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Abstract

The problem of testing non-correlation between two multivariate time series, {X(1)
t
, t ∈ Z},

with values in Rd1 , and {X(2)
t , t ∈ Z}, with values in R

d2 , is considered. Assuming that

the global process {Xt, t ∈ Z} := {((X(1)
t )T , (X

(2)
t )T )T , t ∈ Z} admits a joint vector autore-

gressive (VAR) representation, we first show that the hypothesis of non-correlation between

{X(1)
t

} and {X(2)
t

} is equivalent to the hypothesis that all off-diagonal blocks in the matrix
coefficients and the innovation covariance in the joint VAR representation are zero. Then,
we establish an adequate local asymptotic normality (LAN) property for this VAR model in
the vicinity of the hypothesis of non-correlation. This LAN structure allows for constructing
locally and asymptotically optimal pseudo-Gaussian tests for the null hypothesis of non-

correlation between {X(1)
t } and {X(2)

t }, and for comparing their local asymptotic powers
with those of the various tests (Haugh-El Himdi-Roy, and Koch-Yang-Hallin-Saidi) proposed
in the literature.
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1 Introduction.

Detecting cross-dependencies or cross-correlations between series of observations is an essential
issue in practically all fields dealing with the analysis of time series data, such as econometrics,
meteorology, seismology, hydrology, clinical monotoring, or environmetrics. From a method-
ological point of view, tests of independence or non-correlation play a fundamental role in the
model-building process, certainly so in a multivariate context. The same tests also are the main
tool in the analysis of such phenomenons as Granger-causality, etc.

Despite its importance, however, this fundamental problem of testing independence or non-
correlation between observed series has received relatively little attention, and, when it has, the
solutions proposed are essentially heuristic.

In the univariate case, Haugh (1976) developed a procedure for testing non-correlation be-
tween two ARIMA series. Non-correlation under ARIMA assumptions is equivalent to non-
correlation between the respective innovation processes of the series under study. Denoting by

η̂
(1)
t and η̂

(2)
t the residuals resulting from fitting ARIMA models to each of the two series sepa-

rately, and by r
(12)
η̂ηη (k) the corresponding empirical cross-correlations at lag k, information on

possible dependencies between the two series can be expected to be contained in vectors of the
form

r
(12)
η̂ηη (M) :=

(

r
(12)
η̂ηη (−M) , . . . , r

(12)
η̂ηη (0) , . . . , r

(12)
η̂ηη (M)

)T
.

Haugh shows that, under the null hypothesis of non-correlation between the original series,√
Nr

(12)
η̂ηη (M) is asymptotically multivariate normal, with mean zero and identity covariance

matrix (N denotes the series lengths). This result leads to the definition of a portmanteau test
φM

H , say, which rejects the null hypothesis of non-correlation at significance level α whenever

QM
H := N

M
∑

k=−M

(

r
(12)
η̂ηη (k)

)2
(1.1)

exceeds the (1 − α) quantile χ2
2M+1,1−α of the chi-square distribution with (2M + 1) degrees of

freedom.
Haugh’s test is a purely heuristic portmanteau type test, which is not directed at any specific

alternative. Pierce (1977) already observed that its power against some alternatives appearing
in an econometric context is extremely low. This weakness of Haugh’s procedure was further
substantiated in an extensive study conducted by Geweke (1981). In order to palliate this lack
of power, Koch and Yang (1986) proposed another test, denoted as φM

KY ;i, based on statistics of
the form

QM
KY ;i := N

M
∑

k=−M

[

i
∑

l=0

r
(12)
η̂ηη (k + l)

]2

, i = 1, 2, . . . (1.2)

On the basis of a Monte Carlo study, Koch and Yang conclude that their test is preferable to
Haugh’s against a wide range of alternatives. However, they do not provide any theoretical
power or optimality argument.

The multivariate version of this problem was not considered until recently. El Himdi and
Roy (1997) generalized the approach of Haugh (1976) to the case of two multivariate ARMA
series. A multivariate version of the Koch and Yang procedure has been proposed in Hallin and
Saidi (2003).
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Surprisingly, little is known about the respective performances of the proposed tests. To the
best of our knowledge, and apart from Monte-Carlo investigations, the only attempt to compare
local powers in this context is Geweke (1981)’s derivation of Bahadur approximate slopes for
Haugh’s univariate test. As for optimality issues, it seems they have not been addressed so far.

The purpose of this paper is to investigate this problem via the Le Cam Local Asymptotic
Normality (LAN) approach, and to propose an optimal pseudo-Gaussian solution, that is, a test
which is locally asymptotically optimal, in the Le Cam sense, under Gaussian assumptions, but
remains valid under a broad class of non-Gaussian innovation densities. This approach, as we
shall see, does not only provide optimal tests, but also allows for deriving the asymptotic distri-
butions of the various existing test statistics under local alternatives, hence for a computation
of their respective asymptotic relative efficiencies (AREs). Now, optimality only makes sense
against some specified class of alternatives: the alternatives we are considering here are of the
joint vector autoregressive (VAR) type.

LAN for linear time series models was established in the univariate AR case with linear trend
by Swensen (1985), in the ARMA case by Kreiss (1987); a multivariate version of these results
is given by Garel and Hallin (1995). Still in the univariate case, a more general approach,
allowing for nonlinearities, has been taken in Hwang and Basawa (1993), in Drost, Klaassen,
and Werker (1997), and in several papers by Koul and Schick (1996, 1997); see Taniguchi and
Kakizawa (2000) for a survey of LAN for time series. The LAN result we need here however
is more delicate, as it combines the features of location and scale parameters, in a multivariate
setting.

This LAN property is established in Section 2. In Section 3, we derive the locally asymptot-
ically most stringent test for testing independence/non-correlation under innovation density f .
The form of this test regrettably implies that its validity is limited to the innovation density f for
which it is optimal. This density being unspecified in applications, such tests are of little practi-
cal interest. Fortunately, Gaussian densities are an exception, indicating that pseudo-Gaussian
tests are possible. The methods by El Himdi and Roy (1997) and Hallin and Saidi (2003) are
briefly presented in Section 4.1. In Section 4.2 we derive their asymptotic powers under local
alternatives. The particular case of testing for non-correlation in the bivariate Gaussian VAR(1)
model is described in details in Section 5, where a numerical investigation is conducted.

Boldface throughout denote vectors and matrices; the superscript T indicates transpose;
vecA as usual stands for the vector resulting from stacking the columns of a matrix A on top
of each other, DiagA for the diagonal matrix whose diagonal elements are those of A, and
A ⊗ B for the Kronecker product of A and B. The vech operator stacks the elements lying
on and below the main diagonal of a square matrix; an elimination matrix of order m is a
(m(m + 1)/2 ×m2) matrix LLLm such that, for any real (m ×m) matrix A, vechA = LLLm vecA;
finally a lower duplication matrix of order m is a (m2 ×m(m+ 1)/2) matrix DDDm such that, for
any lower triangular (m×m) matrix A, vecA = DDDm vechA.

2 Local asymptotic normality.

2.1 Notation and main assumptions.

Let X := {Xt = ((X
(1)
t )T , (X

(2)
t )T )T , t ∈ Z} denote a d-variate process partitioned into X(1) :=

{X(1)
t , t ∈ Z}, with values in R

d1 , and X(2) := {X(2)
t , t ∈ Z}, with values in R

d2, d1 + d2 = d.
Throughout the paper, X is assumed to be a centered vector autoregressive VAR(p) process,
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satisfying a stochastic difference equation of the form

Xt −
p
∑

j=1

AjXt−j = at, t ∈ Z, (2.1)

where Aj , j = 1, ..., p are d× d real matrices, and

(A1) {at, t ∈ Z} is d-variate white noise, i.e., a process of independent, identically distributed
(iid) random vectors with mean zero, positive definite covariance matrix ΣΣΣ, and probability

density gΣΣΣ such that εεεt := A−1
0 at has density f := gI, where A0 := ΣΣΣ

1
2 is the unique lower

triangular root of ΣΣΣ, with positive diagonal entries; see, for instance, Graybill (1983,
Theorem 8.6.2).

Equation (2.1) is easily rewritten as

Xt =
p
∑

j=1

AjXt−j + A0εεεt. (2.2)

The partition of X into X(1) and X(2) induces a partition of at and εεεt into at = (a
(1)T
t ,a

(2)T
t )T

and εεεt = (εεε
(1)T
t , εεε

(2)T
t )T , respectively. Similarly, the matrices Aj, j = 0, ..., p, are partitioned into

A0 =

(

A
(11)
0 0

A
(21)
0 A

(22)
0

)

, and Aj =

(

A
(11)
j A

(12)
j

A
(21)
j A

(22)
j

)

, j = 1, ..., p,

where A
(11)
0 and A

(22)
0 are lower triangular.

Denote by

θθθ :=
(

vecTA1, ..., vec
TAp, vech

TA0

)T
(2.3)

the K-dimensional vector of parameters involved in (2.2); note that

K =
d× (d+ 1)

2
+ pd2 = d

(2p + 1)d+ 1

2
.

This new parameterization of the VAR model (2.1) will be convenient in the sequel, as non-
correlation between X(1) and X(2) reduces to the hypothesis that the parameter θθθ in (2.3) lies
in some linear subspace of R

K .
Some additional assumptions are needed on the parameter values.

(A2) The roots of the determinantal equation associated with (2.1) all lie outside the unit disk,
that is,

∣

∣

∣

∣

∣

∣

Id −
p
∑

j=1

Ajz
j

∣

∣

∣

∣

∣

∣

6= 0, ∀ |z| ≤ 1, z ∈ C;

The subset of parameter values θθθ ∈ R
K such that (A1) and (A2) hold will be denoted as ΘΘΘ.

Proposition 2.1 Under (A1), and (A2), the following three statements are equivalent:

(i) X(1) and X(2) are mutually orthogonal at all leads and lags;
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(ii) Aj =

(

× 0

0 ×

)

, j = 1, ..., p, and ΣΣΣ =

(

× 0

0 ×

)

;

(iii) Aj =

(

× 0

0 ×

)

, j = 1, ..., p, and A
(21)
0 = 0;

(× stands for an unspecified submatrix of appropriate dimension, compatible with the assumption

that θθθ ∈ ΘΘΘ). In case εεεt = (εεε
(1)T
t , εεε

(2)T
t )T := A−1

0 at is such that εεε
(1)
t and εεε

(2)
t are independent,

then the orthogonality property in statement (i) can be replaced by independence.

Proof. The proof is elementary, and is left to the reader. �

The null hypothesis under which (ii) (equivalently, (iii) or (i)) holds will be denoted as H0.
It follows from Proposition 2.1 that H0, according to the assumption made on εεεt (that is, on
gΣΣΣ), is to be interpreted as X(1) and X(2) being either uncorrelated or independent (at all leads
and lags). Non-correlation being less restrictive than independence, we henceforth refer to H0

as a hypothesis of non-correlation.
It also follows from Proposition 2.1 that H0 takes the form of a set of (2p+ 1)d1 × d2 linear

restrictions on the parameter value θθθ. Let A be the set of all (p+ 1)-tuples (A0,A1, . . . ,Ap) of

d× d real matrices of the block-diagonal form Aj =

(

A
(11)
j 0

0 A
(22)
j

)

, j = 0, ..., p, where A0 is

lower triangular, with positive diagonal elements. Then H0 holds iff θθθ ∈ ΘΘΘ0, where

ΘΘΘ0 :=

{

θθθ =
(

vecT A1, ..., vec
TAp, vech

TA0

)T
∈ ΘΘΘ

∣

∣

∣ (A0, ...,Ap) ∈ A
}

is the intersection of ΘΘΘ with a ((1/2)(d1 − d2)
2 + p(d2

1 + d2
2))−dimensional subspace of R

K .
In order to construct locally optimal tests of H0, we will need uniform local asymptotic

normality (ULAN) with respect to θθθ in the vicinity of ΘΘΘ0. ULAN of course requires some further
regularity assumptions, mainly on the innovation density f . Note that the usual assumption
of quadratic mean differentiability of x 7→ f

1
2 (x), requiring the existence of a square integrable

vector Df
1
2 such that, for all 0 6= h → 0,
(

hTh
)−1

∫

(

f
1
2 (x + h) − f

1
2 (x) − hTDf

1
2 (x)

)2
dx −→ 0 as h → 0

(see Swensen 1985, Kreiss 1987, or Garel and Hallin 1995), is not sufficient here. Indeed, in
our model, along with the Aj matrices j = 1, ..., p, which asymptotically (that is, in local limit
experiments: see 3.1) plays the role of a multivariate location parameters, we also have to deal
with A0, which plays the role of a multivariate scale. For this reason, the differentiability
condition we need also includes some of the features associated with scale families.

Denoting by Md the set of all lower triangular d×d matrices with positive diagonal entries,
let

ΠΠΠ :=

{

πππ ∈ R
d(d+3)

2

∣

∣

∣πππ :=
(

µµµT , vechTK
)T

, K ∈ Md, µµµ ∈ R
d
}

and πππ∗ :=
(

0T , vechT (Id)
)

, where Id stands for the d × d identity matrix. Consider the para-

metric family of densities Ff := {fπππ,πππ :=
(

µµµT , vechTK
)T

∈ ΠΠΠ}, where

fπππ(x) := |K|−1 f(K−1(x−µµµ)).
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This family Ff (it will be convenient, if not totally correct, to refer to f as the innovation density)
is a location-scale family, very much in the spirit of those considered in Drost, Klaassen, and

Werker (1997) in their assumptions for ULAN. Then πππ 7→ f
1
2
πππ is differentiable in quadratic mean

at πππ∗ iff there exists a square integrable d(d+3)
2 -dimensional vector ρρρπππ∗(x) such that, for all

0 6= t =
(

hT , vecTδδδ
)T

converging to 0,

(

tT t
)−1

∫ (

f
1
2
πππ∗+t

(x) − f
1
2
πππ∗(x) − tTρρρπππ∗(x)f

1
2

πππ∗(x)

)2

dx −→ 0. (2.4)

The following assumptions (A3)-(A5) are shown (Lemma 7.6 of van der Vaart (1998) or Propo-
sition 1 of Chapter 2 of Bickel, Klassen, Ritov and Wellner (1993)) to be sufficient for (2.4) to
hold at πππ∗.

(A3) f is a nowhere vanishing density (with respect to the Lebesgue measure on R
d), with mean

zero and identity covariance matrix .

(A4) x 7→ f(x) is continuously differentiable, with gradient
∂f

∂x
.

Putting ϕϕϕf := −grad (log (f)) = − 1

f

∂f

∂x
(with values in R

d; this gradient exists as soon as (A4)

holds) and ϕϕϕf ;πππ := gradπππ (log (fπππ)) :=
1

fπππ

∂fπππ
∂πππ

(this gradient, with values in R
d(d+3)

2 , exists as

soon as (A4) holds), define

III(f) :=

∫

ϕϕϕf (x) ϕϕϕT
f (x) f(x)dx,

and

IIIπππ :=

(

III(11)
πππ III(12)

πππ

III(21)
πππ III(22)

πππ

)

:=

∫

ϕϕϕf ;πππ(x) ϕϕϕT
f ;πππ(x) fπππ(x)dx.

The matrices III(11)
πππ and III(22)

πππ (with dimensions d × d and d(d+1)
2 × d(d+1)

2 , respectively) are to
be interpreted as the information matrices corresponding to the location and scale parameters,
respectively.

(A5) IIIπππ∗ is finite and nonsingular, and πππ 7→ IIIπππ is continuous at πππ∗.

Using classical properties of matrix derivatives, one then easily obtains

ϕϕϕf ;πππ (x) =





(

K−1
)T
ϕϕϕf

(

K−1 (x−µµµ)
)

vech
(

− (K−1
)T

+
(

K−1
)T
ϕϕϕf

(

K−1 (x−µµµ)
) (

K−1 (x −µµµ)
)T
)



 ,

so that ϕϕϕf ;πππ∗(x)=

(

ϕϕϕf (x)

vech
(

−Id +ϕϕϕf (x)xT
)

)

. Hence,

IIIπππ∗=

∫

(

ϕϕϕf (x)

vech
(

−Id +ϕϕϕf (x)xT
)

)(

ϕϕϕf (x)

vech
(

−Id +ϕϕϕf (x)xT
)

)T

f(xxx)dx =:

(

III(f) III ls(f)

(III ls(f))T IIIs(f)

)

.

(2.5)
Taking this into account, and assuming that (A3) and (A4) hold, Assumption (A5) can be
replaced with
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(A5’) III(f) is finite and positive definite, and
∫

(

xjϕϕϕf ;i (x)
)2
f (x) dx = E

[

(

εεεj;tϕϕϕf ;i (εεεt)
)2
]

<∞
for all i and j, where xj , εεεj;t, and ϕϕϕf ;i (x) stand for the jth element of the vector x, the

jth element of the random vector εεεt, and the ith element of the vector ϕϕϕf (x), respectively.

2.2 Local asymptotic normality.

In order to establish the required ULAN result, we shall use Theorem 2.1 of Drost, Klaassen,
and Werker (1997). The likelihoods we are considering here actually are conditional likelihoods
(conditional upon initial values (X1−p, ...,X0); the influence of these initial values under as-

sumption (A2) safely can be neglected—see, e. g., Hallin and Werker (1999)). Denote by P
(N)
f ;θθθ

the distribution, under innovation density f and parameter value θθθ, of X(N) := (X1, ...,XN ),

conditional on (X1−p, ...,X0). Let τττ (N) :=
(

vecTγγγ
(N)
1 , ..., vecTγγγ

(N)
p , vechTγγγ

(N)
0

)T
∈ R

K and

τ̃ττ (N) :=
(

vecT γ̃γγ
(N)
1 , ..., vecT γ̃γγ(N)

p , vechT γ̃γγ
(N)
0

)T
∈ R

K , where both of γγγ
(N)
0 and γ̃γγ

(N)
0 are lower

triangular matrices, be such that ‖τττ (N)‖ and ‖τ̃ττ (N)‖ remain bounded as N → ∞. Whenever

τττ (N) is a constant, we write τττ :=
(

vecTγγγ1, ..., vec
Tγγγp, vech

Tγγγ0

)T
instead of τττ (N). Defining

θθθ(N) :=
(

vecTA
(N)
1 , ..., vecTA

(N)
p , vechTA

(N)
0

)T
:= θθθ +N−1/2τττ (N), (2.6)

θ̃θθ
(N)

:=
(

vecT Ã
(N)
1 , ..., vecT Ã

(N)
p , vechT Ã

(N)
0

)T
:= θθθ(N) +N−1/2τ̃ττ (N), (2.7)

et := (A0)
−1
(

Xt −
∑p

j=1 AjXt−j

)

,

e
(N)
t :=

(

A
(N)
0

)−1



Xt −
p
∑

j=1

A
(N)
j Xt−j



 , and ẽ
(N)
t :=

(

Ã
(N)
0

)−1



Xt −
p
∑

j=1

Ã
(N)
j Xt−j



 ,

(2.8)

the logarithm of the likelihood ratio for P
(N)

f ;θθθ(N) against P
(N)

f ;θ̃θθ
(N) takes the form

Λ
(N)

θ̃θθ
(N)

/θθθ(N)

(

X(N)
)

:= log







dP
(N)

f ;θ̃θθ
(N)

dP
(N)

f ;θ(N)






=

N
∑

t=1

log
(∣

∣

∣A
(N)
0

∣

∣

∣ f(ẽ
(N)
t )

/ ∣

∣

∣Ã
(N)
0

∣

∣

∣ f(e
(N)
t )

)

. (2.9)

Let

WN,t :=









































(Xt−1 ⊗ Id)

(

(

A
(N)
0

)−1
)T

0
d2× d×(d+1)

2

...
...

(Xt−j ⊗ Id)

(

(

A
(N)
0

)−1
)T

0
d2× d×(d+1)

2

...
...

(Xt−p ⊗ Id)

(

(

A
(N)
0

)−1
)T

0
d2× d×(d+1)

2

0 d(d+1)
2

×d
DDDT

d

(

Id ⊗
(

(

A
(N)
0

)−1
)T
)

LLLT
d









































, (2.10)
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where DDDd is the usual d2 × d(d+1)
2 lower duplication matrix and LLLd the d(d+1)

2 × d2 elimination
matrix. We now may state the ULAN property which is the main result of this section.

Theorem 2.1 Suppose that Assumptions (A1)-(A5) are satisfied. Let θθθ ∈ ΘΘΘ0, θθθ
(N) and θ̃θθ

(N)
as

defined in (2.6) and (2.7), respectively. Then,

Λ
(N)

θ̃θθ
(N)

/θθθ(N)

(

X(N)
)

= (τ̃ττ (N))T∆∆∆
(N)

f ;θθθ(N) −
1

2
(τ̃ττ (N))TΓΓΓ∆∆∆

f ;θθθ(θθθ)τ̃ττ
(N) + oP(1),

under P
(N)

f ;θθθ(N) , as N → ∞, with (the central sequence)

∆∆∆
(N)

f ;θθθ(N) := N− 1
2

N
∑

t=1

































































(

Xt−1 ⊗
(

(

A
(N)
0

)−1
)T
)

ϕϕϕf (e
(N)
t )

...

(

Xt−j ⊗
(

(

A
(N)
0

)−1
)T
)

ϕϕϕf (e
(N)
t )

...

(

Xt−p ⊗
(

(

A
(N)
0

)−1
)T
)

ϕϕϕf (e
(N)
t )

DDDT
d

(

Id ⊗
(

(

A
(N)
0

)−1
)T
)

LLLT
d vech

[

−Id + ϕϕϕf (e
(N)
t )(e

(N)
t )T

]

































































, (2.11)

and (the information matrix)

ΓΓΓ∆∆∆
f ;θθθ :=









































ΓΓΓ∆∆∆
11 · · · ΓΓΓ∆∆∆

1i · · · ΓΓΓ∆∆∆
1j · · · ΓΓΓ∆∆∆

1p 0
...

. . .
...

...
...

...
(

ΓΓΓ∆∆∆
1i

)T
· · · ΓΓΓ∆∆∆

ii · · · ΓΓΓ∆∆∆
ij · · · ΓΓΓ∆∆∆

ip 0

...
...

. . .
...

...
...

(

ΓΓΓ∆∆∆
1j

)T
· · ·

(

ΓΓΓ∆∆∆
ij

)T
· · · ΓΓΓ∆∆∆

jj · · · ΓΓΓ∆∆∆
jp 0

...
...

...
. . .

...
...

(

ΓΓΓ∆∆∆
1p

)T
· · ·

(

ΓΓΓ∆∆∆
ip

)T
· · ·

(

ΓΓΓ∆∆∆
jp

)T
· · · ΓΓΓ∆∆∆

pp 0

0T · · · 0T · · · 0T · · · 0T ΓΓΓ∆∆∆
00









































, (2.12)

where

ΓΓΓ∆∆∆
00 := DDDT

d

(

Id ⊗
(

A−1
0

)T
)

LLLT
dIIIs(f)LLLd

(

Id ⊗
(

A−1
0

))

DDDd,

and

ΓΓΓ∆∆∆
ij :=

((

ΓΓΓ
(11)
θθθ (j − i) 0

0 ΓΓΓ
(22)
θθθ (j − i)

)

⊗
(

(

A−1
0

)T
III(f)A−1

0

)

)

,
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with

ΓΓΓ
(ii)
θθθ (k) := E

P
(N)
f ;θθθ

[

X
(i)
t

(

X
(i)
t−k

)T
]

, i = 1, 2.

Moreover, ∆∆∆
(N)

f ;θθθ(N) (still under P
(N)

f ;θθθ(N) , as N → ∞) is asymptotically normal, with mean 0

and covariance matrix ΓΓΓ∆∆∆
f ;θθθ.

Proof. By Theorem 2.1 of Drost, Klaassen, and Werker (1997), ULAN holds if the log-likelihood

ratio Λ
(N)

θ̃θθ
(N)

/θθθ(N)

(

X(N)
)

can be written as

Λ
(N)

θ̃θθ
(N)

/θθθ(N)

(

X(N)
)

=
N
∑

t=1

{

log
(

fπππN
t

(e
(N)
t )

)

− log
(

fπππ∗(e
(N)
t ))

)}

, (2.13)

where πππN
t = πππ∗ + (WN,t)

T
(

θ̃θθ
(N) − θθθ(N)

)

with WN,t defined in (2.10), and Assumptions A-D

(same reference) are satisfied. By definition (2.9) we have that

Λ
(N)

θ̃θθ
(N)

/θθθ(N)

(

X(N)
)

=
N
∑

t=1

log
(∣

∣

∣A
(N)
0

∣

∣

∣ f(ẽ
(N)
t )

/ ∣

∣

∣Ã
(N)
0

∣

∣

∣ f(e
(N)
t )

)

=
N
∑

t=1

log

(

∣

∣

∣

∣

(

A
(N)
0

)−1
Ã

(N)
0

∣

∣

∣

∣

−1

f(ẽ
(N)
t )

)

− log
(

f(e
(N)
t )

)

.

Thus, in order to show (2.13) we only need to verify that

fπππN
t

(e
(N)
t ) =

∣

∣

∣

∣

(

A
(N)
0

)−1
Ã

(N)
0

∣

∣

∣

∣

−1

f(ẽ
(N)
t )

Indeed, from the definition of WN,t and the properties of the Kronecker product, the vec and
the vech operators, we have that

πππN
t =

(

0

vechT (Id)

)

+









(

A
(N)
0

)−1
p
∑

j=1

(

Ã
(N)
j − A

(N)
j

)

Xt−j

(

A
(N)
0

)−1 (

Ã
(N)
0 − A

(N)
0

)









.

It follows that

fπππN
t

(e
(N)
t ) =

∣

∣

∣A
(N)
0

∣

∣

∣

∣

∣

∣Ã
(N)
0

∣

∣

∣

−1
f





(

Ã
(N)
0

)−1







Xt −
p
∑

j=1

A
(N)
j Xt−j



−
p
∑

j=1

(

Ã
(N)
j − A

(N)
j

)

Xt−j









=

∣

∣

∣

∣

(

A
(N)
0

)−1
Ã

(N)
0

∣

∣

∣

∣

−1

f(ẽ
(N)
t ).

Hence, (2.1) in Drost, Klaassen, and Werker (1997) is satisfied.
Turning to their Assumptions A-D, Assumption A follows from the fact that the influence

of initial values under (A1) and (A2) is asymptotically negligible, and Assumption B is a direct
consequence of (A3)-(A5). That Assumption C holds is a consequence of the fact that the random

pd2 + d(d+1)
2 × d+ d(d+1)

2 matrix process WN,t, which depends on θθθ(N) and is measurable with
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respect to the past, is square-integrable. As for Assumption D, by Lemma A.1 (same reference),

it is sufficient to check that there exists a square-integrable random
(

pd2 + d(d+1)
2

)

×
(

d+ d(d+1)
2

)

matrix Wt(θθθ
(N)), measurable with respect to the past, such that (all convergences are under

P
(N)
f ;θθθ , as N → ∞)

(i) N−1∑N
t=1 Wt(θθθ)IIIπππ∗ (Wt(θθθ))

T P−→ Γ∆∆∆
f ;θθθ,

(ii) for all δ > 0, N−1∑N
t=1 ‖Wt(θθθ)‖2I

(

N− 1
2‖Wt(θθθ)‖ > δ

)

P−→ 0, and

(iii) WN,t converges to Wt(θθθ
(N)), in the sense that

N
∑

t=1

∣

∣

∣

∣

(

WN,t − Wt(θθθ
(N))

)T
(

θ̃θθ
(N) − θθθ(N)

)∣

∣

∣

∣

2
P−→ 0

An appropriate choice of Wt(θθθ
(N)) here is WN,t; by assumption (A2) and an ergodicity argu-

ment, one easily checks that conditions (i)-(iii) are satisfied.
This completes the proof of the ULAN property. �

Remark 2.1 The construction of locally asymptotically optimal tests will require the computa-

tion of the covariance matrix Γ∆∆∆
f ;θθθ, hence that of the autocovariance matrices ΓΓΓ

(ii)
θθθ (l) (0 ≤ l ≤ p).

Since X
(1)
t and X

(2)
t under the null are stationary AR(p) processes, the Yule-Walker relations

ΓΓΓ
(ii)
θθθ (l) := E

P
(N)
f ;θθθ

[

X
(i)
t

(

X
(i)
t−l

)T
]

=
p
∑

j=1

A
(ii)
j ΓΓΓ

(ii)
θθθ (l − j), l = 1, ..., p,

and

ΓΓΓ
(ii)
θθθ (0) := E

P
(N)
f ;θθθ

[

X
(i)
t

(

X
(i)
t

)T
]

= A
(ii)
0

(

A
(ii)
0

)T
+

p
∑

j=1

A
(ii)
j ΓΓΓ

(ii)
θθθ (−j),

allow for computing ΓΓΓ
(ii)
θθθ (l) for i = 1, 2 and l = 0, ..., p—see the subroutine COVARS of

Shea (1989). The same subroutine also allows, via the recursions

δδδ
(ii)
θθθ (0) = A

(ii)
0 δδδ

(ii)
θθθ (l) =

p
∑

j=1

A
(ii)
j δδδ

(ii)
θθθ (l − j), (2.14)

for a computation of the matrices δδδ
(ii)
θθθ (l) := E

P
(N)

f ;θθθ

[

X
(i)
t

(

εεε
(i)
t−l

)T
]

entering the expression of local

asymptotic powers (see Proposition 4.1).

3 Locally asymptotically most stringent test.

3.1 Weak convergence of statistical experiments.

Local asymptotic normality (LAN) at θθθ ∈ ΘΘΘ0 implies the weak convergence of the sequence

of local experiments (localized at θθθ) E(N)
f (θθθ) := {P(N)

f ;θθθ+N− 1
2 τττ
, τττ ∈ R

K} to the K-dimensional

Gaussian shift experiment

Ef (θθθ) :=
{

N
(

ΓΓΓ∆∆∆
f ;θθθ τττ , ΓΓΓ

∆∆∆
f ;θθθ

)

|τττ ∈ R
K
}

.
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This convergence implies that all power functions that are implementable from the sequence

E(N)
f (θθθ) converge, as N → ∞, pointwise in τττ but uniformly with respect to the set of all pos-

sible testing procedures, to the power functions that are implementable in the limit Gaussian
experiment Ef (θθθ). Conversely, all risk functions associated with Ef (θθθ) can be obtained as lim-

its of sequences of risk functions associated with E(N)
f (θθθ). Denoting by ∆∆∆ the (k-dimensional)

observation in Ef (θθθ), it follows that, if a test φ (∆∆∆) enjoys some exact optimality property in

the Gaussian experiment Ef (θθθ), then the sequence φ
(

∆∆∆
(N)
f ;θθθ

)

inherits, under local and asymp-

totic form, the same optimality properties in the sequence of experiments E(N)
f (θθθ)—see, e.g.,

Section 11.9 of Le Cam (1986).

3.2 Locally asymptotically most stringent test.

Denote by Q a K × (K − r) matrix of maximal rank K − r, and by M(Q) the linear subspace
of R

K spanned by the columns of Q. The null hypothesis H0 : τττ ∈ M(Q) is equivalent to
H0 : ΓΓΓ∆∆∆

f ;θθθ τττ ∈ M(ΓΓΓ∆∆∆
f ;θθθ Q), a set of linear constraints on the location parameter of the Gaussian

shift experiment E(θθθ). The most stringent α-level test for this problem, consists in rejecting H0

whenever

∆∆∆T
[

(ΓΓΓ∆∆∆
f ;θθθ)

−1 − Q
(

QTΓΓΓ∆∆∆
f ;θθθQ

)−1
QT

]

∆∆∆ > χ2
r,1−α, (3.1)

where χ2
r,1−α denotes the (1 − α)-quantile of a chi-square variable with r degrees of freedom.

A locally asymptotically most stringent (at θθθ) test thus is obtained by substituting ∆∆∆
(N)
f ;θθθ for ∆∆∆

in (3.1).
In view of Proposition 2.1, the null hypothesis H0 of non-correlation between X(1) and X(2)

takes the form H0 : QT
⊥θθθ = 0, with

QT
⊥ :=







































Ld1d2×d2 0d1d2×d2 · · · 0d1d2×d2 0
d1d2× d(d+1)

2

Sd1d2×d2 0d1d2×d2 · · · 0d1d2×d2 0
d1d2× d(d+1)

2

0d1d2×d2 Ld1d2×d2 0d1d2×d2 · · · 0d1d2×d2 0
d1d2× d(d+1)

2

0d1d2×d2 Sd1d2×d2 0d1d2×d2 · · · 0d1d2×d2 0
d1d2× d(d+1)

2
...

...
0d1d2×d2 · · · 0d1d2×d2 Ld1d2×d2 0

d1d2× d(d+1)
2

0d1d2×d2 · · · 0d1d2×d2 Sd1d2×d2 0
d1d2× d(d+1)

2

0d1d2×d2 0d1d2×d2 · · · 0d1d2×d2 LDDDd







































.

where

L =





(

Id1

0d2×d1

)T

⊗
(

0d2×d1 Id2

)



 , S =





(

0d1×d2

Id2

)T

⊗
(

Id1 0d1×d2

)



 ,

and DDDd is the
(

d2 × d(d+1)
2

)

lower duplication matrix. An alternative form for H0 is H0 : θθθ ∈
M(Q), with
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Q :=



















Ud2×d1d1
Vd2×d2d2

0d2×d1d1
0d2×d2d2

· · · 0 0 0 0

0d2×d1d1
0d2×d2d2

Ud2×d1d1
Vd2×d2d2

· · · 0 0 0 0
...

...
. . .

0d2×d1d1
0d2×d2d2

0d2×d1d1
0d2×d2d2

· · · U V 0 0

0 d(d+1)
2

×d1d1
0 d(d+1)

2
×d2d2

0 0 · · · 0 0 DDDT
d ULLLT

d1
DDDT

d VLLLT
d2



















,

where

U =

((

Id1

0d2×d1

)

⊗
(

Id1

0d2×d1

))

, V =

((

0d1×d2

Id2

)

⊗
(

0d1×d2

Id2

))

,

and LLLm is the m(m+1)
2 × m2 elimination matrix. Referring to (3.1), a sequence of locally (at

θθθ ∈ ΘΘΘ0) asymptotically most stringent α-level tests for the null hypothesis H0 of non-correlation

is φ∗f := φ∗f
(

∆∆∆
(N)
f ;θθθ

)

:= I
[

Q∗
f > χ2

r,1−α

]

, where

Q∗
f := Q∗

f

(

∆∆∆
(N)
f ;θθθ

)

:=
(

∆∆∆
(N)
f ;θθθ

)T
[

ΓΓΓ∆∆∆
f ;θθθ

−1 −Q
(

QTΓΓΓ∆∆∆
f ;θθθQ

)−1
QT

]

∆∆∆
(N)
f ;θθθ (3.2)

with r = (2p + 1)d1d2. The power of this test against P
(N)

f ;θθθ+N− 1
2 τττ

satisfies

lim
N→+∞

E
P

(N)

f ;θθθ+N
− 1

2 τττ

[

φ∗f
(

∆∆∆
(N)
f ;θθθ

)]

= 1 − F r
χ2

(

χ2
r,1−α;ψ2

f (τττ ,θθθ)
)

, (3.3)

where ψ2
f (τττ ,θθθ) := τττT

[

ΓΓΓ∆∆∆
f ;θθθ −ΓΓΓ∆∆∆

f ;θθθQ
(

QTΓΓΓ∆∆∆
f ;θθθQ

)−1
QTΓΓΓ∆∆∆

f ;θθθ

]

τττ and F r
χ2

(

.;ψ2
)

denotes the distri-

bution function of the non central chi-square variable with r degrees of freedom and noncentrality
parameter ψ2.

This test φ∗f
(

∆∆∆
(N)
f ;θθθ

)

however is of little practical use as long as it explicitly depends on an

unspecified parameter value θθθ. In order to construct a version which is locally and asymptotically

optimal at any θθθ ∈ M(Q), let us assume that a sequence of estimators θ̂θθ
(N)

is available, with
the following properties:

(A6) (i) θ̂θθ
(N)∈ M(Q);

(ii) (root-N consistency) for all θθθ ∈ ΘΘΘ0 and ǫ > 0, there exist b(θθθ, ǫ) and N(θθθ, ǫ) such that

P
(N)
f ;θθθ

[∥

∥

∥

∥

N
1
2

(

θ̂θθ
(N)− θθθ

)∥

∥

∥

∥

> b(θθθ, ǫ)

]

< ǫ for all N ≥ N(θθθ, ǫ);

(iii) θ̂θθ
(N)

is locally asymptotically discrete, that is, for all θθθ ∈ ΘΘΘ0 and c > 0, there exists

J = J(θθθ; c) such that the number of possible values of θ̂θθ
(N)

in balls of the form
{

t ∈ R
K :

∥

∥

∥

√
N(t − θθθ)

∥

∥

∥ ≤ c
}

is bounded by J , uniformly as N tends to infinity.

It is a classical result (see, e.g., Chapter 11 of Le Cam (1986)) that, under ULAN (which entails

the asymptotic linearity of ∆∆∆
(N)
f ;θθθ ) and Assumptions (A6), substituting θ̂θθ

(N)
for θθθ has no influence

on the asymptotic behavior of φ∗f
(

∆∆∆
(N)
f ;θθθ

)

, hence on its local asymptotic optimality.
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3.3 Pseudo-Gaussian tests.

A fatal shortcoming of the optimal test described in Section 3.2 is that its validity, in general, is
limited to innovation densities f . Indeed, the last block of the central sequence has expectation
zero under density f only, which means that a perturbation of this density has the same effect
(a nonzero noncentrality parameter), asymptotically, as the alternative to be detected.

In practice, f is never specified. Therefore, this optimal test is of little practical value.

Fortunately, the Gaussian case is a remarkable exception, as the expectation of ϕϕϕf (e
(N)
t )(e

(N)
t )T−

Id, which, for Gaussian f , reduces to e
(N)
t (e

(N)
t )T −Id, is 0 irrespective of the density f , provided

that second order moments are finite. Therefore, in the sequel, we will concentrate on the
Gaussian version Q∗ of the test statistic Q∗

f described in Section 3.2. The results of that section
however will allow for a computation of the asymptotic relative efficiencies, under f , of the
resulting pseudo-Gaussian φ∗ test with respect to the various tests existing in the literature.

4 Asymptotic performance.

4.1 The Haugh-El Himdi-Roy and Koch-Yang-Hallin-Saidi tests.

Though their starting point is slightly different from the one adopted here (they assume that
X(1) and X(2) admit individual VAR(p) representations, whereas we start from the joint VAR(p)
model (2.1)), Haugh, El Himdi and Roy, Koch and Yang, and Hallin and Saidi all end up testing
the same null hypothesis H0 as we do, namely the block-diagonal form of A0, . . .Ap in the
parameterization (2.2) of (2.1).

The spirit of their approach is essentially Gaussian, as it is entirely based on second-order

moments. Denote by Â
(N)
j , j = 0, . . . , p the estimated values of Aj , j = 0, . . . , p associated

with θ̂θθ
(N)

, and by êt the corresponding estimated residuals (obtained from substituting Â
(N)
j

for A
(N)
j in (2.8)). Put ηηηt := (A0)et, η̂ηηt := (Â

(N)
0 )êt,

Cη̂ηη(k) =





C
(11)
η̂ηη (k) C

(12)
η̂ηη (k)

C
(21)
η̂ηη (k) C

(22)
η̂ηη (k)



 :=



























N−1
N
∑

t=k+1

η̂ηηt(η̂ηηt−k)
T 0 ≤ k ≤ N − 1

N−1
N+k
∑

t=1

η̂ηηt(η̂ηηt−k)
T 1 −N ≤ k ≤ 0,

and

Rη̂ηη(k) =





R
(11)
η̂ηη (k) R

(12)
η̂ηη (k)

R
(21)
η̂ηη (k) R

(22)
η̂ηη (k)



 := (DiagCη̂ηη(0))
− 1

2Cη̂ηη(k)(DiagCη̂ηη(0))
− 1

2 .

The El Himdi and Roy test then takes the form φM
HR := I[QM

HR > χ2
(2M+1)d1d2,1−α], where

QM
HR := N

M
∑

k=−M

(

vecR
(12)
η̂ηη (k)

)T (

R
(22)
η̂ηη (0) ⊗ R

(11)
η̂ηη (0)

)−1 (

vecR
(12)
η̂ηη (k)

)

, (4.1)

is asymptotically chi-square, with (2M + 1)d1d2 degrees of freedom, under H0 ; for
d1 = d2 = 1, it reduces to Haugh’s statistic QM

H given in (1.1). Moreover, the statistic (4.1) is
asymptotically unaffected if we replace η̂ηηt by êt.
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Using the same notation, the tests φM
HS;i considered in Hallin and Saidi (2003) are based on

the statistics

QM
HS;i :=

(2M+1)d1d2−i
∑

k=1

[

i
∑

l=0

νννM (k + l)

]2

, i = 0, 1, ...,Md1d2 − 1, (4.2)

where νννM :=
√
NI2M+1 ⊗

(

R
(22)
η̂ηη (0) ⊗ R

(11)
η̂ηη (0)

)− 1
2
r
(12)
η̂ηη (M), with

r
(12)
η̂ηη (M) =

(

(

vecR
(12)
η̂ηη (−M)

)T
, . . . ,

(

vecR
(12)
η̂ηη (M)

)T
)T

. (4.3)

For i = 0, (4.2) reduces to El Himdi and Roy’s test statistic (4.1), whereas, for (d1 = d2 = 1),
it coincides with the Koch and Yang univariate statistic QM

KY ;i given in (1.2). Under the null

hypothesis, QM
HS;i has asymptotically the same distribution as the random variable

Q
(

ΛM
i

)

:=

(2M+1)d1d2
∑

j=1

λ
(i)
M (j)W 2

i,j ,

where the Wi,j’s are independent standard normal and the λ
(i)
M (j)’s are the eigenvalues of A

(i)
M =

(

C
(i)
M

)T
C

(i)
M , where C

(i)
M =

[

L
(i)
1 , ...,L

(i)
(2M+1)d1d2−i

]

with, writing 1(i+1)×1 = (1, . . . , 1)T ∈ Ri+1

and 0l×1 = (0, . . . , 0)T ∈ R
l, for l ∈ N

∗, L
(i)
k =

(

0T
(k−1)×1,1

T
i+1×1,0

T
(((2M+1)d1d2)−(k+i))×1

)T
∈

R
(2M+1)d1d2 .

4.2 Local asymptotic powers.

The local asymptotic normality results of Theorem 2.1 also allow, via Le Cam’s third lemma
(Le Cam 1986), for computing local asymptotic powers, under innovation density f , for the
various procedures described in Section 4. In order to derive local powers, we need the joint

asymptotic distribution, under P
(N)
f ;θθθ , of

(

(√
Nr

(12)
ηηη (M)

)T
,Λ

(N)

θθθ(N)/θθθ
(X(N))

)T

.

Proposition 4.1 Assume that the process (2.1) satisfies (A1)-(A5) and that all fourth-order

cumulants of the process εεε are zero. Then, under P
(N)
f ;θθθ ,





√
Nr

(12)
ηηη (M)

Λ
(N)

θθθ(N)/θθθ
(X(N))





L−→ N
((

0

−ν2

2

)

,

(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)

V

VT ν2

))

,

where ϕϕϕηηη(i)(0) =

(

Diag

(

A
(ii)
0

(

A
(ii)
0

)T
))− 1

2
(

A
(ii)
0

(

A
(ii)
0

)T
)(

Diag

(

A
(ii)
0

(

A
(ii)
0

)T
))− 1

2

,

ν2 := −
(

vecTγγγT
0 vecA−1

0

)2
+ E

[

(

A−1
0 γγγ0εεεt

)T
ϕϕϕ(εεεt)

]2

+ tr



III(f)
p
∑

i=1

p
∑

j=1

A−1
0 γγγi

(

ΓΓΓ
(11)
θθθ (j − i) 0

0 ΓΓΓ
(22)
θθθ (j − i)

)

γγγT
j

(

A−1
0

)T



 ,

V := (L vecV(−M), . . . ,L vecV(−1),L vecV(0),L vecV(1), . . . ,L vecV(M))T , (4.4)
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with

L :=

(

(

Diag

(

A
(22)
0

(

A
(22)
0

)T
))− 1

2 (

A
(22)
0

)

)

⊗
(

(

Diag

(

A
(11)
0

(

A
(11)
0

)T
))− 1

2 (

A
(11)
0

)

)

,

V(0) = E

[

εεε
(1)
t

(

(A0)
−1 γγγ0εεεt

)T
ϕϕϕ(εεεt)

(

εεε
(2)
t

)T
]

,

and, for 1 ≤ k ≤M, letting δδδ
(ii)
θθθ (k − j) := E

P
(N)
f ;θθθ

[

X
(i)
t−j

(

εεε
(i)
t−k

)T
]

(see (2.14)),

V(−k) :=

min(p,k)
∑

j=1

(

δδδ
(11)
θθθ (k − j)

)T (

γγγ
(21)
j

)T
(

(

A
(22)
0

)−1
)T

,

V(k) :=

min(p,k)
∑

j=1

(

A
(11)
0

)−1 (

γγγ
(12)
j

)(

δδδ
(22)
θθθ (k − j)

)

.

The assumption that all fourth-order cumulants of εεε are zero—an assumption which is of
couse satisfied under Gaussian densities—is required for the validity of the El Himdi-Roy and
Hallin-Saidi tests; our optimal tests φ∗ do not require this assumption, and a more general result
on asymptotic powers could be stated here, with much heavier expressions involving cumulants
of all orders (see Roy 1989). For the sake of simplicity, and since the purpose of Proposition 4.1
is to allow for power comparisons between φ∗, φM

HR, and φM
HS;i, we restrict ourselves to densities

under which this cumulant assumption is satisfied.

Proof of Proposition 4.1. In order to prove this proposition, we use a multivariate version of

Theorem 2.23 of Hall and Heyde (1980). For instance, note that, under P
(N)
f ;θθθ ,

√
NvecR

(12)
ηηη (k)−

(

(

Diag

(

A
(22)
0

(

A
(22)
0

)T
))− 1

2⊗
(

Diag

(

A
(11)
0

(

A
(11)
0

)T
))− 1

2

)√
NvecC

(12)
ηηη (k)

is oP(1). Since, under P
(N)
f ;θθθ , et = εεεt, we have, for k ≥ 0,

C
(12)
ηηη (k) = N−1

∑

t

ηηη
(1)
t

(

ηηη
(2)
t−k

)T
= N−1

∑

t

A
(11)
0 εεε

(1)
t

(

εεε
(2)
t−k

)T (

A
(22)
0

)T
,

we obtain vecC
(12)
ηηη (k) = N−1∑

t

(

A
(22)
0 ⊗ A

(11)
0

)

vec

(

εεε
(1)
t

(

εεε
(2)
t−k

)T
)

. Similar results hold for

k < 0. Thus,
√
NvecR

(12)
ηηη (k) = L

√
NvecC

(12)
εεε (k), where

L :=

(

(

Diag

(

A
(22)
0

(

A
(22)
0

)T
))− 1

2 ⊗
(

Diag

(

A
(11)
0

(

A
(11)
0

)T
))− 1

2

)

(

A
(22)
0 ⊗ A

(11)
0

)

.

Applying ULAN with θθθ(N) = θθθ and θ̃θθ
(N)

= θθθ(N) we obtain that, under P
(N)
f ;θθθ , as N → ∞,

Λ
(N)

θθθ(N)/θθθ

(

X(N)
)

:= log







dP
(N)

f ;θθθ(N)

dP
(N)
f ;θθθ






=

N
∑

t=1

ζN,t −
1

2
ν2 + oP(1),

where ζN,t := N− 1
2 {−vecTγγγT

0 vecA−1
0 +

(

A−1
0 γγγ0εεεt

)T
ϕϕϕ(εεεt) + (A−1

0

p
∑

j=1

γγγjXt−j)
Tϕϕϕ(εεεt)}.
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Now, define

YN,t =:

















































L vec

(

εεε
(1)
t−M

(

εεε
(2)
t

)T
)

...

L vec

(

εεε
(1)
t

(

εεε
(2)
t

)T
)

L vec

(

εεε
(1)
t

(

εεε
(2)
t−1

)T
)

...

L vec

(

εεε
(1)
t

(

εεε
(2)
t−M

)T
)

−vecTγγγT
0 vecA−1

0 +
(

A−1
0 γγγ0εεεt

)T
ϕϕϕ(εεεt) +



A−1
0

p
∑

j=1

γγγjXt−j





T

ϕϕϕ(εεεt)

















































.

From Theorem 2.1, under P
(N)
f ;θθθ , we have





√
Nr

(12)
ηηη (M)

∑

t

ζN,t



 = N− 1
2
∑

t
YN,t + oP(1). It is easy to

check that YN,t defines a square-integrable martingale difference. In order to apply the classical

central limit theory for martingale differences, we must check that, under P
(N)
f ;θθθ ,

1

N

∑

t

E
[

YN,t (YN,t)
T |A(N)

t−1

]

P−→ ΥΥΥ, (4.5)

for some non-random matrix ΥΥΥ, and that, for all ǫ > 0,

1

N

∑

t

E
[

‖YN,t‖2 I
(

‖YN,t‖ >
√
Nǫ
)

|A(N)
t−1

]

P−→ 0. (4.6)

One easily can verify that under the assumption that the fourth-order cumulants of εεε are zero,
condition (4.5) is satisfied, with

ΥΥΥ :=

(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)

V

VT ν2

)

,

where V is defined in (4.4). In order to prove that (4.6) holds, it is sufficient to show that
∑

t
E

[

∥

∥

∥

YN,t√
N

∥

∥

∥

2
I
(

‖YN,t‖ >
√
Nǫ
)

]

−→ 0. Remark that

∑

t

E

[

∥

∥

∥

∥

YN,t√
N

∥

∥

∥

∥

2

I
(

‖YN,t‖ >
√
Nǫ
)

]

≤ E

[

∑

t

∥

∥

∥

∥

YN,t√
N

∥

∥

∥

∥

2

I

(

max
t

‖YN,t‖ >
√
Nǫ

)

]

;

hence, we just have to show that
∑

t

∥

∥

∥

YN,t√
N

∥

∥

∥

2
is uniformly integrable (Hall and Heyde 1980, p. 53).

Uniform integrability of
∑

t

∥

∥

∥

YN,t√
N

∥

∥

∥

2
readily follows from the fact that

∑

t
ζ2
N,t is bounded. �

Le Cam’s third lemma provides the distribution under P
(N)

f ;θθθ(N) of
√
Nr

(12)
ηηη (M). This is

not sufficient for obtaining the local asymptotic powers of the test statistics (4.1) and (4.2),
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which require the asymptotic distribution of
√
Nr

(12)
η̂ηη (M) defined in (4.3). However, under

non-correlation between X
(1)
t and X

(2)
t , we have (see (3.6) in El Himdi and Roy 1997)

√
Nr

(12)
ηηη (M) −

√
Nr

(12)
η̂ηη (M) = oP(1). (4.7)

We then have the following corollary to Proposition 4.1.

Corollary 4.1 . Suppose that assumptions of Proposition 4.1 hold. Then, under P
(N)

f ;θθθ(N),

(i) QM
HR = N

M
∑

k=−M

(

vecR
(12)
η̂ηη (k)

)T (

R
(22)
η̂ηη (0) ⊗ R

(11)
η̂ηη (0)

)−1 (

vecR
(12)
η̂ηη (k)

) L−→ χ2
(2M+1)d1d2,δ2 ,

where, χ2
(2M+1)d1d2,δ2 stand for a non central chi-square variable with (2M+1)d1d2 degrees

of freedom and non-centrality parameter δ2 =

∥

∥

∥

∥

(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)− 1

2

)

V

∥

∥

∥

∥

2

;

QM
HS;i =

(2M+1)d1d2−i
∑

k=1

[

i
∑

l=0

νννM (k + l)

]2
L−→

(2M+1)d2d1
∑

j=1

λ
(i)
M (j)W 2

i,j , where the coefficients

λ
(i)
M (j) are the eigenvalues of

A
(i)
M =

(2M+1)d1d2−i
∑

k=1

L
(i)
k L

(i)T
k , with L

(i)
k :=

(

0T
(k−1)×1,1

T
(i+1)×1,0

T
((2M+1)d1d2−(k+i))×1

)T
,

and, denoting by P
(i)
M the orthogonal matrices whose columns are the eigenvectors of A

(i)
M

corresponding to the eigenvalues λ
(i)
M (j), the variables Wi,j, j = 1, . . . , (2M + 1) d1d2, are

independent normal variables with mean

E [Wi,j] =

(

(

P
(i)
M

)T
(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)− 1

2

)

V

)

j

and variance E [Wi,j − E [Wi,j]]
2 = 1.

Proof of Corollary 4.1. By Proposition 4.1, under P
(N)
f ;θθθ ,





√
Nr

(12)
ηηη (M)

Λ
(N)

θθθ(N)/θθθ
(X(N))





L−→ N
((

0

−ν2

2

)

,

(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)

V

VT ν2

))

,

Hence by (4.7), if follows that, under P
(N)
f ;θθθ ,





√
Nr

(12)
η̂ηη (M)

Λ
(N)

θθθ(N)/θθθ
(X(N))





L−→ N
((

0

−ν2

2

)

,

(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)

V

VT ν2

))

,

Le Cam’s third lemma thus implies that, under P
(N)

f ;θθθ(N) ,

√
Nr

(12)
η̂ηη (M)

L−→ N
(

V, I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
))

. (4.8)

The proof of (i) follows from (4.8) and the fact that R
(22)
η̂ηη (0) and R

(11)
η̂ηη (0) are consistent esti-

mators of ϕϕϕηηη(2)(0) and ϕϕϕηηη(1)(0) respectively.
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Turning to (ii), write QM
HS;i as a quadratic form in the vector νννM :

QM
HS;i =

(2M+1)d1d2−i
∑

k=1

[

k+i
∑

l=k

νννM (l)

]2

= (νννM )T
(2M+1)d1d2−i

∑

k=1

L
(i)
k

(

L
(i)
k

)T
νννM .

Thus, QM
HS;i takes the form (νννM )T

C
(i)
M (C

(i)
M )TνννM , with C

(i)
M =

[

L
(i)
1 , . . . ,L

(i)
(2M+1)d1d2−i

]

, which

factorizes into (νννM )T P
(i)
MΛΛΛ

(i)
M

(

P
(i)
M

)T
νννM , where P

(i)
M is orthogonal and ΛΛΛ

(i)
M is diagonal with

positive elements λ
(i)
M (j). Therefore,

QM
HS;i =

(2M+1)d2d1
∑

j=1

λ
(i)
M (j)

(

(

P
(i)
M

)T
νννM

)2

j
.

Hence (ii) follows by the fact that under P
(N)

f ;θθθ(N) ,

(

P
(i)
M

)T
νννM

L−→ N
(

(

P
(i)
M

)T
(

I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
)− 1

2

)

V, I(2M+1)d2d1

)

.

This completes the proof of the corollary. �

Remark 4.1

(1) The asymptotic powers of the Haugh and Koch and Yang tests φM
H and φM

KY ;i under local

alternatives of course readily follow from the more general results on φM
HR and φM

HS;i given
in Corollary 4.1.

(2) It follows from (4.8) that the asymptotic distribution of
√
Nr

(12)
η̂ηη (M) under P

(N)

f ;θθθ(N) does

not depend on γγγ
(11)
j and γγγ

(22)
j for j = 1, ..., p. Further, if we perturb only A

(11)
0 and A

(22)
0

in the matrix A0, i. e., if γγγ
(21)
0 = 0, we can check that V(0) = 0 (a somewhat expected

finding). This conclusion confirms the general fact that, under the null hypothesis,

√
Nr

(12)
η̂ηη (M)

L−→ N
(

0, I2M+1 ⊗
(

ϕϕϕηηη(2)(0) ⊗ϕϕϕηηη(1)(0)
))

.

Indeed, under P
(N)

f ;θθθ(N) , with γγγ
(12)
j = 0 and γγγ

(21)
j = 0 for j = 1, ..., p, and γγγ

(21)
0 = 0, we are

still under the null hypothesis of non-correlation, so that we should have V = 0.

5 The bivariate VAR(1) case, and some Monte Carlo results.

As an illustration, and in order to investigate the finite sample performance of our tests, we
consider in some detail the bivariate autoregressive VAR model of order 1 (p = 1 and d = 2).
For simplicity, we focus on the Gaussian case, i.e., we assume that the density f is N (0, I). We
first give an explicit forms for the central sequence and the related information matrix. Then
we give the explicit form of the locally asymptotically most stringent test for non-correlation
between the two components of this VAR(1) model.
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The notation will be adapted to this bivariate context as follows. We will denote by
{

(Xt, Yt)
T , t ∈ Z

}

the observed bivariate process, and write
{

(ut, vt)
T , t ∈ Z

}

for the innovation

{et, t ∈ Z}. Equation (2.2) then takes the form

(

Xt

Yt

)

−
(

A
(11)
1 A

(12)
1

A
(21)
1 A

(22)
1

)(

Xt−1

Yt−1

)

=

(

A
(11)
0 0

A
(21)
0 A

(22)
0

)(

ε
(1)
t

ε
(2)
t

)

=

(

a
(1)
t

a
(2)
t

)

;

the vector of parameters is θθθ =
(

A
(11)
1 , A

(21)
1 , A

(12)
1 , A

(22)
1 , A

(11)
0 , A

(21)
0 , A

(22)
0

)T
.

Let θθθ = (φ, 0, 0, θ, σ1, 0, σ2) be an arbitrary parameter value satisfying the null hypothesis of
non-correlation between Xt and Yt. Define

{

ut = σ−1
1 (Xt − φXt−1)

vt = σ−1
2 (Yt − θYt−1)

, and

{

η
(1)
t = (Xt − φXt−1)

η
(2)
t = (Yt − θYt−1)

.

The central sequence (2.11) then takes the simple form

∆∆∆
(N)
N ;θθθ = N− 1

2

N
∑

t=1



















































σ−1
1 Xt−1ut

σ−1
2 Xt−1vt

σ−1
1 Yt−1ut

σ−1
2 Yt−1vt

σ−1
1

(−1 + u2
t

)

σ−1
2 utvt

σ−1
2

(−1 + v2
t

)



















































=





































































+∞
∑

k=0

φkN− 1
2

N
∑

t=1

ut−1−kut

σ1
σ2

+∞
∑

k=0

φkN− 1
2

N
∑

t=1

ut−1−kvt

σ2
σ1

+∞
∑

k=0

θkN− 1
2

N
∑

t=1

vt−1−kut

+∞
∑

k=0

θkN− 1
2

N
∑

t=1

vt−1−kvt

N− 1
2

N
∑

t=1

σ−1
1

(

−1 + u2
t

)

N− 1
2

N
∑

t=1

σ−1
2 utvt

N− 1
2

N
∑

t=1

σ−1
2

(

−1 + v2
t

)





































































. (5.1)

The corresponding information matrix is diagonal. Indeed, in the Gaussian case, III(f) is the
identity matrix, and (cf. equation (2.5))

IIIs(f) = E
[

vech
(

−I2 + εεεtεεε
T
t

)

vechT
(

−I2 + εεεtεεε
T
t

)]

=







2 0 0
0 1 0
0 0 2






.
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It follows that the information matrix (2.12) is

ΓΓΓ∆∆∆(θθθ) =

































1
1−φ2 0 0 0 0 0 0

0 1
1−φ2

σ2
1

σ2
2

0 0 0 0 0

0 0 1
1−θ2

σ2
2

σ2
1

0 0 0 0

0 0 0 1
1−θ2 0 0 0

0 0 0 0 2
σ2
1

0 0

0 0 0 0 0 1
σ2
2

0

0 0 0 0 0 0 2
σ2
2

































. (5.2)

5.1 Optimal pseudo-Gaussian test.

Let θ̂̂θ̂θ =
(

φ̂, 0, 0, θ̂, σ̂1, 0, σ̂2

)T
be any estimator that satisfies assumption (A6). Define

η̂
(1)
t =

(

Xt − φ̂Xt−1

)

η̂
(2)
t =

(

Yt − θ̂Yt−1

)

.

Then, from (3.2), (5.1) and (5.2), the sequence φ∗ of locally asymptotically most stringent α-level
pseudo-Gaussian tests for the null hypothesis of non-correlation or independence between Xt

and Yt rejects the null hypothesis at asymptotic significance level α whenever the test statistic
Q∗ = Q(N)∗, with

Q(N)∗:=
1 − φ̂2

σ̂2
1σ̂

2
2

(

N− 1
2

N
∑

t=1

Xt−1η̂
(2)
t

)2

+
1 − θ̂2

σ̂2
1σ̂

2
2

(

N− 1
2

N
∑

t=1

Yt−1η̂
(1)
t

)2

+
1

σ̂2
1σ̂

2
2

(

N− 1
2

N
∑

t=1

η̂
(1)
t η̂

(2)
t

)2

, (5.3)

exceeds the (1-α) quantile of the chi-square distribution with 3 degrees of freedom. Note that
this test statistic can also be expressed in term of residual cross-correlations. Indeed, when
the sample size is large, using the fact that both Xt and Yt admit an infinite moving average
representation, the same test statistic takes the form

Q(N)∗=N





(

1 − φ̂2
)

(

N−2
∑

k=0

φ̂kr
(12)
η̂ηη (−1 − k)

)2

+
(

1 − θ̂2
)

(

N−2
∑

k=0

θ̂kr
(12)
η̂ηη (1 + k)

)2

+
(

r
(12)
η̂ηη (0)

)2



. (5.4)

Remark 5.1 The test statistic (5.4) is a sum of three terms. The third term coincides with
Haugh (1976)’s statistic, with M = 0. The first and the second ones are exploiting relevant
information contained in the off-diagonal perturbations of the parameters under the alternative.
The relative weakness of Haugh’s procedure (1 degree of freedom) is entirely due to the fact that
such perturbations (2 degrees of freedom) are entirely neglected in his test statistic.

5.2 Computation of local asymptotic powers.

In this Section, we use Corollary 4.1 to compute local asymptotic powers of the Haugh-El Himdi-
Roy test φM

H (1.1), the Koch-Yang-Hallin-Saidi test φM
KY ;i (1.2), and our optimal test φ∗ (5.3) in

the particular context of Gaussian bivariate VAR(1) (so that El Himdi-Roy reduces to Haugh,
and Hallin-Saidi to Koch-Yang).
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Let τττ :=
(

vecTγγγ1, vech
Tγγγ0

)T
, with γγγ0 =

(

γ
(11)
0 0

γ
(21)
0 γ

(22)
0

)

and γγγ1 =

(

γ
(11)
1 γ

(12)
1

γ
(21)
1 γ

(22)
1

)

, and

consider the local alternatives

θθθ(N) = θθθ +N−1/2τττ

=
(

φ+N−1/2γ
(11)
1 , N−1/2γ

(21)
1 ,N−1/2γ

(12)
1 , θ +N−1/2γ

(22)
1 ,

σ1 +N−1/2γ
(11)
0 ,N−1/2γ

(21)
0 , σ2 +N−1/2γ

(22)
0

)T
.

Under P
(N)

f ;θθθ(N) , the data generating process is given by

(

Xt

Yt

)

−
{(

φ 0
0 θ

)

+N−1/2γγγ1

}(

Xt−1

Yt−1

)

=

{(

σ1 0
0 σ2

)

+N−1/2γγγ0

}(

ε
(1)
t

ε
(2)
t

)

.

From (3.3), the asymptotic power of the optimal test against P
(N)

f ;θθθ(N) is

Πθθθ(N)

φ∗ = 1 − F 3
χ2

(

χ2
3,1−α;ψ2

)

, (5.5)

with

ψ2 :=

(

γ
(21)
0

)2

σ2
2

+

(

γ
(21)
1

)2

1 − φ2

σ2
1

σ2
2

+

(

γ
(12)
1

)2

1 − θ2

σ2
2

σ2
1

. (5.6)

Now, in order to compute local asymptotic powers for Haugh’s test, we need the explicit
form of the vector V in (4.4); one easily obtains

V =



γ
(21)
1 φM−1 σ1

σ2
, ..., γ

(21)
1

σ1

σ2
,

(

γ
(21)
0

)

σ2
, γ

(12)
1

σ2

σ1
, ..., γ

(12)
1 θM−1 σ2

σ1





T

.

Using (i) in Corollary 4.1, the asymptotic power of Haugh’s test φM
H against P

(N)

f ;θθθ(N) is thus

Πθθθ(N)

φM
H

= 1 − F 2M+1
χ2

(

χ2
2M+1,1−α; δ2

)

, (5.7)

where

δ2 = ‖V‖2 =

(

γ
(21)
0

)2

σ2
2

+
(

γ
(21)
1

)2 σ2
1

σ2
2

1 − φ2M

1 − φ2
+
(

γ
(12)
1

)2 σ2
2

σ2
1

1 − θ2M

1 − θ2
. (5.8)

The asymptotic power of Koch and Yang’s test φM
KY ;i under P

(N)

f ;θθθ(N) follows from (ii) in

Corollary 4.1. Denote by Fn
χ2 (.;λλλ;µµµ) = Fn

χ2 (.;λ1, ..., λn : µ1, ..., µn) the distribution function

of
∑n

j=1 λjN (µj), 1
2, which is a linear combination of independent non-central χ2 with one

degree of freedom and non-centrality parameter µ2
j , and by χ2

n,1−α (λλλ) the (1 − α) quantile of
∑n

j=1 λjχ
2
1, which is a linear combination of independent central χ2 with one degree of freedom.

The asymptotic power of Koch and Yang’s test (1.2) under P
(N)

f ;θθθ(N) then is given by

Πθθθ(N)

φM
KY ;i

= 1 − F 2M+1
χ2

(

χ2
2M+1,1−α

(

λλλ
(i)
M

)

;λλλ
(i)
M ;
(

P
(i)
M

)T
V

)

, (5.9)
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where the coefficients λλλ
(i)
M :=

(

λ
(i)
M (1), ..., λ

(i)
M (2M + 1)

)T
and the columns of P

(i)
M are the eigen-

values and eigenvectors of

A
(i)
M =

(2M+1)−i
∑

k=1

L
(i)
k L

(i)T
k , with L

(i)
k :=

(

0T
(k−1)×1,1

T
(i+1)×1,0

T
((2M+1)−(k+i))×1

)T
.

From (5.5), (5.7), and (5.9), it is clear that these powers do not depend on γ
(11)
0 , γ

(22)
0 , γ

(11)
1 ,

and γ
(22)
1 . Indeed, the diagonal elements of γγγ0 and γγγ1 do not affect the null hypothesis, and, in

the investigation of local powers, they safely can be put to zero.
Even with these explicit forms, comparisons between (1.1), (1.2), and (5.3) still are difficult,

due to the fact that the asymptotic distributions, under local alternatives, of the Haugh and
Koch and Yang statistics are not of the traditional noncentral chi-square type, and depend, in

a complicated manner, on φ, θ, σ1, σ2, γ
(21)
0 , γ

(12)
1 , γ

(21)
1 , as well as, for Haugh’s test, on M (for

Koch and Yang’s, on M and i). General conclusions are hardly possible, and comparisons do
not reduce to the computation of a few asymptotic relative efficiencies.

We start with some qualitative comparisons; then, for a few typical alternatives, we provide
some numerical measures of performance. Note that our optimal tests are (locally and asymp-
totically) most stringent, not most powerful—so that they can be dominated, at particular
alternatives, by their Haugh or Koch and Yang competitors.

We will distinguish three classes of local alternatives:

(i) Type 1: γ
(12)
1 = 0 = γ

(21)
1 ; γ

(21)
0 6= 0;

(ii) Type 2: γ
(21)
0 = 0; γ

(12)
1 6= 0 and/or γ

(21)
1 6= 0;

(iii) Type 3: γ
(21)
0 6= 0, γ

(12)
1 6= 0, and/or γ

(21)
1 6= 0.

Under Type 1 alternatives, local asymptotic powers do not depend on the values of φ, θ and

σ1. For fixed γ
(21)
0 and σ2, Haugh’s power function (5.7) is a decreasing function of M ; in fact,

one can check numerically that

1 − Fm
χ2

(

χ2
m,1−α;ω2

)

≥ 1 − Fm+1
χ2

(

χ2
m+1,1−α;ω2

)

, (5.10)

for all α, ω2 and M ≥ 0. Further, for all α and M ≥ 0, 1−F 2M+1
χ2

(

χ2
2M+1,1−α;ω2

)

is increasing

with ω2. It follows that the best Haugh test is φ0
H , wich dominates φ1

H = φ∗. Under this type of
alternatives, Koch and Yang’s test will be worst. Intuitively, this is not a surprising conclusion,
because, in this very particular case, only instantaneous correlation exists, which is perfectly
captured by φ0

H , while larger values of M clearly induce a loss of power.
Under Type 2 alternatives, using (5.6), (5.8) and (5.10) the optimal test φ∗ is better than

φM
H , irrespective of M . The maximum power of φM

H will be achieved for some M ≥ 1 that
depends on the perturbations and the parameters φ, θ, σ1, and σ2. For such alternatives, φM

KY ;i

could do better than φM
H because under such alternatives the series Xt and Yt are related over a

long distributed lag. Further, it even may happen that φM
KY ;i, for an adequate choice of M and

i, beat the optimal test. However, the optimal test φ∗ in general is sizeably better than φM
H and

φM
KY ;i, irrespective of M and i.

For the Type 3 alternatives, the conclusions are intermediate between the previous two.

Indeed, if γ
(21)
0 is large compared to γ

(21)
1 and γ

(21)
1 , Haugh with M = 0 will be best; if not,
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depending on the perturbations and the parameter values φ, θ, σ1, and σ2, Koch and Yang or
the optimal test will prevail.

For more quantitative conclusion, we now focus on the following three special cases:

(B) Alternative B: Type 1 alternatives, with σ2 = 1. The observed process is generated by

(

Xt

Yt

)

−
(

φ 0
0 θ

)(

Xt−1

Yt−1

)

=

(

σ1 0

N−1/2γ0 1

)(

ε
(1)
t

ε
(2)
t

)

,

with γ0 6= 0. Note that, under such alternatives, local asymptotic powers do not depend
on φ, θ, nor σ1.

(C) Alternatives C: Type 2 alternatives, with φ = θ = 0.5, σ1 = σ2 = 1.00 and γ
(12)
1 = γ

(21)
1 =

γ1 > 0. The observed process is generated by

(

Xt

Yt

)

−
(

0.5 N−1/2γ1

N−1/2γ1 0.5

)(

Xt−1

Yt−1

)

=

(

1 0
0 1

)(

ε
(1)
t

ε
(2)
t

)

.

(D) Alternatives D: Type 3 alternatives, with φ = θ = 0.5, σ1 = σ2 = 1.00, γ
(21)
0 = 0.5, and

γ
(12)
1 = γ

(21)
1 = γ1 > 0. The observed process is generated by

(

Xt

Yt

)

−
(

0.5 N−1/2γ1

N−1/2γ1 0.5

)(

Xt−1

Yt−1

)

=

(

1 0

N−1/2/2 1

)(

ε
(1)
t

ε
(2)
t

)

.

Thus, under alternative B, the only perturbation is γ0 whereas, under alternatives C and D, the
only perturbation is γ1.

Tables 1, 2, and 3 report, for various values of the perturbations, the local asymptotic powers
at significance level α = 0.05, under alternatives B, C, and D, respectively, and for several values
of M and i. Inspection of the three tables confirms the previous qualitative conclusions. The
case of φ0

H is somewhat special, since it is aimed, exclusively, at detecting positive values of γ0

under Alternative B. In Table 1, φ0
H thus is clearly best. On the other hand, its performance

under all other types of alternatives only can be pretty poor: under Alternatives C and D, for
instance, φ0

H is not even consistent, its power being uniformly equal to 0.0500 (under C) and
0.0791 (under D), irrespective of γ1. Therefore, it cannot be considered a serious competitor to
the other procedures described, and we do not include it in Tables 2 and 3.

In Table 1, leaving aside the special case of φ0
H , the optimal test φ∗ appears sizeably more

powerful than both Haugh and Koch and Yang’s. In Table 2, Koch and Yang with smallest
M and i 6= 0 slightly dominates the optimal test for small values of the perturbation (γ2

1 ≤ 2);
the optimal test however prevails for γ2

1 ≥ 3; both are uniformly beating Haugh. The same
phenomenon is observed in Table 3, with a more significant dominance of Koch and Yang for
small γ1 values.
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γ2
0

Test 0.5 1 2 3 4 5 10 15 20

φ(N)∗
.0811 .1157 .1922 .2746 .3585 .4405 .7611 .9170 .9751

M=0 i=0 φ0
H .1090 .1701 .2930 .4100 .5160 .6088 .8854 .9721 .9940

M=5 i=0 φ5
H .0643 .0802 .1168 .1590 .2058 .2562 .5228 .7416 .8781

i=4 φ5
KY ;4 .0618 .0741 .0995 .1260 .1534 .1815 .3269 .4687 .5957

M=10 i=0 φ10
H .0597 .0704 .0948 .1228 .1544 .1891 .3925 .5995 .7648

i=4 φ10
KY ;4 .0562 .0628 .0766 .0914 .1069 .1233 .2151 .3174 .4227

i=8 φ10
KY ;8 .0563 .0629 .0763 .0901 .1047 .1188 .1951 .2752 .3561

M=20 i=0 φ20
H .0566 .0638 .0797 .0977 .1179 .1402 .2781 .4418 .6024

i=4 φ20
KY ;4 .0537 .0577 .0662 .0752 .0847 .0947 .1523 .2202 .2954

i=8 φ20
KY ;8 .0532 .0566 .0636 .0709 .0785 .0863 .1292 .1774 .2299

i=12 φ20
KY ;12 .0531 .0563 .0629 .0697 .0767 .0838 .1217 .1631 .2071

i=16 φ20
KY ;16 .0533 .0567 .0635 .0705 .0776 .0848 .1223 .1618 .2029

M=30 i=0 φ30
H .0533 .0610 .0734 .0873 .1027 .1196 .2252 .3574 .4991

i=4 φ30
KY ;4 .0529 .0560 .0625 .0694 .0767 .0843 .1281 .1804 .2396

i=8 φ30
KY ;8 .0523 .0548 .0600 .0654 .0710 .0768 .1087 .1449 .1851

i=12 φ30
KY ;12 .0521 .0544 .0591 .0639 .0688 .0739 .1012 .1313 .1640

i=16 φ30
KY ;16 .0521 .0542 .0587 .0633 .0679 .0727 .0978 .1250 .1540

i=20 φ30
KY ;20 .0521 .0543 .0587 .0632 .0677 .0724 .0966 .1219 .1494

Table 1. Asymptotic powers, under Alternative B, of the optimal test φ∗, Haugh’s test φM

H
, and Koch

and Yang’s test φM

KY ;i, for i = 4, 8, 12, 16, 20, and M = 0, 5, 10, 20, 30, at significance level α = 0.05.

Boldface indicate the winner (leaving aside φ0
H

) in each column.

γ2
1

Test 0.5 1 2 3 4 5 10 15 20

φ(N)∗ .1402 .2468 .4670 .6541 .7904 .8797 .9957 .9999 1.0000

M=5 i=0 φ5
H .0917 .1442 .2733 .4169 .5558 .6770 .9622 .9977 .9999

i=4 φ5
KY ;4 .1568 .2689 .4802 .6513 .7765 .8619 .9914 .9996 .9999

M=10 i=0 φ10
H .0781 .1131 .2012 .3072 .4212 .5336 .9009 .9886 .9991

i=4 φ10
KY ;4 .1158 .1912 .3530 .5082 .6418 .7484 .9710 .9978 .9998

i=8 φ10
KY ;8 .1341 .2233 .3995 .5555 .6824 .7796 .9741 .9956 .9998

M=20 i=0 φ20
H .0688 .0915 .1480 .2183 .2991 .3862 .7759 .9506 .9927

i=4 φ20
KY ;4 .0901 .1382 .2510 .3739 .4948 .6052 .9211 .9900 .9990

i=8 φ20
KY ;8 .0954 .1479 .2661 .3901 .5090 .6157 .9187 .9884 .9987

i=12 φ20
KY ;12 .0972 .1497 .2640 .3813 .4932 .5942 .8981 .9815 .9973

i=16 φ20
KY ;16 .1009 .1551 .2683 .3806 .4859 .5808 .8772 .9721 .9947

M=30 i=0 φ30
H .0649 .0825 .1255 .1790 .2416 .3114 .6737 .8984 .9779

i=4 φ30
KY ;4 .0806 .1174 .2059 .3074 .4135 .5168 .8702 .9775 .9971

i=8 φ30
KY ;8 .0835 .1228 .2148 .3172 .4221 .5228 .8652 .9741 .9962

i=12 φ30
KY ;12 .0835 .1216 .2084 .3035 .4000 .4943 .8318 .9593 .9921

i=16 φ30
KY ;16 .0832 .1203 .2026 .2913 .3814 .4689 .7985 .9413 .9859

i=20 φ30
KY ;20 .0837 .1230 .1998 .2839 .3687 .4511 .7708 .9237 .9786

Table 2. Asymptotic powers, under Alternative C, of the optimal test φ∗, Haugh’s test φM

H
, and Koch

and Yang’s test φM

KY ;i, for i = 4, 8, 12, 16, 20, and M = 5, 10, 20, 30, at significance level α = 0.05.
Boldface indicate the winner in each column.
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γ2
1

Test 0.5 1 2 3 4 5 10 15 20

φ(N)∗ .1593 .2677 .4864 .6691 .8006 .8861 .9960 .9999 1.000

M=5 i=0 φ5
H .1007 .1551 .2865 .4304 .5680 .6873 .9639 .9978 .9999

i=4 φ5
KY ;4 .2147 .3463 .5679 .7287 .8363 .9043 .9953 .9998 .9999

M=10 i=0 φ10
H .0842 .1203 .2106 .3177 .4320 .5438 .9044 .9891 .9992

i=4 φ10
KY ;4 .1509 .2435 .4254 .5848 .7122 .8072 .9820 .9988 .9999

i=8 φ10
KY ;8 .1724 .2770 .4674 .6233 .7421 .8282 .9831 .9988 .9999

M=20 i=0 φ20
H .0728 .0961 .1541 .2255 .3071 .3945 .7812 .9522 .9930

i=4 φ20
KY ;4 .1121 .1730 .3060 .4410 .5658 .6733 .9456 .9941 .9995

i=8 φ20
KY ;8 .1171 .1814 .3171 .4508 .5722 .6760 .9414 .9927 .9993

i=12 φ20
KY ;12 .1182 .1812 .3105 .4362 .5507 .6500 .9228 .9875 .9983

i=16 φ20
KY ;16 .1224 .1862 .3123 .4312 .5389 .6324 .9033 .9801 .9965

M=30 i=0 φ30
H .0680 .0860 .1301 .1845 .2479 .3182 .6796 .9009 .9786

i=4 φ30
KY ;4 .0974 .1443 .2506 .3653 .4790 .5843 .9050 .9859 .9984

i=8 φ30
KY ;8 .0996 .1483 .2560 .3697 .4808 .5830 .8974 .9826 .9977

i=12 φ30
KY ;12 .0985 .1449 .2453 .3501 .4529 .5488 .8660 .9708 .9949

i=16 φ30
KY ;16 .0977 .1422 .2365 .3338 .4294 .5193 .8340 .9559 .9903

i=20 φ30
KY ;20 .0979 .1414 .2316 .3235 .4133 .4982 .8070 .9406 .9845

Table 3. Asymptotic powers under Alternative D, of the optimal test φ∗, Haugh’s test φM

H
, and Koch

and Yang’s test φM

KY ;i, for i = 4, 8, 12, 16, 20 and M = 5, 10, 15, 20, 30, at significance level α = 0.05.
Boldface indicate the winner in each column.

5.3 A Monte Carlo study.

We conclude this Section with a Monte Carlo investigation of the finite sample behaviors of the
statistics discussed in the previous sections. In order to do so, we consider four particular cases
of the data generating equation

(

Xt

Yt

)

−
(

0.5 N−1/2γ1

N−1/2γ1 0.5

)(

Xt−1

Yt−1

)

=

(

1 0

N−1/2γ0 1

)(

ε
(1)
t

ε
(2)
t

)

. (5.11)

– Experiment A: γ0 = γ1 = 0. Under this experiment, Xt and Yt are independent; this
experiment allows for checking the validity of asymptotic distributions under the null.

– Experiment B: γ2
0 = 10. Alternative B; Xt and Yt are dependent at lag zero only.

– Experiment C: γ2
1 = 5. Alternative C; Xt and Yt are dependent over all lags, except for

lag zero.

– Experiment D: γ2
0 = 0.25 and γ2

1 = 5. Alternative D; Xt and Yt are dependent over all
lags.

For each of these four experiments, 10000 replications of two independent standard Gaussian

white noises ε
(1)
t and ε

(2)
t of length 500 were generated from the G05EAF subroutine of the NAG

library. These sequences were plugged into the various models, yielding 10000 replications, of
length 500, of the processes Xt and Yt, respectively. Initial values X0 and Y0 were put to
zero. In order to prevent starting values to affect the stationarity of the generated series,
only the subseries of length N = 100 (respectively, N = 200) resulting from dropping the 400
(respectively, 300) first observations were considered for the analysis.

For each of the replications thus obtained, under experiments A through D, using subroutine
G13DCF of the NAG library, an AR(1) model was fitted to each component series, yielding
two vectors of estimated residuals, η̂(1)(t), and η̂(2)(t). Note that (4.7) remains valid when an
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ARMA(p,q) such that p ≥ 1 and q ≥ 0 is adjusted to each series; the asymptotic local powers of
Haugh’s and Koch and Yang’s tests thus remain unaffected if ARMA orders are oversestimated.
From these residuals, we computed

- the optimal test statistic Q∗ given in (5.3);

- the residual cross-correlations (via subroutine G13DMF), and the statistics QM
H and QM

KY ;i

given in (1.1) and (1.2), for various values of M (M = 0, 5, 10, 15, 20, 30) and i (i =
4, 8, 12, 16);

- the modified versions φ̃M
HR (here reducing to φ̃M

H ) of the Haugh-El Himdi-Roy tests pro-
posed in El Himdi and Roy (1997), and the modified versions φ̃M

HS;i (here reducing to

φ̃M
KY ;i) of the Koch-Yang-Hallin-Saidi tests proposed in Hallin and Saidi (2003), based on

Q̃M
KY ;i :=

(2M+1)−i
∑

k=1

[

i
∑

l=0

ν̃ννM (k + l)

]2

, i = 0, 1, . . . ,M − 1, (5.12)

with ν̃ννM :=

(

N√
N−M

r
(12)
η̂ηη (−M), . . . , N√

N−|k|
r
(12)
η̂ηη (k), . . . , N√

N−M
r
(12)
η̂ηη (M)

)T

(for φ̃M
HR being

obtained for i = 0); these modified versions are supposed to allow for a better control of
asymptotic significance levels.

For each replication, these statistics were compared with their exact asymptotic critical
values; these values for the Koch and Yang statistics were computed using the Imhof (1961)
algorithm (in Koch and Yang (1986) and Hallin and Saidi (2003), only approximate asymptotic
critical values, based on Satterthwaite (1941, 1946)’s approximation were used). Rejection
frequencies are reported for two series length (N = 100 and N = 200), in Tables 4 and 5, at
nominal α-values 0.05 and 0.01, and for various values of M and i.

Rejection frequencies for Experiment A are reported in Table 4. For all series lengths and
significance levels, the rejection frequencies for φ∗ are significantly closer to nominal α-values
than those for φM

KY ;i and φ̃M
KY ;i; the latter two tests, by the way, appear to be seriously biased

(the corresponding rejection frequencies are significantly less than α). The corrected versions
φ̃M

KY ;i improve over the original one, but still yield a significant bias.
Table 5 reports rejection frequencies, under Experiments B, C, and D, at probability level

α = 0.05. In view of the severe bias of the Haugh and Koch and Yang tests, the critical values
we consider here are based on both the asymptotic distributions and the observed rejection
frequencies reported in Table 4. The figures in the table very clearly indicate that the Koch
and Yang procedure, in Experiment B, is uniformly, and quite significantly weakest (significance
of power differences can be tested by means of a Mc Nemar test—see, e.g., Armitage and
Colton 1998; recall indeed that the various simulations are generated from the same pseudo-
white noise). For instance, for a series length of N = 100, the Haugh procedure based on
asymptotic critical values yields an empirical power of .4331 with M = 5, .2785 with M = 10,
whereas our procedure for the same sample size reaches .7125. The same conclusions still hold
when empirical critical values are used. Under Experiments C and D, where dependencies are
distributed over a long period, the optimal test appears to perform best. Even with empirical
critical values, φ∗ performs best (Koch and Yang with M = 5 and i = 4 does slightly better
than φ∗ in Experiment D, for N = 200, but this advantage appears to be non significant). An
other interesting conclusion from Table 5 is that the empirical local powers, under Experiments
B, C, and D, are close to the theoretical figures reported in Tables 1, 2, and 3, which confirms
the relevance of the asymptotic theory developed in this paper.
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α N φ∗ M φM
H φM

KY ;4 φM
KY ;8 φM

KY ;12 φ̃M
H φ̃M

KY ;4 φ̃M
KY ;8 φ̃M

KY ;12

100 .0084 5 .0065 .0038 .0075 .0043
10 .0041 .0027 .0028 .0084 .0040 .0033
15 .0056 .0048 .0055 .0061 .0104 .0041 .0037 .0031
20 .0028 .0018 .0022 .0026 .0105 .0037 .0038 .0040
25 .0015 .0012 .0017 .0025 .0120 .0048 .0037 .0041
30 .0014 .0012 .0020 .0021 .0137 .0055 .0052 .0046

0.01
200 .0095 5 .0067 .0070 .0075 .0075

10 .0065 .0055 .0053 .0091 .0069 .0057
15 .0056 .0048 .0055 .0061 .0101 .0066 .0061 .0069
20 .0043 .0046 .0059 .0063 .0110 .0064 .0073 .0070
25 .0024 .0035 .0045 .0058 .0103 .0680 .0068 .0074
30 .0022 .0037 .0047 .0053 .0096 .0072 .0079 .0082

100 .0439 5 .0372 .0343 .0474 .0358
10 .0300 .0218 .0236 .0466 .0293 .0266
15 .0220 .0185 .0180 .0187 .0478 .0286 .0254 .0237
20 .0136 .0136 .0153 .0162 .0518 .0274 .0232 .0222
25 .0096 .0099 .0133 .0142 .0505 .0297 .0247 .0234
30 .0063 .0091 .0117 .0133 .0525 .0301 .0283 .0262

0.05
200 .0505 5 .0433 .0432 .0470 .0445

10 .0384 .0362 .0357 .0475 .0407 .0377
15 .0340 .0345 .0333 .0332 .0503 .0410 .0367 .0357
20 .0283 .0289 .0307 .0323 .0490 .0398 .0375 .0360
25 .0242 .0270 .0299 .0308 .0531 .0419 .0392 .0377
30 .0165 .0234 .0278 .0312 .0525 .0395 .0412 .0409

Table 4. Rejection frequencies in 10000 replications of Experiment A, for the optimal test φ∗, the Haugh
and modified Haugh tests φM

H and φ̃M
H , the Koch and Yang and modified Koch and Yang tests φM

KY ;i and

φ̃M
KY ;i, for M = 5, 10, 15, 20, 25, 30, and for various values of i = 0, 4, 8, 12, at significance levels α = 0.05 and

0.01, for series lengths N = 100 and 200, respectively.
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ASYMPTOTIC CRITICAL VALUE EMPIRICAL CRITICAL VALUE

EXP N M φM
H φM

KY ;4 φM
KY ;8 φM

KY ;12 φ∗ φ̃M
H φ̃M

KY ;4 φ̃M
KY ;8 φ̃M

KY ;12 φ∗

100 5 .4338 .2471 .7125 .4750 .2949 .7310

10 .2785 .1207 .1020 .3605 .2022 .1682
15 .1794 .0751 .0608 .0615 .2959 .1731 .1266 .1134
20 .1169 .0528 .0450 .0443 .2563 .1360 .1093 .1009
25 .0707 .0371 .0373 .0364 .2374 .1290 .1027 .0924
30 .0443 .0292 .0290 .0319 .2195 .1192 .0937 .0887

B
200 5 .4670 .2922 .7362 .4929 .3131 .7354

10 .3277 .1639 .1427 .3683 .2007 .1809
15 .2451 .1197 .0946 .0955 .3001 .1637 .1352 .1359
20 .1899 .0957 .0781 .0757 .2681 .1384 .1176 .1131
25 .1467 .0777 .0655 .0633 .2283 .1251 .0983 .0989
30 .1088 .0640 .0588 .0574 .2200 .1188 .0952 .0913

100 5 .4910 .7537 .8545 .5340 .7934 .8677

10 .3078 .5371 .6089 .3943 .6540 .7154
15 .2034 .3829 .4461 .4357 .3288 .5695 .6070 .5755
20 .1351 .2698 .3391 .3329 .2872 .4749 .5311 .5059
25 .0833 .1965 .2771 .2699 .2647 .4294 .4809 .4469
30 .0527 .1453 .2244 .2285 .2404 .3858 .4344 .4087

C
200 5 .5970 .8253 .8745 .6146 .8383 .8739

10 .4240 .6708 .7150 .4724 .7113 .7585
15 .3139 .5596 .5918 .5710 .3777 .6317 .6614 .6395
20 .2404 .4683 .4999 .4380 .3347 .5590 .5862 .5595
25 .1890 .4009 .4380 .4134 .2861 .5021 .5290 .4977
30 .1446 .3389 .3829 .3623 .2712 .4701 .4850 .4511

100 5 .4577 .8029 .8549 .5011 .8382 .8689

10 .2816 .5938 .6486 .3631 .7050 .7513
15 .1792 .4297 .4821 .4627 .3028 .6148 .6417 .6066
20 .1163 .3048 .3689 .3515 .2630 .5198 .5638 .5304
25 .0717 .2194 .2960 .2851 .2427 .4684 .5092 .4673
30 .0439 .1616 .2375 .2394 .2203 .4182 .5479 .4258

D
200 5 .5853 .8700 .8776 .6085 .8823 .8772

10 .4126 .7299 .7612 .4610 .7707 .8048
15 .3034 .6250 .6413 .6148 .3651 .6884 .7076 .6839
20 .2330 .5327 .5486 .5179 .3252 .6193 .6347 .6005
25 .1811 .4520 .4822 .4501 .2783 .5604 .5737 .5355
30 .1365 .3870 .4222 .3960 .2630 .5228 .5260 .4857

Table 5. Rejection frequencies in 10000 replications of Experiments B, C, and D, for the optimal test φ∗, the
Haugh and modified Haugh tests φM

H and φ̃M
H , the Koch and Yang and modified Koch and Yang tests φM

KY ;i and

φ̃M
KY ;i, for various values of M and i, at significance level α = 0.05, for series lengths N = 100 and 200, respectively.

Rejection is based on asymptotic and empirical critical values, respectively. Boldface indicate the winner.
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