

∣∣∣f̂1 (x)− f̂12 (x)
∣∣∣ = OP

(
nα√
nh

)
.

Proof. Let us define the random variables

Zr (x) =





m
n

(K1,r − f (x)) if r ∈ {1, 2, . . . , n}
f (x)−K2,r−n if r ∈ {n+ 1, n+ 2, . . . , n +m}

It is not difficult to prove that |Zr (x)| ≤ max
{

1, m
n

}
‖K‖h−1 and V ar (Zr (x))

≤
(
max

{
1, m

n

})2
R (K) ‖f‖h−1, where ‖g‖ = supx∈R |g (x)|. Now, Bernstein inequal-

ity applies to the random variables Zr (x), r = 1, 2, . . . , n+m, to obtain

P
(∣∣∣f̂1 (x)− f̂12 (x)

∣∣∣ > t
)

= P

(∣∣∣∣∣(n +m)−1
n+m∑

r=1

Zr (x)

∣∣∣∣∣ > t

)
(23)

≤ 2 exp

(
− (n+m) t2

2
(
max

{
1, m

n

})2
R (K) ‖f‖h−1 + 2

3
max

{
1, m

n

}
‖K‖h−1t

)

≤ 2 exp

(
− (n +m) ht2

3
(
max

{
1, m

n

})2
R (K) ‖f‖

)
,

whenever t ≤ 3R(K)‖f‖
2‖K‖ . On the other hand, using condition A3, there exists some λ > 0

such that |K (x)−K (y)| ≤ λ |x− y|. As a consequence,

∣∣∣f̂1 (x)− f̂12 (x)−
(
f̂1 (y)− f̂12 (y)

)∣∣∣ ≤ 2λ

h2
|x− y| .

Let us now fix some ε > 0, and define δn = εnαh2

4λ
√
nh

. Using conditions A2 and A3, we may

select x1, x2, . . . , xkn ∈ C, with kn = O
( √

nh
nαh2

)
, such that for all x ∈ C, there exists some

i ∈ {1, 2, . . . , kn}, with |x− xi| ≤ δn, which, therefore, implies that

∣∣∣f̂1 (x)− f̂12 (x)−
(
f̂1 (xi)− f̂12 (xi)

)∣∣∣ ≤ εnα

2
√
nh
.
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As a consequence,

sup
x∈C

∣∣∣f̂1 (x)− f̂12 (x)
∣∣∣ ≤ εnα

2
√
nh

+ max
1≤i≤kn

∣∣∣f̂1 (xi)− f̂12 (xi)
∣∣∣

which, using (23), leads to

P

(
sup
x∈C

∣∣∣f̂1 (x)− f̂12 (x)
∣∣∣ > εnα√

nh

)
≤ P

(
max

1≤i≤kn

∣∣∣f̂1 (xi)− f̂12 (xi)
∣∣∣ > εnα

2
√
nh

)

≤
kn∑

i=1

P

(∣∣∣f̂1 (xi)− f̂12 (xi)
∣∣∣ > εnα

2
√
nh

)

≤ 2kn exp

(
−

(
1 + m

n

)
ε2n2α

12
(
max

{
1, m

n

})2
R (K) ‖f‖

)
.

The last term tends to zero, using the order of kn and A1.

Remark 4 The previous result is an extension of expression (11) to a uniform setting in

x ∈ C. It can also be derived from one of the results in Silverman (1978).

Proof of Theorem 2. First, we will prove that Tn,m+2
∫
C

logEL (x) dF (x) = oP
(
h1/2

)
.

To do this we start writing

Tn,m + 2

∫

C

logEL (x) dF (x) = −2

∫

C

logEL (x) d
(
F̂12 − F

)
(x) .

Now bounding the absolute value of the integral in the right hand side by some integral

with respect to the total variation measure, the Dvoretzky-Kiefer-Wolfowitz inequality

and the uniform result (22) apply to get

Tn,m + 2

∫

C

logEL (x) dF (x) = OP


n1/2h sup

x∈C

(
f̂1 (x)− f̂2 (x)

)2

f (x)


 (24)

+OP

(
nα−1/2

(
h+ n−1/2h−1/2 + n−1h−2

))
.

On the other hand using arguments parallel to those in the proof of Lemma 3, it is easy

to prove that

sup
x∈C

(
f̂1 (x)− f̂2 (x)

)2

= OP

(
nα

nh

)
.

This rate and conditions A1 and A2, can be used in (24), to conclude

Tn,m + 2

∫

C

logEL (x) dF (x) = OP

(
nα−1/2 + nα−1/2

(
h+ n−1/2h−1/2 + n−1h−2

))

= oP
(
h1/2

)
.
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In view of this representation the theorem will be proved by showing

R (K)√
2hRC (f)R (K ∗K)

[
−2

∫

C

logEL (x) dF (x)− µn,m (C)

]
d→ N (0, 1) ,

which, using Lemma 1, condition A1 and the Dvoretzky-Kiefer-Wolfowitz inequality, is

equivalent to proving

nmh
n+m

∫
C

(
f̂1 (x)− f̂2 (x)

)2

dx− R (K)µ (C)
√

2hRC (f)R (K ∗K)

d→ N (0, 1) , (25)

with µ (C) =
∫
C
dF (x).

To prove (25), we first decompose the main term as follows

∫

C

(
f̂1 (x)− f̂2 (x)

)2

dx = B1 +B2 − 2B3, (26)

with

B1 =

∫

C

(
f̂1 (x)− Ef̂1 (x)

)2

dx,

B2 =

∫

C

(
f̂2 (x)− Ef̂2 (x)

)2

dx,

B3 =

∫

C

(
f̂1 (x)− Ef̂1 (x)

)(
f̂2 (x)− Ef̂2 (x)

)
dx.

Using Theorem 4.1 in Bickel and Rosenblatt (1973) (note however that condition (2.16)

in the statement of that theorem should be (2.15)) and conditions A1-A4 it is not difficult

to prove that

1√
2hRC (f)R (K ∗K)

[nhB1 −R (K)µ (C)]
d→ N (0, 1) ,

1√
2hRC (f)R (K ∗K)

[mhB2 − R (K)µ (C)]
d→ N (0, 1) .

However, a closer look at the proof of Theorem 4.1 in Bickel and Rosenblatt (1973)

shows that

B1 =

∫

C
2L

2
n,1(x)dx +OP (h),

B2 =

∫

C
2L

2
m,2(x)dx +OP (h),

B3 =

∫

C
2Ln,1 2Lm,2(x)dx +OP (h)
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where 2Ln,1(x) and 2Lm,2(x) are defined as in page 1079 of Bickel and Rosenblatt (1973)

in terms of two independent Wiener processes, Z1(•) and Z2(•), as in expression (2.4) in

that paper. As a consequence, using (26) we have
∫

C

(
f̂1 (x)− f̂2 (x)

)2

dx =

∫

C

(2Ln,1 − 2Lm,2)2 (x)dx +OP (h)

and (25) can be proved following the same arguments used by Bickel and Rosenblatt

(1973) to prove their Theorem 4.1. �
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