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Abstract

The paper considers regression problems with univariate design points. The

design points are irregular and no assumptions on their distribution are imposed.

The regression function is retrieved by a wavelet based reproducing kernel Hilbert

space (RKHS) technique with the penalty equal to the sum of blockwise RKHS

norms. In order to simplify numerical optimization, the problem is replaced by an

equivalent quadratic minimization problem with an additional penalty term. The

computational algorithm is described in detail and is implemented with both the

sets of simulated and real data. Comparison with existing methods showed that the

technique suggested in the paper does not oversmooth the function and is superior

in terms of the mean squared error. It is also demonstrated that under additional

assumptions on design points the method achieves asymptotic optimality in a wide

range of Besov spaces.
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1 Introduction

Consider the regression problem yi = f(xi)+ ǫi, i = 1, . . . , n, where the xi’s are univariate

design points, the ǫi’s are i.i.d. mean-zero random errors with variance σ2 and f is

an unknown compactly supported regression function to be estimated. In a classical

parametric regression analysis, f is assumed to be of the form f(x,β), which is known up

to the parameters β, which are to be estimated from the data. In such a case the dimension

of the model space, i.e. the number of unknown parameters, is presumably much smaller

than the sample size n. The estimator is judged in terms of prediction accuracy and

interpretability. However, parametric models often incur model bias. To avoid this, an

alternative approach to estimation is to allow f to vary in a high (possibly infinite)

dimensional function space, leading to various nonparametric estimation methods. A

popular approach to the nonparametric estimation of f is via the minimization of a

penalized least squares functional and the methods developed in this paper can be casted

into this setting.

Given a wavelet type expansion of f , we define an estimation procedure for f closely

related to soft wavelet thresholding. It is now known (see Antoniadis and Fan (2001)) that

separable penalized least-squares methods with appropriate additive penalties provide a

unified framework for many seemingly different wavelet thresholding rules in different

nonparametric function estimation contexts and enables one to systematically study a

class of wavelet estimators simultaneously. In this work, we consider and study a class

of non-separable wavelet estimators for the nonparametric regression problem using a

penalized least-squares approach with non-additive penalties. The penalties are chosen

in order to control the smoothness of the resulting estimator. For this, we focus on semi-

norm penalties. Such estimations issues are well-known in the literature and have been

studied by several authors such as Wahba (1990), Green and Silverman (1994), Wahba

et al. (1995) in the general nonparametric setting of the smoothing spline framework.

We take for penalty, a weighted sum of wavelet details spaces norms. Asymptotically,

the penalty will be equivalent to a Besov semi-norm. We will investigate several choices

of the penalty and show that, in all cases, the minimization problem has a solution.

We will point out the cases where it is possible to give a direct explicit solution of the

optimization program and, in the other cases, we will provide an approximation of the

exact case. Our approach provides a unified framework for several recent proposals of
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wavelet thresholding rules and gives an alternative interpretation of the penalty term in

separable penalized least-squares methods with an additive penalty being the L1 norm of

the wavelet coefficients: it is the sum of component norms.

The regularization procedure that we propose is inspired by the sparse kernel selection

approach in Gunn and Kandola (2002) and the COSSO (COmponent Selection and

Smoothing Operator) approach for fitting smoothing spline ANOVA models recently

proposed by Lin and Zhang (2003). However, the motivation of our method as well

as the setting is different and relates to the penalized least-squares method for wavelet

regression developed by Antoniadis and Fan (2001).

Some background on wavelets, reproducing kernel Hilbert spaces and the general

methodology that we have adopted are introduced in Section 2. In Section 3 we present

our estimator and we show that we can reach an asymptotic optimal rate of convergence,

provided that we know the regularity of the function we try to estimate. We also present

there a computational algorithm and briefly discuss the choice of the tuning parameter.

Simulations and a real example analysis are given in Section 4, where we compare our

method with other popular nonparametric regression methods. The proofs of the main

results are given in the Appendix.

2 Wavelet series expansions and wavelet kernels

We briefly recall first some relevant facts about wavelet series expansions, the discrete

wavelet transform, and the class of (inhomogeneous) Besov spaces on the unit interval

that we need further.

2.1 Wavelet series expansions

Let L2([0, 1)) denote the Hilbert space of Z-periodic real-valued functions on R that are

square integrable over the one-dimensional torus group, parameterized by [0, 1), with

scalar product

〈f, g〉 =

∫

[0,1)

f(x)g(x)dx,

and associated norm

‖f‖ :=
√

〈f, f〉.
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Let G−1 = {−1}×{0}, G0 = {0}×{0, 1} and for each integer L ≥ 1 let GL = {L}×{k ∈
{0, . . . , 2L}; k/2 /∈ Z}.

We assume the reader is familiar with the concept of an orthonormal wavelet basis

and associated multiresolution analysis. We construct an orthonormal wavelet basis

for L2([0, 1)) by periodizing an orthonormal basis for L2(R) generated by dilations and

translations of a compactly supported scaling function, φ, and a compactly supported

mother wavelet, ψ, associated with an r-regular (r ≥ 0) multiresolution analysis of L2(R).

The resulting orthonormal basis provides an orthogonal decomposition

L2([0, 1)) = V0 ⊕W0 ⊕W1 ⊕ · · · ,

where V0 consists of constant functions (spanned by φ0,0 = ψ−1,0) and Wj is a 2j-

dimensional space spanned by wavelets indexed by Gj . For L ≥ 1 define

VL = V0 ⊕⊕L−1
j=0Wj .

The space VL has an orthonormal wavelet basis comprising the constant function ψ−1,0 = 1

together with the orthonormal wavelet basis functions for each spaceWj, j < L. It also has

an orthonormal scaling function basis obtained by translating by {k ∈ {0, . . . , 2L}; k/2 /∈
Z} the periodized scaling function φ scaled by 2−j. For any f ∈ L2([0, 1]), and any integer

j0 ≥ 0, we denote by uj0k = 〈f, φj0k〉 (k = 0, 1, . . . , 2j0 − 1) the scaling coefficients and

by wjk = 〈f, ψjk〉 (j ≥ j0; k = 0, 1, . . . , 2j − 1) the wavelet coefficients of f for the

orthonormal periodic wavelet basis defined above; the function f is then expressed in the

form

f(t) =

2j0−1
∑

k=0

uj0kφj0k(t) +

∞
∑

j=j0

2j−1
∑

k=0

wjkψjk(t), t ∈ [0, 1].

The whole set of indexes pairs (j, k) that describes all wavelets in this basis will be denoted

by G = ∪j≥−1Gj. With such a notation, any function f ∈ L2([0, 1)) admits therefore the

infinite wavelet expansion

f =
∑

g∈G

fgψg

where ψg is the wavelet basis function indexed by g ∈ G and fg is the corresponding

expansion coefficient.

The scaling function expansion coefficients of a function f ∈ VL are represented by

an element sL(f) ∈ RGL and the wavelet expansion coefficients of f are obtained by
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WL(sL) ∈ RGL where

WL : RGL → RGL

is the L-level discrete wavelet transform. The discrete wavelet transform is orthogonal

and invertible and its inverse can be efficiently implemented with O(2L) operations using

Mallat’s algorithms (Mallat (1999)). For a nice account of the DWT and IDWT in terms

of filter operators we refer to, for example, Nason (1998).

To end this subsection, we also mention that if f ∈ L2([0, 1)) is continuous then

lim
L→∞

max |2L/2sL(f) − f |GL
| = 0. (1)

For detailed expositions of the mathematical aspects of wavelets we refer to, for example,

Meyer (1992), Daubechies (1992) and Mallat (1999), while comprehensive expositions and

reviews on wavelets applications in statistical settings are given in, for example, Härdle

et al. (1998), Vidakovic (1999), Abramovich et al. (2000) and Antoniadis et al. (2001).

2.2 Reproducing Kernel Hilbert Spaces

Regularization in Hilbert spaces is an approximation framework that is theoretically

well founded. Reproducing Kernel Hilbert Spaces (RKHS) provide a unified context for

regularization in a wide variety of statistical modelling and function estimation problems.

In this subsection we briefly review a few important facts about RKHS, that we are going

to use later on.

A RKHS is a Hilbert space (Aronszajn (1950)) in which all the point evaluations are

bounded linear functionals. Letting H be a Hilbert space of functions on some domain

T , this means, that for every t ∈ T there exists an element ηt ∈ H, such that

f(t) = 〈ηt, f〉, ∀f ∈ H,

where 〈·, ·〉 is the inner product in H. Let s, t ∈ T and set 〈ηs, ηt〉 = K(s, t). Then K(s, t)

is positive definite on T ×T , that is, for any distinct points t1, . . . , tn ∈ T , the n×n matrix

with j, k-entry K(tj, tk) is positive definite. The kernel K is called the reproducing kernel

(RK) for H. It is a theorem that ηt = K(t, ·) and therefore 〈K(s, ·), K(t, ·)〉 = K(s, t),

this being the origin of the term “reproducing kernel”.

The famous Moore-Aronszajn theorem (Aronszajn (1950)) states that for every

positive definite function K(·, ·) on T × T , there exists a unique RKHS and vice versa.
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The Hilbert space associated with K can be constructed as containing all finite linear

combinations of the form
∑

j ajK(tj, ·), and their limits under the norm induced by the

inner product 〈K(s, ·), K(t, ·)〉 = K(s, t). Note that absolutely nothing has been said

about T .

Remark 2.1 Tensor sums and products of RK’s are RK’s, which allow the building up

of rather general spaces on rather general domains. Closed subspaces of RKHS are also

RKHS, and the RK’s can be obtained by e. g. projecting the representers of evaluation

in H onto the subspace. The above apply to any domain on which it is possible to define

a positive definite function, a matrix being a special case when T has only a countable or

finite number of points.

We are now ready to recall a (very special case of a) general lemma about optimization

problems in RKHS (see Kimeldorf and Wahba (1971)).

Lemma 2.1 (Representer Theorem) Given a set of observations {(yi, ti); i =

1, 2, . . . , n}, where yi is a real number and ti ∈ T , and given K and (possibly) given some

particular functions {Φ1, . . .ΦM} on T , find f of the form f(s) =
∑M

d=1 adΦd(s) + h(s)

where h ∈ HK to minimize

I(f,y) :=

n
∑

i=1

C(yi, f(ti)) + λ2‖h‖2
HK
, (2)

where C is a convex function of f . Assuming that the minimizer of C(yi, f(ti)) in the span

of the Φd’s is unique, the minimizer of I(f,y) has a representation of the form:

f(s) =

M
∑

d=1

adΦd(s) +

n
∑

i=1

ciK(ti, s). (3)

The coefficient vectors a = (a1, . . . , aM)T and c = (c1, . . . , cn)T are found numerically by

substituting (3) into the first term in (2). The minimization generally has to be done

numerically by an iterative descent method, except in the case that C is quadratic in f ,

in which case a linear system has to be solved.

When K(·, ·) is a smooth function of its arguments and n is large, it has been found

that excellent approximations to the minimizer of (2) for various C can be found with

functions of the form:

f(s) =
M
∑

d=1

adΦd(s) +
L
∑

j=1

cjK(t∗j , s),
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where the t∗1, . . . , t
∗
L are a relatively small subset of t1, . . . , tn, thus reducing the

computational load. The t∗1, . . . , t
∗
L may be chosen in various ways (see for example Lin

et. al. (2000)), as a random subset, by clustering the ti’s and selecting from each cluster,

or by a greedy algorithm, depending on the problem.

2.3 Wavelet-based Norms

We now define a class of wavelet-based Hilbert spaces. For any function

Γ : G→ [0,∞)

define the Hilbert space

HΓ = {f ∈ L2([0, 1)) :
∑

g∈G

Γ(g)|fg|2 <∞},

with scalar product

〈f, h〉Γ =
∑

g∈G

fghgΓ(g),

and associated norm ‖ · ‖Γ. Clearly, since GL is a finite subset of G, we have VL ⊂ HΓ for

every L ≥ 0. Moreover, for any f ∈ HΓ,

lim
L→∞

‖f − πL(f)‖Γ = 0, (4)

where πL denotes orthogonal projection of L2([0, 1)) onto its closed subspace VL.

We now construct wavelet-based norms that yield reproducing kernel Hilbert spaces

whose functions are continuous. First construct an orthonormal wavelet basis of

continuous compactly supported wavelets. Second, construct a function Γ : G → [0,∞)

such that
∑

j≥0

2j/2Γ
−1/2
j = B1 <∞ (5)

where

Γj = min
g∈Gj+1

|Γ(g)|.

To show that HΓ is a RKHS choose M > 0 and B2 > 0 such that for any x ∈ [0, 1) and

for any j ≥ 0 there are at most M wavelet basis functions indexed by elements in Gj+1

that are nonzero at x, and such that the maximum modulus of the wavelet basis functions

indexed by Gj+1 is ≤ B22
j/2. This is obviously possible since the wavelets that we are
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considering are compactly supported and periodic. Define γ := MB2

√
B1. Let f ∈ HΓ

and define

fj := max
g∈Gj+1

|fg|.

Then the Schwartz inequality implies

|f(x)| ≤ MB2

∑

j≥0

fj2
j/2 ≤ γ‖f‖Γ.

Therefore HΓ is a RKHS and since it has a dense subspace of continuous functions and γ is

independent of x, all the functions in HΓ are continuous. The corresponding reproducing

kernels are

KΓ(x, ·) =
∑

g∈G

ψg(x)

Γ(g)
ψg, x ∈ [0, 1).

Note also that by Remark 2.1 and by definition of the index set G, the kernel K defined

above can also be written as a sum of the reproducing kernels

KΓ
j (s, t) =

2j−1
∑

k=0

ψj,k(s)

Γ((j, k))
ψj,k(t),

which means that the RKHS HΓ, can be decomposed into a direct sum of wavelet RKHS’s

as

HΓ = V0 ⊕⊕j≥0Wj,Γ, (6)

where each “detail” space is the RKHS associated to the kernel KΓ
j , i.e. is the RKHS

spanned by a set of wavelets of scale j. Note also that when Γ is only a function of j in

Gj, then the kernel K may be viewed as a weighted, Γ−1
j , infinite linear sum of kernels

Kj(s, t) =

2j−1
∑

k=0

ψj,k(s)ψj,k(t).

Remark 2.2 By the representer Theorem if the set X = {ti; i = 1, . . . , n} is such that

the restrictions of functions in HΓ spans R
n, the solution to the minimization problem

fλ = argminh∈HΓ
I(h,y)

where

I(h,y) =
n
∑

i=1

(h(ti) − yi)
2 + λ2‖h‖2

HΓ
,
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can be written explicitly with the functions KΓ(ti, ·), i .e.

fλ(x) =

n
∑

i=1

uiK
Γ(ti, x),

where the vector of coefficients u = (u1, . . . , un)T is given by

u = (KΓ + λ2In)−1(Y ),

and KΓ denotes, with some abuse of notation, the n× n Gram matrix (KΓ(ti, tj)).

As noticed before, the representation (6) involves an infinite decomposition of the detail

space, and despite the fact that we are dealing with compactly supported functions the

computational complexity for computing fλ is high, especially for large samples. In this

situation we will have to be content with approximations. The basic idea is simple. Instead

of using the infinite decomposition ⊕∞
j=0Wj,Γ in (6), we truncate it up to a maximum

resolution J . By the properties of the wavelet basis, the resulting nested sequence of

finite dimensional subspaces HJ,Γ = V0 ⊕ ⊕J
j=0Wj,Γ defines a multiresolution analysis of

HΓ and we can then compute approximations to fλ by choosing a resolution level J and

restricting the functional I(h,y) to HJ,Γ. More precisely, for J sufficiently large, using

equations (1) and (4) an approximation fJ,λ of fλ may be computed by solving instead

the minimization problem in the finite dimensional approximation space HJ,Γ defined by

the truncated kernel

KΓ
J (x, y) =

∑

g∈∪0≤j≤JGj

ψg(x)

Γ(g)
ψg(y), x, y ∈ [0, 1).

Indeed, denoting by KΓ
J the corresponding Gram matrix and by uJ the corresponding

coefficients, and expressing

u − uJ = (KΓ
J + λ2In)−1(KΓ

J −KΓ)(KΓ + λ2I)−1f |X ,

yields

max |ui − ui,J | ≤ ‖(KΓ + λ2In)−1‖∞ ‖(KΓ
J + λ2In)−1‖∞‖KΓ −KΓ

J ‖∞ max
x∈X

|f(x)|,

where ‖A‖∞ := maxy∈X

∑

x∈X |A(x, y)| denotes the ℓ∞ operator norm of a matrix indexed

by X. Since the maximum and minimum eigenvalues of the matrices KΓ
J satisfy

µmax(K
Γ
J ) ≤ µmax(K

Γ
J+1) · · · → µmax(K

Γ),
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and

µmin(K
Γ
J ) ≥ µmin(K

Γ
J+1) · · · → µmin(K

Γ) > 0,

it follows that ‖(KΓ
J + λ2In)−1‖∞ are uniformely bounded in J . Furthermore, by (4),

lim
J→∞

‖KΓ −KΓ
J ‖∞ = 0.

Therefore

lim
J→∞

max
i

|ui − ui,J | = 0 (7)

and

fJ,λ → fλ,

as J → ∞.

To end this section, note that, in the above definition of wavelet-based RKHS norm,

if s > 1/2 and Γ(j, k) equals 22js on Gj, then HΓ equals the Sobolev space Bs
2,2([0, 1)) of

index s whenever the wavelet basis functions are of regularity r greater than or equal to

s. In this case the wavelet-based norms are equivalent to the standard Sobolev norms.

3 Wavelet kernel penalized estimation

The wavelet-based reproducing kernel Hilbert spaces defined in the previous sections and

the general results on RKHS allows us to define a penalized least square wavelet procedure

for estimating the values of the unknown regression function f at the design points.

To simplify the analysis we will assume hereafter that the weight function Γ is only a

function of j in Gj, and therefore the wavelet-based reproducing kernel KΓ defined in the

previous section is a weighted, Γ−1
j , linear sum of wavelet tensor product kernels

Kj(s, t) =
2j−1
∑

k=0

ψj,k(s)ψj,k(t).

Denoting Wj the RKHS associated to Kj (a classical detail space at scale j), one has

WΓ
j = Γ−1

j Wj and the function space HΓ can be written as

HΓ = {1} ⊕ ⊕j≥0Γ
−1
j Wj , (8)

since V0 is also the subspace of L2([0, 1)) spanned by the constant functions on [0, 1). By

the orthogonality of the wavelet basis and the scalar product in HΓ note also that in the

above decomposition the subspaces WΓ
j are orthogonal subspaces of HΓ.
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In the following we will denote by Pjf (resp. P Γ
j f) the orthogonal projection of f

onto Wj (resp. the orthogonal projection of f onto WΓ
j ). In analogy with a traditional

smoothing spline ANOVA type procedure one way to estimate f could be to find f ∈ HΓ

to minimize
1

n

n
∑

i=1

{yi − f(xi)}2 + λ2
∑

j≥0

θ−1
j ‖P Γ

j f‖2
Γ, (9)

where θj ≥ 0. If θj = 0, then the minimizer is taken to satisfy ‖P Γ
j f‖2

Γ = 0, using the

convention 0/0 = 0. The smoothing parameter λ is confounded with the θ’s, but it is

usually included in the setup for computational purposes. Note also that by Remark 2.2,

for J ≃ log2(n) the above minimum is in fact reached in HJ,Γ and the minimisation

problem (8) can be restated as : find f ∈ HJ,Γ to minimize

1

n

n
∑

i=1

{yi − f(xi)}2 + λ2
∑

0≤j≤J

θ−1
j ‖P Γ

j f‖2
J,Γ. (10)

The first term in the above expression discourages the lack of fit of f to the data, the

second term penalizes the roughness of f and the smoothing parameter λ controls the

trade-off between the two conflicting goals. Such an estimation procedure is controled

by a quadratic penalty and as such produces linear estimates that have good rates for

smooth functions only. We could propose instead finding f ∈ HJ,Γ to minimize

1

n

n
∑

i=1

{yi − f(xi)}2 + λ2RJ (f), with RJ(f) =

J
∑

j=0

‖P Γ
j f‖J,Γ. (11)

The penalty term in (11) is a sum of wavelet-based RKHS norms, instead of the squared

RKHS norm employed in (10). Note that RJ(f) is not a norm in HJ,Γ but a pseudo-norm

in the following sense: RJ(f) ≥ 0, RJ(cf) = |c|RJ(f), RJ(f + h) ≤ RJ(f) + RJ (h) for

any f, h ∈ HJ,Γ, and, RJ (f) > 0 for any non constant f ∈ HJ,Γ. Moreover

J
∑

j=0

‖P Γ
j f‖2

HJ,Γ
≤ RJ(f)2 ≤ J

J
∑

j=0

‖P Γ
j f‖2

HJ,Γ
. (12)

Another difference between the procedure defined by (11) and the one defined by (10) is

that there is only one smoothing parameter λ instead of multiple smoothing parameters

θ’s.

Classical level dependent wavelet soft thresholding in wavelet regression with an

equidistant design can be seen as a special case of the procedure defined by (11). Indeed,
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assuming that n = 2J , wavelet thresholding can be seen as a penalized separable least-

squares procedure that looks for the minimum of

‖y −Wnβ‖2
n + λ2

J
∑

j=0

2j−1
∑

k=0

2js|βj,k|,

where Wn denotes the J-level discrete wavelet transform, ‖ · ‖n is the Euclidian norm

of R
n and β denotes the vector of wavelet coefficients of f . Considering that for each

(j, k) ∈ Gj, the tensor product ψj,k(s)ψj,k(t) defines a wavelet kernel and denoting by

Wj,k the corresponding (one-dimensional) RKHS, one can see that penalizing the l1 norm

of wavelet coefficients is equivalent to (12) with RJ(f) =
∑J

j=0

∑2j−1
k=0 ‖P Γ

j,kf‖Wj,k
with

Γ(j, k) = 22js, thus interpreting the penalty in standard wavelet thresholding regression

as the sum of the norm of function components. An interpretation of this sort has been

also suggested in Canu et al. (2003) within the context of SVM.

In the case of an equidistant design, the estimator resulting from the procedure (11)

is obtained by minimizing with respect to β the expression

‖W T
n y − β‖2

n + λ2

J
∑

j=0

√

Γj

√

√

√

√

2j−1
∑

k=0

β2
j,k. (13)

For each (j, k) ∈ Gj , simple calculations show that the solution is given by solving the

nonlinear equations

βj,k(1 +
λ2
√

Γj

‖βj, ·‖ )2 = dj,k

where dj,k denote the (j, k) empirical wavelet coefficient, and it is easy to see that

βj,k = dj,k

(

1 − λ2
√

Γj

/

(2‖dj,·‖)
)

+
.

The procedure defined by Eq. (13) leads therefore to a group level-by-level wavelet

thresholding of all empirical wavelet coefficients within each scale. However, such

a procedure may not be optimal for non homogeneous functions and the resulting

reconstruction is often over-smoothed. Hall et al (1999), Cai (1999) and Cai and Silverman

(2001) considered block thresholding for wavelet function estimation for equispaced

designs which thresholds empirical wavelet coefficients in groups within each scale rather

that individually with a goal to increase estimation precision by using information about

neighboring coefficients. More precisely, let us partition all wavelets coefficients at level j
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into blocks Tjm of length Ljm. All blockwise procedures suggested so far in the literature

try to mimic the benchmark

β̂jk =
L−1

jm

∑

ℓ∈Tjm
β2

jℓ

L−1
jm

∑

ℓ∈Tjm
β2

jℓ + σn−1
djk. (14)

The suggested length of the block for blocks of identical length is ≈ (log n)1+δ with

δ ≥ 0. It seems therefore natural, at least in the case of a regular design, to consider

an optimization problem similar to the one suggested in expression (13) by minimizing

instead the following functional:

‖W Ty − β‖2
n + λ2

J
∑

j=0

∑

m

√

Γjm

√

∑

s∈Tjm

β2
j,s. (15)

Taking derivatives with respect to βjk we obtain:

βjk = djk

√

∑

s∈Tjm
β2

j,s
√

∑

s∈Tjm
β2

j,s + λ2
√

Γjm/2
(16)

mimicking eq. (14) when
λ2
√

Γjm√
Ljm

≃ n−1/2.

In our case we do not have an equidistant design and our coefficients are not wavelet

coefficients. However, the above remarks suggest to define an optimization problem which

essentially mimics expression (15) under our general RKHS setup. Hence, define

Kjm(s, t) =
∑

k∈Tjm

ψj,k(s)ψj,k(t),

KΓ
jm(s, t) = Γ−1

jmKjm(s, t),

KΓ(s, t) =
∑

j≥0

∑

m

KΓ
jm(s, t),

and

KΓ
J (s, t) =

J
∑

j=0

∑

m

KΓ
jm(s, t),

and let Hj,m, HΓ,j,m, HΓ, and HΓ,J the corresponding reproducing kernel Hilbert spaces.

Note that KΓ and KΓ
J are the same as before if Γjm ≡ Γj for all m at the resolution level

j. All results of Section 2.2 remain valid with these new kernels and we finally propose

finding f ∈ HJ,Γ to minimize

1

n

n
∑

i=1

{yi − f(xi)}2 + λ2RJ (f), with RJ(f) =
J
∑

j=0

∑

m

‖Pjmf‖HΓ,j,m
. (17)
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The penalty term in (17) is again a sum of wavelet-based RKHS norms and a pseudo-

norm. Inequality (12) is still valid just with a different constant than J in the right hand

side.

Remark 3.1 Under the above set up, the following expansion of the unknown regression

function f holds:

f(t) =
∞
∑

j=0

n
∑

i=1

ci
∑

m

Γ−1
jmKjm(ti, t), (18)

and we obtain

‖P Γ
jmf‖2

HΓ,j,m
= Γjm‖Pjmf‖2

Hj,m
.

Hence, in the case of equispaced design, the penalty RJ in (17) leads to solution (16).

The difference between ‖P Γ
j f‖HΓ,j

and ‖P Γ
jmf‖HΓ,j,m

is that the former involves all wavelet

coefficients, while the latter involves only coefficients of the block Tj,m, namely,

βj,k = dj,k

(

1 − λ2
√

Γj

/

(2‖dj,m,·‖)
)

+

where ‖dj,m,·‖ =
√

∑

s∈Tjm
d2

j,s.

3.1 Existence of a solution and asymptotic properties

The existence of the estimate obtained by the penalization procedure (17) is guaranteed

by the following theorem.

Theorem 3.1 Let HJ,Γ be the wavelet-based RKHS of functions over [0, 1) defined at the

end of the previous subsection and consider its decomposition

HJ,Γ = V0 ⊕⊕J
j=0

∑

m

Γ−1
jmWj,m := V0 ⊕⊕J

j=0Wj,Γ.

Then there exists a minimizer of (17) in HJ,Γ.

The uniqueness of the solution to (17) is not addressed in the above theorem but

should follow under mild conditions on the design. We will not pursue this question here,

and the developments that follow do not depend on the uniqueness of the estimate.

In the literature on nonparametric estimation by wavelet methods, one often considers

the class of Besov spaces Bs
p,q([0, 1)) a short description of which we have given in the
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Appendix. Recall that these spaces refer to functions on [0, 1) with “smoothness” s. Using

regular enough wavelets, the wavelet coefficients βj,k of a function f that lies in a unit

ball of Bs
p,q([0, 1)) satisfy







J
∑

j=0

2j((2s+1) p

2
−1) q

p







2j−1
∑

k=0

|βj,k|p






q
p







1

q

≤ 1, (19)

which is equivalent, when J = ∞ to the Besov semi-norm. Assume that s ≥ max(1/q −
1/2, 1/p + 1/2), p, q ≥ 1. Denote ρ = 2/(2s + 1) and let J < ∞. Assume also that

the unknown regression function is such that the sequence of its wavelets coefficients

βJ = {βg, g ∈ ∪J
j=0Gj} satisfies (19). Take Γj = 2µj . Then, in order f ∈ HΓ,J condition

(5) should hold which is ensured by µ > 1. The penalty RJ(f) is finite whenever

µ < 2(s − 1/p). The following theorem shows that the estimator defined above has a

rate of convergence n−(2−ρ)/4 if the tuning parameter λ is chosen appropriately and the

noise process is Gaussian.

Theorem 3.2 Consider the regression model Yi = f0(xi) + ǫi, i = 1, . . . , n where xi’s are

given deterministic points in [0, 1), and the ǫi’s are independent N(0, σ2) noise variables.

Assume that s ≥ max(1/q− 1/2, 1/p+ 1/2), p, q ≥ 1, and let J = log2 n. Assume that f0

is such that the sequence of its wavelets coefficients satisfies (19). Take Γjm = Γj = 2µj

with 1 < µ < 2(s−1/p). Consider the estimator f̂ of the values of the unknown regression

function at the design points as defined by (17). Then (i) if f0 is not a constant, and

λ−1
n = OP (n(2−ρ)/4)R

(1−ρ)/2
J (f0), we have 1

n
‖f − f0‖n = OP (λn)R

1/2
J (f0); (ii) if f0 is

constant, we have 1
n
‖f̂ − f0‖n = OP (max{(nλn)−2/3, n−1/2}).

As one can see the resulting estimator attains the asymptotic minimax rate over the

appropriate functional class without an extra logn factor that is usual for soft wavelet

thresholding rules. As noted by Cai (2001) the extra log n factor is a drawback of

separable penalized least-squares estimators and arises through the need to guard against

“false positive” about the presence of true significant wavelet coefficients (corresponding

to irregularities of the regression function f0). As a result, standard soft thresholded

estimators are often oversmoothed. The problem is unavoidable for separable estimators,

since decisions about individual terms are based on a relatively low level of information.

Therefore there are true benefits to consider more general penalties than those used in

(10).
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Note also that for the particular case of a Sobolev space Bs
2,2([0, 1)) with index s = 2

Theorem 3.2 leads to the same asymptotic rates, under of course a different setup and

with different constants, of the COSSO estimates in functional ANOVA models proved

by Lin and Zhang (2003).

Finally, note that Theorem 3.2 is related to the optimal behavior of the estimator at

the design points without any further assumptions on their distribution. If however we

want to prove consistency of our penalized estimator in the integrated mean squared error

it is natural to require some additional assumptions on the design points.

Introduce the matrix Ψ the i-th row of which contains values of ψj,k at the point xi.

Assume that the wavelets ψj,k are regular enough and that the function f0 is periodic, i.e.

f0(0) = f0(1). Under such an assumption we can now state:

Theorem 3.3 Consider the regression model Yi = f0(xi) + ǫi, i = 1, . . . , n where xi’s

are given deterministic points in [0, 1) such that the lowest eigenvalue of matrix ΨT Ψ is

bounded away from zero by a constant independent of n, and the ǫi’s are independent

N(0, σ2) noise variables. Assume that f0 is nonconstant and periodic and also that the

assumptions of Theorem 3.2 hold. Under the additional assumption that the empirical

wavelet coefficients of the penalized estimator satisfy (19), the penalized estimator f̂n is

weakly consistent in the integrated mean squared error with a rate of order OP (n− 2s
2s+1 ).

Regularity of the wavelets is needed to control the interpolation error as in

Antoniadis (1996). The periodicity of f0 is needed because we are using periodic wavelets

in the interval. Note however that such assumption is not needed if we use more general

wavelets on the interval (see Daubechies (1992)).

What follows are some useful lemmas for the practical implementation of our estimator.

The next result shows that the solution to (17) is finite-dimensional and the estimate can

be computed directly from (17) by linear programming techniques.

Lemma 3.1 Let f̂J = b̂ +
∑J

j=0 f̂j be a minimizer of (17), with f̂J ∈ Wj,Γ. Then

f̂J ∈ span{KΓ
j (ti, ·), i = 1, . . . , n}, where KΓ

j is the reproducing kernel of the space Wj,Γ.

However, following the suggestion of Antoniadis and Fan (2001) for solving penalized

problems with an l1 penalty, it is possible to give an equivalent formulation of (17) that

is much easier to compute in practice. Consider the problem of finding θ = {θj,m, j =
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0, . . . , J ;m = 1, . . . ,Mj} where Mj denotes the number of blocks at scale j and f ∈ HΓ,J

to minimize

1

n

n
∑

i=1

{yi − f(xi)}2 + λ0

∑

0≤j≤J

∑

m∈Mj

θ−1
jm‖P Γ

jmf‖2
Γ,j,m + ν

J
∑

j=0

∑

m∈Mj

θjm, (20)

subject to θjm ≥ 0, j = 0, . . . , J ;m = 1, . . . ,Mj , where λ0 is a constant that can be fixed

to any positive value and ν = νn is a smoothing parameter. Fix λ0 at some value. Then

Lemma 3.2 Set ν = λ4/(4λ0). (i) If f̂ minimizes (17), set θ̂jm = λ
1/2
0 λ−1/2‖P Γ

jmf̂‖Γ,J,m,

then the pair (θ̂, f̂) minimizes (20). (ii) On the other hand, if a pair (θ̂, f̂) minimizes

(20), then f̂ minimizes (17).

The form of (20) is very similar to the one of (10) with multiple smoothing parameters,

except that there is an additional penalty on the θ’s. Notice that there is only one

smoothing parameter ν in (20). The θ’s are part of the estimate, rather than free

smoothing parameters. The additional penalty on θ’s in (20) makes it possible to have

some θ’s be zeros, giving rise to zero block detail components in the estimate, thus

producing a sparse kernel estimate in the sense of Gunn and Kandola (2002).

3.2 Algorithm and penalty choice

In what follows, we shall use an iterative optimization algorithm. On each step of iteration,

for some fixed values of θ we shall minimize (20) with respect to f , and then for this

choice of f we shall minimize (20) with respect to θ. For any fixed θ, the function

f minimizing (20) is given by the representer Theorem which in the case of multiple

smoothing parameters θj,m suggests f of the following form (see Wahba (1990), Section

10.1 and recall our discussion in remark 2.2)

f(x) = b+

n
∑

i=1

ci

J
∑

j=0

∑

m∈Mj

θj,mK
Γ
jm(ti, x),

where c = (c1, . . . , cn)T ∈ R
n, b ∈ R and KΓ

jm is the reproducing kernel of WΓ,j,m.

Assume equal block sizes and with some abuse of notations, let KΓ
jm also stand for the

n × n matrix {KΓ
jm(ti, tℓ)}, i = 1, . . . , n, ℓ = 1, . . . , n. Let KΓ

θ
also stand for the matrix

∑J
j=0

∑

m θjmK
Γ
jm, and let 1r be the column vector consisting of r ones. Then we can
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write f = KΓ

θ
c + b1n, and (20) can be expressed as

1

n

∥

∥

∥

∥

∥

∥

y −
J
∑

j=0

∑

m∈Mj

θjmK
Γ
jmc − b1n

∥

∥

∥

∥

∥

∥

2

n

+ λ0c
TKΓ

θc + ν
J
∑

j=0

∑

m∈Mj

θj,m, (21)

where θj,m ≥ 0, j = 0, . . . , J ;m = 1, . . . ,Mj.

The form (21) turns out to be similar to the sparse kernel selection approach in Gunn

and Kandola (2002). They used a different reproducing kernel and put penalty on all

components including the constant b. They motivated their method by noting that the

form of the penalty on the θ’s in (21) tends to give sparse solutions for θ’s, and gave

empirical evidence to support the insight. Our method is motivated from a different

formulation which relates to the standard wavelet thresholding estimation procedure.

If θ’s are fixed, then (21) can be written as

min
c,b

‖y −KΓ

θc − b1n‖2
n + nλ0c

TKΓ

θc, (22)

which is a quadratic minimization problem that can be solved by linear methods. On the

other hand, if c and b were fixed, denote djm = KΓ
jmc, and let D be the n × (

∑

j Mj)

matrix with the (j,m)th column being djm. Simple calculation shows that the vector θ

that minimizes (21) is the solution to

min
θ

‖z −Dθ‖2
n + nν

J
∑

j=0

∑

m∈Mj

θjm, (23)

where z = y − (1/2)nλ0c − b1n. Therefore a reasonable scheme would be to iterate

between (22) and (23). In each iteration (21) is decreased. Notice that (23) is equivalent

to

min
θ

‖z −Dθ‖2
n subject to θj,m ≥ 0,

J
∑

j=0

∑

m∈Mj

θjm ≤M, (24)

for some M ≥ 0. If the algorithm that iterates between (22) and (23) converges, then the

solution is also a fixed point for the algorithm that iterates between (22) and (24) for a

fixed M . We prefer to iterate between (22) and (24) for computational considerations.

Analysis of such a type algorithm and its convergence properties can be found in Karlovitz

(1970) and has been recently used by Donoho et al. (2004) for stable recovery of sparse

overcomplete representations in presence of noise.
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It can take a large number of iterations for the algorithm to converge. In applications,

though, we do not really need an exact solution. By starting from a simpler estimate such

as the one obtained by penalized least squares with quadratic penalties on the coefficients

in a spirit close to that of Antoniadis (1996) or Amato and Vuza (1997) and applying

a limited number of iterations of our algorithm, we get what we view as an iterative

improvement on the wavelet thresholded estimator. This motivates us to consider the

following one step update procedure:

1. Initialization: Fix θj,m = 1, j = 0, . . . , J ;m = 1, . . . ,Mj.

2. Solve for c and b with (22).

3. For the c and b obtained in step 2, solve for θ with the (24).

4. With the new θ, solve for c and b with (22).

This one step update procedure has the flavor of the one step maximum likelihood

procedure, in which one step Newton-Raphson algorithm is applied to a good initial

estimator and which is as efficient as the fully iterated maximum likelihood. A discussion

of one step procedure and fully iterated procedure can be found in Antoniadis and Fan

(2001).

To end this section let us stress that the performance of the penalized least-squares

estimator depends on the regularization parameter λ, the chosen resolution J and the

“complexity” parameter M . The choice of these parameters obviously involves an

arbitrary decision. In the present context we prefer regarding the free choice of the

resoluiton index J as an advantage of the model rather than a problem to be solved. By

varying the resolution level up to a maximum value of log2 n, features of the data arising on

different scales can be explored. As for the smoothing parameter λ a convenient way to get

a data based estimate of it is by using generalized cross validation as proposed by Craven

and Wahba (1979) for choosing smoothing parameters in smoothing splines algorithms

and which is widely used for the selection of smoothing parameters in penalized least

squares regression. However the minimization problem stated in (11) is not quadratic

and it is not obvious how such a method may be applied. Tibshirani (1996) proposed

a GCV-type criterion for choosing the tuning parameter for the LASSO through a ridge

estimate approximation. This approximation is particularly easy to understand in light

of the form (10): fix the θjm’s at their estimated values θ̂jm’s, and calculate GCV for the
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corresponding ridge regression. Of course, this approximation ignores some variability in

the estimation process but the simulation study in Tibshirani (1996) suggests that it is a

useful approximation. This motivates why we have used the GCV score or CV with five

or ten fold cross-validation for the penalized least squares in (10) when θ’s are fixed at

the solution. As for the choice of M , which depends on the size of the blocks, we used

the golden section search for minimizing GCV or CV with respect to M .

3.3 Bayesian interpretation

It is well known (see e.g. Vidakovic (1999)) that optimization problem usually allows

Bayesian interpretation with an appropriate choice of priors. It follows from the fact that

errors ǫi, i = 1, · · · , n, are iid normal and from representation (18) of f that the pdf of y

given c and Γ is

p(y|c,Γ) =
1

(2πσ2)n/2
exp







− 1

2σ2

(

y −
∑

j,m

Kj,m

Γj,m
c

)T (

y −
∑

j,m

Kj,m

Γj,m
c

)







. (25)

Impose the following proper prior on the parameter vector c

p(c|Γ, ̺) = C1(Γ)̺n exp

{

−̺
∑

j,m

√

cTKj,mc

Γj,m

}

. (26)

where C1(Γ) is the coefficient depending on Γ only such that (26) integrates to one. Since

the posterior pdf of c given y is proportional to the joint pdf of c and y, the Bayesian

estimator of c based on the posterior mode is the solution of the following minimization

problem

1

n

(

y −
∑

j,m

Kj,m

Γj,m

c

)T (

y −
∑

j,m

Kj,m

Γj,m

c

)

+
2σ2̺

n

∑

j,m

√

cTKj,mc

Γj,m

which is equivalent to (17) with λ2 = 2σ2̺/n.

As it was mentioned before, problem (17) is hard to treat computationally. For this

reason, model (25)–(26) can be replaced by the hierarchical Bayesian model by assuming

that the pdf of c depends on a random vector α, namely,

p(c|Γ,α, β) =
√

det(A)(β/π)n/2 exp

{

−β
∑

j,m

cTKj,mc

Γj,mα2
j,m

}

(27)
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where

A =
∑

j,m

cTKj,mc

Γj,mα2
j,m

.

Now, let the pdf of vector α be of the form

p(α|Γ, γ) = C2(Γ, γ)(det(A))−1/2 exp

{

−γ
∑

j,m

α2
j,m

}

. (28)

The joint pdf of c and α is obtained by multiplying (27) and (28). Integrating α out of

the joint pdf with the help of formula 3.325 of Gradshteyn and Ryzhik (1980) we ensure

that the expression for the marginal pdf of c coincides with (26).

Note that the joint pdf of c and α given y is proportional to the product of (25),

(27) and (28). The Bayesian estimator based on the posterior mode is again obtained by

minimizing the expression

1

n

(

y −
∑

j,m

Kj,m

Γj,m
c

)T (

y −
∑

j,m

Kj,m

Γj,m
c

)

+
2σ2β

n

∑

j,m

cTKj,mc

α2
j,mΓj,m

+
2σ2γ

n

∑

j,m

α2
j,m

which coincides with (20) when λ0 = 2σ2β/n, θj,m = α2
j,m and ν = 2σ2γ/n.

4 Simulations and a real example

In this section we study the empirical performance of our estimator in terms of estimation

accuracy and model selection. Our estimate is compared with the Kovac and Silverman

(2000) wavelet term-by-term thresholding procedure (SK for short) for denoising functions

sampled at nonequispaced design points. Recall that the Kovac and Silverman (2000)

procedure relies upon a linear interpolation transformation R to the observed data vector

y that maps it to a new vector of size 2J (2J−1 < n ≤ 2J), corresponding to a new

design with equispaced points. After the transformation, the new vector is multivariate

normal with mean Rf and covariance that is assumed to have a finite bandwidth so that

the computational complexity of their algorithm is of order n. For the SK procedure a

term-by-term estimator with soft-thresholding and Stein’s unbiased risk estimation policy

(Sure Shrink) was considered as it is implemented in the R-package Wavethresh3 (Nason

(1998)). It is detailed in Kovac and Silverman (2000). Additionally, for both estimators

(ours and SK’s) the lowest level of detail coefficients used was set at 3 for all simulations.

The wavelets used were Daubechies extremal phase wavelets with 5 vanishing moments.
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Figure 4.1: The three test functions used in the simulations.

Since we deal with compactly supported wavelets the numerical algorithm for the

kernel computations is based on Daubechies cascade procedures (Daubechies (1992)).

More precisely, the cascade algorithm computes the values of wavelets and scaling

functions at dyadic points. In order to evaluate the entries of the kernel matrices KΓ
j

we have computed the values of the wavelets on a fine grid of dyadic points and stored

them in a table. Values of scaling functions and wavelet functions at arbitrary points,

necessary for the evaluation of the kernels KΓ
j , were then computed by interpolation or

by considering the value at the closest point on the tabulated grid.
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Figure 4.2: Graphical display (boxplots) of the results given in Table 1. B1: Beta(0.9,1.1)

design; B2: Beta(2,2) design.

4.1 Simulation comparison

The estimators were applied to simulated data sets of varying size, sample point

placement, signal to noise ratio and test function. The values of n used were n = 100 and

200. Three test functions were used that represent a variety of function characteristics.

These are well known functions in the wavelet literature (see Antoniadis et al. (2001))

and are displayed in Figure 4.1. The Blip function presents a discontinuity and does not

really satisfy our assumptions. The Corner and Wave functions are typical functions for

which our algorithm is well suited. The test functions have been scaled so they all have

a standard deviation of 1. Nonequispaced placement of the sample points was done in
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BLIP

Grid SNR n SK Penalization n SK Penalization

Beta(0.9,1.1) 3 100 0.210 (0.008) 0.048 (0.005) 200 0.208 (0.005) 0.051 (0.004)

Beta(0.9,1.1) 7 100 0.208 (0.004) 0.046 (0.002) 200 0.210 (0.002) 0.023 (0.002)

Beta(2,2) 3 100 0.197 (0.008) 0.05 (0.01) 200 0.205 (0.007) 0.053 (0.004)

Beta(2,2) 7 100 0.199 (0.003) 0.036 (0.009) 200 0.210 (0.002) 0.017 (0.003)

CORNER

Beta(0.9,1.1) 3 100 0.033 (0.004) 0.023 (0.005) 200 0.028 (0.003) 0.017 (0.003)

Beta(0.9,1.1) 7 100 0.021 (0.003) 0.011 (0.002) 200 0.015 (0.002) 0.009 (0.001)

Beta(2,2) 3 100 0.036 (0.004) 0.021 (0.004) 200 0.032 (0.004) 0.018 (0.003)

Beta(2,2) 7 100 0.023 (0.003) 0.016 (0.003) 200 0.017 (0.002) 0.009 (0.001)

WAVE

Beta(0.9,1.1) 3 100 0.186 (0.007) 0.050 (0.005) 200 0.192 (0.005) 0.032 (0.003)

Beta(0.9,1.1) 7 100 0.193 (0.003) 0.029 (0.004) 200 0.190 (0.002) 0.016 (0.002)

Beta(2,2) 3 100 0.194 (0.005) 0.047 (0.006) 200 0.191 (0.005) 0.032 (0.003)

Beta(2,2) 7 100 0.194 (0.003) 0.035 (0.007) 200 0.193 (0.002) 0.022 (0.004)

Table 1: Root mean square error of the SK and penalization methods for the synthetic

data sets of FIg. 4.1 with 50 repetitions. Root mean square error is shown together with

its estimated standard deviation for grids Beta(0.9,1.1) and Beta(2,2), Signal-to-Noise

ratio (SNR) 3 and 7, sample size n 100 and 200.

a variety of methods. They include placing the points on the interval [0,1] uniformly, or

distributed as a Beta(9/10,11/10), Beta(1/2,1/2), or Beta(2,2) random variable. Next,

independent, i.i.d. standard Gaussian noise was added to the test signals to give signal

to noise ratios of 3 and 7 (low and high).

Some of the results of these simulations are presented with Table 1 and boxplots are

depicted in Figure 4.2. There, the Beta(9/10, 11/10) distribution or the Beta(2,2) where

used to place the sample points and a signal to noise ratio of 3 or 7 is used. 50 data sets

were generated for each sample size range n = 100 or 200. As can be seen in Table 1

(data assumed to be i.i.d.), our block penalized procedure outperforms the SK estimator

in all cases. We noticed that SK SureShrink based procedure includes sometimes visually

unpleasant artifacts. Moreover, the SK procedure is designed for relatively large sample

sizes, so that n = 100 is almost the lowest possible size it can handle. Consequently, for
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the Blip and the Wave test functions, the precision of the SK method does not improve

even when SNR grows significantly. The latter is due to the bias introduced in SK by pre-

processing of the data. The most interesting comparisons are for the Wave test example

where the benefits of our block penalization are the most impressive.

Figure 4.3: Results of one realization of simulations for the Corner test function. Solid

line represents the true function; circles the input data and dashed line the reconstructed

functions (left panel the SK estimate; right panel the penalized estimate). Top figure:

Beta(9/10,11/10) design; bottom: Beta(2,2) design.

Figure 4.3 shows typical reconstructions for the Corner test function using these two

estimators. We have used a signal to noise ratio of 5 and the Beta(9/10,11/10) and

Beta(2,2) distributions for sample point placement. In Figure 4.3, the number of data

points is 100. Independent, identical mean zero Gaussian noise has been added to the

test signal in the same fashion as for the simulations reported earlier.
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Figure 4.4: Results of one realization of simulations for the Wave test function. Solid

line represents the true function; circles the input data and dashed line the reconstructed

functions (left panel the SK estimate; right panel the penalized estimate). 100 points

with Beta(2,2) distribution and a SNR of 3 were used for simulating the data.

More surprising are the results obtained for the Wave test function displayed in the

panels of Figure 4.4. Here again sample points were drawn according to a Beta(2, 2)

distribution and a Gaussian noise was added to the true function with a signal-to-noise

ratio of 3. As it can be seen the SK estimate produces a smooth fit similar to the one

expected for spline smoothing while our penalized estimate tracks very well the oscillations

of the Wave function.

4.2 Two real data examples

In this subsection, we describe a comparison of the estimators on two real data sets, the

ethanol and the motorcycle data set. Figure 4.5 contains the ethanol data set collected by

Brinkman (1981), and it is easy to see that the data points are not equispaced. The set

contains n = 88 observations each consisting of three measurements: the concentration

of NO and NO2 emissions from a single-cylinder engine, the engines equivalence ratio,

and the engines compression ratio. In the example below we shall analyze only the

concentration of NO and NO2 and the equivalence ratio, and we scale the data to the

interval [0, 1].

The data are analyzed by two different wavelet procedures in both of which the

data are assumed to follow the model yi = f(xi) + ǫi. Wavelets with five vanishing

moments are employed with four levels of detail coefficients starting at level 3 subjected
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Figure 4.5: Measurement of Exhaust from Burning Ethanol.

to thresholding. The first method is based on the SK term-by-term method VisuShrink.

The noise is assumed to be i.i.d. normal and the estimator of its level is based only on

the wavelet coefficients of the highest resolution level which are normalized as in Kovac

and Silverman (2000) to take into account the unequal variances of the coefficients after

the transformation by R. The second method is the penalized block estimation suggested

above with blocks of length 3 and hyperparameters determined by five-fold CV. The

results of the application of the first and the second methods are displayed in the left and

right part of Figure 4.5, respectively. As one can see, the penalized estimates are not

as smooth as the SK estimator since it detects some bumps that are not present in the

SK estimate, suggesting that our penalized estimator is consistent with an assumption of

homoscedastic errors while the apparent smoothness of the SK scatterplot could be only

explained by the assumption of nonconstant variance of the measurement process.

The second example deals with the so-called motorcycle data (see Silverman (1985)

for a complete description of this data set). The experiments are designed to test crash

helmets, and the data consists of the time in seconds as a design variable and head

acceleration in g as a response. Again, in this example, the design is not equispaced and

the errors are well known to be heteroscedastic. We apply the same two procedures to

this data as for the ethanol data set. The results are plotted in Figure 4.6. As one

can see in this example, the penalized estimator is much less affected by the sparseness

of the design points around the maximum, suggesting that the estimator is more robust
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Figure 4.6: Head acceleration versus time after simulated impact (motrocycle data).

to heteroscedasticity than the SK procedure since it detects some bumps that are not

present in the SK estimate.

5 Comments and discussion

In the present paper we study regression problems with nonequispaced design points. The

method suggested in the paper requires neither pre-processing of the data by interpolation

or similar technique, nor the knowledge of the distribution of the design points. For this

reason, the method works really well even in the case when the distribution of the design

points deviates far from the uniform. When the estimation error is calculated at the design

points only, the method achieves optimal convergence rates in Besov spaces no matter how

irregular the design is (see Theorem 3.2). In order to obtain asymptotic optimality in the

L2 metric, an extra assumption on the design points should be imposed, namely, the

density of the design points should be bounded away from zero (see Theorem 3.3). The

estimator demonstrates excellent computational properties. Extensive simulations show

that in terms of the square root of the mean integrated squared error it is several times

superior to the estimator suggested by Kovac and Silverman (2000).

The procedure suggested above involves parameters λ, J and M , the optimal selection

of which depend on the Besov ball Bs
p,q[0, 1]. An adaptive choice of these parameters is

a topic of future investigation. One of the possibilities in this direction is extension of
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Bayesian techniques. As we have shown in Section 3.3, minimizing the penalized error

is equivalent to constructing Bayesian estimator based on posterior mode and special

selection of priors. Furthermore, Bayesian methods can be replaced by empirical Bayesian

procedures where unknown parameters are elicitated by maximizing empirical likelihood.

It will however be necessary to prove that the estimators based on this adaptive choice of

λ and J still attain optimal convergence rates. Another possible extension of the method

above is introduction of various other penalties corresponding to other choices of prior

distributions as well as construction of Bayesian estimators based on posterior means and

medians.
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Appendix

Besov Spaces on the Unit Interval

The (inhomogeneous) Besov spaces on the unit interval, Bs
ρ1,ρ2

([0, 1]), consist of functions

that have a specific degree of smoothness in their derivatives. The parameter ρ1 can be

viewed as a degree of function’s inhomogeneity while s is a measure of its smoothness.

Roughly speaking, the (not necessarily integer) parameter s indicates the number of

function’s derivatives, where their existence is required in an Lρ1-sense; the additional

parameter ρ2 is secondary in its role, allowing for additional fine tuning of the definition

of the space.
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More specifically, let the rth difference of a function f(t) be

∆
(r)
h f(t) =

r
∑

k=0

(

r

k

)

(−1)kf(t+ kh),

and let the rth modulus of smoothness of f(t) ∈ Lρ1 [0, 1] be

νr,ρ1
(f ; t) = sup

h≤t
(||∆(r)

h f ||Lρ1 [0,1−rh]).

Then the Besov seminorm of index (s, ρ1, ρ2) is defined for r > s, where 1 ≤ ρ1, ρ2 ≤ ∞,

by

|f |Bs
ρ1,ρ2

=

[
∫ 1

0

{

νr,ρ1
(f ; h)

hs

}ρ2 dh

h

]1/ρ2

, if 1 ≤ ρ2 <∞,

and by

|f |Bs
ρ1,∞

= sup
0<h<1

{

νr,ρ1
(f ; h)

hs

}

.

The Besov norm is then defined as

||f ||Bs
ρ1,ρ2

= ||f ||Lρ1 + |f |Bs
ρ1,ρ2

and the Besov space on [0, 1], Bs
ρ1,ρ2

([0, 1]), is the class of functions f : [0, 1] → R satisfying

f(t) ∈ Lρ1 [0, 1] and |f |Bs
ρ1,ρ2

< ∞, i.e. satisfying ||f ||Bs
ρ1,ρ2

< ∞. The Besov classes

include, in particular, the well-known Hilbert-Sobolev (Hs
2 [0, 1], s = 1, 2, . . .) and Hölder

(Cs[0, 1], s > 0) spaces of smooth functions (Bs
2,2([0, 1]) and Bs

∞,∞([0, 1]) respectively),

but in addition less-traditional spaces, like the space of bounded-variation, sandwiched

between B1
1,1[0, 1] and B1

1,∞[0, 1]. The latter functions are of statistical interest because

they allow for better models of spatial inhomogeneity (see, for example, Meyer (1992);

Donoho et al. (1995)).

The Besov norm for the function f is related to a sequence space norm on the

wavelet coefficients of the function. As noted in Section 2.1, confining attention to the

resolution and spatial indices j ≥ j0 and k = 0, 1, . . . , 2j − 1 respectively, and denoting

by s′ = s+ 1/2 − 1/ρ1, the sequence space norm is given by

||w||bs
ρ1,ρ2

= ||uj0||ρ1
+

{

∞
∑

j=j0

2js′ρ2||wj||ρ2

ρ1

}1/ρ2

, if 1 ≤ ρ2 <∞,

||w||bs
ρ1,∞

= ||uj0||ρ1
+ sup

j≥j0

{

2js′||wj||ρ1

}

,
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where

||uj0||ρ1

ρ1
=

2j0−1
∑

k=0

|uj0k|ρ1 and ||wj||ρ1

ρ1
=

2j−1
∑

k=0

|wjk|ρ1.

If the mother wavelet ψ is of regularity r > 0, it can be shown that the corresponding

orthonormal periodic wavelet basis defined in Section 2.1 is an unconditional basis for the

Besov spaces Bs
ρ1,ρ2

([0, 1]) for 0 < s < r, 1 ≤ ρ1, ρ2 ≤ ∞. In other words, we have

K1||f ||Bs
ρ1,ρ2

≤ ||w||bs
ρ1,ρ2

≤ K2||f ||Bs
ρ1,ρ2

,

where K1 and K2 are constants, not depending on f . Therefore the Besov norm of the

function f is equivalent to the corresponding sequence space norm defined above; this

allows one to characterize Besov spaces in terms of wavelet coefficients (see, for example,

Meyer (1992); Donoho et al. (1995)). For a more detailed study on (inhomogeneous)

Besov spaces we refer to, for example, DeVore and Popov (1988), Triebel (1983) and

Meyer (1992).

Entropy

The rate of convergence of the estimator in Theorem 3.2 is derived from the entropy of

sets in Besov balls. We will not go into many details here, but mainly recall the basic

definitions and properties of entropy of such sets that will allow us to get the appropriate

rates. A good reference about entropy and nonparametric estimation is the monograph

of van de Geer (2000).

Let T be a subset of a metric space. For δ > 0, the δ-covering number N(δ, T ) is the

minimal number of balls with radius δ > 0 that is necessary to cover T . The δ-entropy of

T is then defined by H(δ, T ) = logN(δ, T ).

In the situation we are looking, we essentially need entropies of subsets of R
n

endowed with the normalized Euclidian norm ‖ · ‖n. Let 0 < ρ < 2. If An = {α =

(α1, . . . , αn)T ;
∑n

j=1 |αj|ρ ≤ 1} by Lemma 4 of Loubes and van de Geer (2002) there

exists a constant A, depending only on ρ, such that

H(δ,An) ≤ Aδ−
2ρ

2−ρ (log n+ log
1

δ
).

Such a result yields already a bound of the entropy of Besov balls when the αj’s denote

wavelet coefficients. However, in Besov spaces, coefficients at higher levels tend to be

smaller, i.e. there is more structure than can be described by the “roughness” parameter
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ρ. As a result it turns out that Besov spaces have entropies without logarithmic factors.

More precisely, let Bs
p,q be the set of coefficients {αj,k} that satisfy







J
∑

j=0

2j((2s+1) p

2
−1) q

p







2j−1
∑

k=0

|αj,k|p






q

p







1

q

≤ 1, (29)

where the αj,k’s are wavelet coefficients of the appropriate wavelet basis. Considering Bs
p,q

as a subset of the Euclidian space R
2J−2, with Euclidian norm ‖ · ‖, an entropy bound

without logarithmic factors can be found in Birman and Solomjak (1967) for the case

of Sobolev spaces Bs
2,2, and in Birgé and Massart (2000) and Kerkacharian and Picard

(2003) for general Besov spaces. It is shown there that for p ≥ 1 and ρ = 2/(2s+ 1) < p

the δ-entropy for the L∞ norm of a Besov ball with radius 1 in Bs
p,q([0, 1)) is of the order

δ−
1

s , with lower and upper constant bounds that depend only on p, q and s, provided that

s > 1/p− 1/q, i.e.

aδ−
1

s ≤ H(δ,Bs
p,q) ≤ Aδ−

1

s , δ > 0. (30)

To end this section and for completeness we re-state also here Theorem 10.2 of van de

Geer (2000) since our proof of Theorem 3.2 follows by this.

Lemma 5.1 (Theorem 10.2 of van de Geer) Consider the regression model Yi =

f0(zi) + ǫi, i = 1, . . . , n, where f0 lies in a given subset Θ of the set of all real-valued

functions on [0, 1], z1, . . . , zn are given points in [0, 1] and ǫ1, . . . , ǫn are independent

N(0, σ2) measurement errors. Let R : Θ → [0,∞[ be a pseudo-norm on Θ and define

the penalized least-squares estimator of f0 by f̂ = argminf∈Θ ‖y − f‖2
n + ν2

nR(f). If

H(δ, { f − f0

R(f) +R(f0)
; f ∈ Θ, R(f) = R(f0) > 0}) ≤ Aδ−η,

for all δ > 0, n ≥ 1 and some A > 0 and 0 < η < 2, then

• If R(f0) > 0 and ν−1
n = OP (n1/(2+η))R(2−η)/(4+2η)(f0), then

‖f̂ − f0‖n = OP (νn)R1/2(f0).

• If R(f0) = 0 and ν−1
n = OP (n1/(2+η))R(2−η)/(4+2η)(f0), then

‖f̂ − f0‖n = OP (n−1/(2−η))ν−2η/(2−η)
n .
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Proofs

Proof of Theorem 3.1. Consider the following decomposition of HJ,Γ:

HJ,Γ = V0 ⊕ VJ,Γ,

where VJ,Γ = ⊕J
j=0

∑

m Wj,m,Γ. Denote by A(f) the functional to be minimized in

(17). It is easy to see that A(f) is convex and continuous. By inequality (12) we have

RJ(f) ≥ ‖f‖HJ,Γ
for any f ∈ VJ,Γ. Let KΓ

J be the reproducing kernel of VJ,Γ and 〈·, ·〉J be

the inner product of VJ,Γ. Denote by en = maxn
i=1(K

Γ
J )1/2(ti, ti). By the properties of the

weighting function Γ and of the reproducing kernel, we have, for any f ∈ VJ,Γ and any

i = 1, . . . , n,

|f(ti)| ≤ |〈f,KΓ
J (ti, ·)〉J | ≤ en‖f‖HJ,Γ

.

The set

D = {f ∈ HJ,Γ; f = b+ f1, with b ∈ V0, f1 ∈ VJ,Γ, RJ(f) ≤ v, |b| ≤ v1/2 + (en + 1)v},

where v = maxi{y2
i + |yi| + 1}, is obviously closed, convex and bounded. Therefore by

Theorem 4 of Tapia and Thompson (1978), there exist a minimizer f̄ of (17) in D and

A(f̄) ≤ A(0) < v.

On the other hand, for any f ∈ HJ,Γ with RJ(f) > v, clearly A(f) ≥ RJ(f) > v; for

any f ∈ HJ,Γ, f = b + f1, with b ∈ V0, f1 ∈ VJ,Γ, RJ(f) ≤ v and |b| > v1/2 + (en + 1)v},
we therefore have

|b+ f1(ti) − yi| > (v1/2 + (en + 1)v) − env − v = v1/2.

Thence A(f) > v, and for any f /∈ D, we have A(f) > A(f̄) which proves that f̄ is the

minimizer of (17) in HJ,Γ.

Proof of Theorem 3.2. The conditions on the unknown regression function f0 in

Theorem 3.2 are only active for its wavelet coefficients and do not include the V0 scaling

coefficient of f0. This is what essentially makes the difference between the set Bs
p,q and the

unit Besov ball of Bs
p,q([0, 1)). To deal with this we will follow the following arguments.

For any f ∈ HJ,Γ, write f = b + f1 where b ∈ V0 and f1 ∈ VJ,Γ. The conditions of

Theorem 3.2 are equivalent to the fact that the function f0 is such that f01 ∈ VJ,Γ. One

can also write A(f) as

(b− b0)
2 +

2

n
(b− b0)

n
∑

i=1

ǫi +
1

n

n
∑

i=1

(f01(ti) + ǫi − f1(ti))
2 + λnRJ (f1).
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Therefore, the minimizing b̂ is b̂ = b0 + 1
n

∑n
i=1 ǫi, which showns that b̂ converges towards

b0 at rate n−1/2. On the other hand, f̂1 must minimize over VJ,Γ, the functional

1

n

n
∑

i=1

(f01(ti) + ǫi − f1(ti))
2 + λnRJ(f1).

We can now apply Lemma 5.1 with R = RJ and η = 1/s. That the δ-entropy

of the corresponding set in Lemma 5.1 is bounded by Aδ−1/s follows the fact that

RJ(f1 − f01) ≤ RJ(f1) + RJ (f01) and from Kerkyacharian and Picard’s inequality (30),

given the fact that the wavelet coefficients of any f1 in the set specified by Lemma 5.1

satisfy the inequality (19) for ρ = 2/(2s+ 1). The conclusion of Theorem 3.2 follows.

Proof of Theorem 3.3. Denote by ‖ · ‖2
2 the integrated squared norm and by β and

β̂ the vectors of wavelet coefficients of f and f̂ respectively (here, the first coefficient is

the coefficient for the unit scaling function). Observe that ‖f̂ − f‖2
2 = ‖β̂ − β‖2

n and

‖f̂ − f‖2
n = ‖Ψ(β̂ − β)‖2

n. Hence,

‖f̂ − f‖2
2 ≤ ‖(ΨT Ψ)−1‖‖f̂ − f‖2

n

where ‖B‖ is the L2-norm of the matrix B, and the result follows immediately.

Proof of Lemma 3.1. For any f ∈ HJ,Γ, write again f = b +
∑J

j=0

∑

m fjm where

b ∈ V0 and fjm ∈Wj,m,Γ. Let the projection of fj,m onto span{Kjm(ti, ·), i = 1, . . . , n} be

denoted by ℓj,m and the orthogonal complement by hj,m. Then fjm = ℓjm + hjm and (17)

can be written as

1

n

n
∑

i=1

{yi − b−
J
∑

j=0

∑

m

〈Kjm(ti, ·), ℓjm〉}2 + λ2
J
∑

j=0

∑

m

(‖ℓjm‖2 + ‖hjm‖2)1/2.

Therefore any minimizing f must be such that hjm = 0, j = 0, . . . , J ;m = 1, . . . ,Mj and

the conclusion of the lemma follows.

Proof of Lemma 3.2. Denote the functional in (20) by B(θ, f). For any j =

0, . . . , J ;m = 1, . . . ,Mj , we have

λ0θ
−1
jm‖Pjmf‖2

HJ,Γ
+ νθjm ≥ 2λ

1/2
0 ν1/2‖Pjmf‖HJ,Γ

= λ2‖Pjmf‖HJ,Γ

for any θjm ≥ 0 and f ∈ HJ,Γ, and the equality holds if and only if θjm =

λ
1/2
0 ν1/2‖Pjmf‖HJ,Γ

. Therefore B(θ, f) ≥ A(f) for any θjm ≥ 0, j = 0, . . . , J ;m =

1, . . . ,Mj and f ∈ HJ,Γ, and the equality holds if and only if θjm = λ
1/2
0 ν1/2‖Pjmf‖HJ,Γ

.

The conclusion then follows.
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