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Abstract

In this paper, we focus on nonparametric estimators in inverse problems for Poisson

processes involving the use of wavelet decompositions. Adopting an adaptive wavelet

Galerkin discretization we find that our method combines the well know theoretical

advantages of wavelet-vaguelette decompositions for inverse problems in terms of

optimally adapting to the unknown smoothness of the solution, together with the

remarquably simple closed form expressions of Galerkin inversion methods. Adapting the

results of Barron and Sheu [2] to the context of log-intensity functions approximated by

wavelet series with the use of the Kullback-Leibler distance between two point processes,

we also present an asymptotic analysis of convergence rates that justify our approach.

In order to shade some light on the theoretical results obtained and to examine the

accuracy of our estimates in finite samples we illustrate our method by the analysis of

some simulated examples. The paper ends with some concluding remarks.
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1 INTRODUCTION

In this article, the problem of estimating the intensity function of an indirectly

observed, non-homogeneous Poisson process is considered. More specifically, let F

be a non-observable Poisson process on a measure space (E0, µ0) and let t f (x) be its

intensity function with respect to the measure µ0 on E0. The function f is the function

of interest and t is the “observation time” which will tend to infinity in asymptotic

considerations. The observable data form another Poisson process G on, possibly

another, measure space (E1, µ1) with an intensity function th(y) with respect to a

measure µ1. The functions f and h, considered as elements of the separable Hilbert

spaces L2(E0, µ0) and L2(E1, µ1), are related by an operator equation h = K f for some

linear compact operator K mapping L2(E0, µ0) into L2(E1, µ1). In many applications,

K is an integral operator with a kernel representing the response of a measuring

device; in the special case where this linear device is translation-invariant, K reduces

to a convolution operator. Observing the point process G must be understood in a

measure sense. Assuming therefore that for any v ∈ L2(E1, µ1), we observe
∫

vdG,

the natural goal is to estimate f but this is a problem that is ill posed in general

because K−1 may not be continuous. Examples range from all kinds of image debluring

models, mathematical models for positron emission tomography and nuclear magnetic

resonance, or unfolding problems in stereology and high energy physics, to cite only

few.

Related problems of inverse estimation have been proposed in the literature,

including smoothing kernel methods (Taylor [25]; Hall and Smith [12]), smoothing

spline methods (Nychka and Cox [19], Nychka, Wahba, Goldfarb and Pugh [20]),

Gauss-Chebyshev type quadrature methods for solving integral equations (Mase

[16]), and singular value decomposition (SVD) methods (Johnstone and Silverman

[11], O’Sullivan [21]; Silverman, Jones, Wilson and Nychka [23]) to cite only a few.

Wavelet and multiscale analysis regularization methods for inverse problems have also

recently received considerable attention in the statistics literature exploiting the fact

that wavelets provide unconditional bases for a large variety of smoothness spaces.

Donoho [8] introduced a wavelet-like decomposition which is specifically adapted to

describe the action of K, the so-called wavelet-vaguelette decomposition (WVD), and

proposed to apply a thresholding algorithm on this decomposition. In Abramovich
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and Silverman [1], this method was compared with the similar vaguelette-wavelet

decomposition (VWD) algorithm. However, most of the techniques developed to

date are based on Gaussian noise models which are not directly applicable in Poisson

inverse problems. As those results are not directly applicable, an alternative approach

has been proposed by Szkutnik [24] using a quasi-maximum likelihood (QML)

histogram sieve estimator when restricting h to step functions. We explore in the

sequel an alternative approach via wavelet based decompositions combined with

thresholding strategies that address adaptivity issues. Our approach is encouraged by

recent attempts to wed a multiscale analysis paradigm with Poisson estimation inverse

problems introduced in Nowak and Kolaczyk [18] and also in the work of Cavalier

and Koo [3] on hard threshold estimators in the tomographic data framework. To

derive estimators whose constructions require as few prior knowledge assumptions

on f (such as smoothness assumptions for instance) and to obtain near optimal rates of

convergence for such estimators we will transfer to the Poisson case wavelet Garlekin

based procedures introduced by Cohen, Hoffman and Reiss [5] in the white noise

framework.

Using some concentration inequalities for suprema of integral functionals of

Poisson processes which are analogous to Talagrand’s inequalities for empirical

processes, our method will lead to a remarkably simple analysis tool for Poisson

inverse problems that is analogous to wavelet-vaguelette based methods used in

Gaussian white noise inverse problems.

The Garlekin approach of Cohen, Hoffman and Reiss [5] is relatively easy

to describe when the inversion problem is a white noise embedded problem.

Unfortunately, as stressed above this is not the case for Poisson inverse problems.

In Section 2, we propose an equivalent formulation of such problems that involves

a notion of information projection similar to the one used by Barron and Sheu [2] for

estimating a density. In Section 3 a linear estimator for the linear inverse problem

at hand is proposed using the appropriate type of wavelets adapted to our case. In

the spirit of wavelet denoising methods (Donoho [8]; Abramovich and Silverman [1]),

and in order to gain in adaptivity, we then improve the estimator by applying a soft-

threshold nonlinearity to the vaguelette coefficients.

The last section is devoted to the numerical implementation of our procedures. We

present the results of a small Monte Carlo experiment designed to study the finite
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sample behavior of our estimates.

2 Preliminaries and notations

In this section we establish the notation and the general framework of the models

which are adopted in this paper for the Poisson inverse problem formulated in the

introduction. For this purpose let F = ∑
τ
i=1 δXi

and G = ∑
τ
i=1 δRi

be two point

Poisson processes on some Borel measurable spaces (E0,B(E0), µ0) and (E1,B(E1), µ1)

respectively, where δx denotes the Dirac measure with support {x}. Associated with

these Poisson processes are the intensity measures defined by:

• λF(B) = E(F(B)) =
∫

B t f (x)dµ0(x), B ∈ B(E0)

• λG(B′) = E(G(B′)) =
∫

B′ th(x)dµ1(x), B′ ∈ B(E1)

where t is an “observation time” which will tend to infinity in our asymptotic

considerations. Observing the process G, we consider the problem of estimating the

rate or intensity function f , when the intensity h results from the action of a compact

self-adjoint positive definite operator K : L2(E0, µ0) → L2(E1, µ1) on the intensity

function of the process F, i.e. h = K f . To simplify the notation, we will assume in the

following without any loss of generality that the observation and unknown domains

E0 and E1 are identical Borel subsets of R
d (d ≥ 1), say E, and that µ0 = µ1 = µ where µ

denotes the Lebesgue measure. A discussion on how one can handle the case E0 6= E1

or K not self-adjoint positive definite is deferred to the end of this paper.

In order to estimate the unknown intensity function f , we will approximate the

logarithm of the intensity by a standard wavelet basis function expansion. A notable

advantage of using such an exponential family intensity estimation is that it forces

positivity of the resulting estimator which is not shared by other kernel or orthogonal

series estimators and is also natural with an entropy based loss function. To therefore

assess the quality of the estimation, we will measure the discrepancy between an

estimator f̂t and the true intensity function f in the sense of relative entropy (Kullback-

Leibler distance) between two point processes:

∆( f ; f̂t) =

∫

(

f log(
f

f̂t

) − f + f̂t

)

dµ,
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where logarithms above are taken with base e. One can show (see Lemma VII. 3 of

[3]) that the above distance of the two intensities is also the Kullback-Leibler distance

between the corresponding Poisson processes. It is well known that ∆ is nonnegative

and equals zero if and only if f̂t = f a.e. The intensity f̂t in the exponential family that

is closest to f in this relative entropy sense is the so-called information projection of f

(Csiszár [6]).

The ill-posed nature of the problem comes from the assumption that K is compact

and therefore its inverse is not L2 -bounded. As in Cohen et al [5] we will express the ill-

posed condition of K by a smoothing action: K will map L2(E, µ) into some smoothness

space Ht for some t > 0. Following the notations in the paper cited above, we will say

that K has the smoothing property of order ν > 0, if K maps the Sobolev space Hs onto

Hs+ν or the Besov space Bs
p,q onto Bs+ν

p,q . Recall that the Sobolev space Hs(R), s ∈ R, is

the space of tempered distributions v such that

‖v‖2
s =

∫

R

(1 + |ξ|2)s|v̂(ξ)|2 dξ < ∞,

where

v̂(ξ) =

∫

R

eiξtv(t) dt,

denotes the Fourier transform of v. The Besov spaces form another particular family

of smoothness spaces. Essentially the Besov spaces Bs
p,q(R

d) consist, basically, of

functions that “have s derivatives in Lp"; the parameter q provides some additional

fine-tuning to the definition of these spaces. The norm ‖g‖Bs
p,q

in a Besov space Bs
p,q

is traditionally defined via the modulus of continuity of f in Lp(R), of which an

additional weighted Lq-norm is then taken, in which the integral is over different

scales. We shall not give its details here; for our purposes it suffices that this traditional

Besov norm is equivalent with a norm that can be computed from wavelet coefficients;

a full study can be found in e.g. Meyer [17], Daubechies [7].

For a self-adjoint positive definite operator K, the smoothing property can be

expressed by the ellipticity property:

〈K f , f 〉 ∼ ‖ f ‖2
H−ν/2 , (2.1)

where 〈·, ·〉 denotes the standard inner product on L2(E, µ) and H−ν is the dual space

of Hν appended with appropriate boundary conditions depending on the problem

(homogeneous, periodic, etc. . . ).
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As already explained in the introduction a key ingredient for solving the Poisson

inverse problem is the use of standard wavelet bases of L2(E, µ) which allow the

characterization of the function spaces that describe both the smoothness of the

solution and the smoothing action of the operator K since wavelet bases provide

also an unconditional bases for a variety of other useful Banach spaces of functions,

such as Hölder spaces, Sobolev spaces and, more generally, Besov spaces. Assume

that we have a scaling function φ and a wavelet function ψ. Scaling and wavelet

functions at scale j (i.e. resolution level 2j) will be denoted by φλ and ψλ, where the

index λ summarizes both the usual scale and space parameters j and k (e.g. for one-

dimensional wavelets, λ = (j, k) and ψj,k = 2j/2ψ(2j · −k)). If d ≥ 2, the notation

ψλ stands for the adaptation of scaling and wavelet functions to multi-dimensional

domains. The notation |λ| = j will be used to denote a wavelet at scale j, while |λ| < j

denotes some wavelet at scale j′, with 0 ≤ j′ < j (we shall assume, merely for notational

convenience, that the usual coarse level of approximation j0 is equal to 0). With these

notations, we assume that:

• The scaling functions (φλ)|λ|=j span a finite dimensional space Vj within a

multiresolution hierarchy V0 ⊂ V1 ⊂ . . . ⊂ L2(E, µ), such that dim(Vj) = 2jd

(periodic wavelets for notational convenience).

• We assume that we are in the orthonormal case i.e. the scaling functions (φλ)|λ|=j

are an orthonormal basis of Vj, and the wavelets (ψλ)|λ|=j form an orthonormal

basis of Wj which is the orthogonal complement of Vj into Vj+1.

• For any g ∈ L2(E, µ), its wavelet decomposition can be written as:

g = ∑
|λ|=0

αλφλ +
∞

∑
j≥0

∑
|λ|=j

βλψλ,

where αλ = 〈g, φλ〉 and βλ = c g, ψλ〉.

• To simplify the notation we shall use the convenient slight abuse of notation

that sweeps up the coarsest-j scaling functions into the ψλ as well, i.e, we

will sometimes write (ψλ)|λ|=−1 for (φλ)|λ|=0. We thus denote the complete d-

dimensional, inhomogeneous wavelet basis by {ψλ; λ ∈ Λ}. By truncating the

wavelet decomposition at level j, we obtain the orthogonal projection onto Vj:

Pjg = ∑
|λ|<j

βλψλ,
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• We also assume that ‖ψλ‖∞ = ‖ψ‖∞2|λ|d/2

Wavelets provide unconditional bases for the Besov spaces, and one can express

whether or not a function g on E belongs to a Besov space by a fairly simple and

completely explicit requirement on the absolute value of the wavelet coefficients of

g. We shall not give its details here; for our purposes it suffices that the traditional

Besov norm is equivalent with a norm that can be computed from wavelet coefficients.

More precisely, let us assume that the original 1-dimensional φ and ψ are in CL(R),

with L > s, that σ = s + d(1/2 − 1/p) ≥ 0, and define the norm ‖ · ‖s,p,q by

‖g‖s,p,q =







∞

∑
j=0



2jσp ∑
λ∈Λ,|λ|=j

|〈g, ψλ〉|p




q/p






1/q

.

Then this norm is equivalent to the traditional Besov norm, that is, there exist strictly

positive constants A and B such that

A‖g‖s,p,q ≤ ‖g‖Bs
p,q

≤ B‖g‖s,p,q.

The condition that σ ≥ 0 is imposed to ensure that Bs
p,q(R

d) is a subspace of L2(Rd); we

shall restrict ourselves to this case in this paper. When 0 < p, q < 1, the Besov spaces

can still be defined as complete metric spaces, although they are no longer Banach

spaces. This allows for more local variability in local smoothness than is typical for

functions in the usual Hölder or Sobolev spaces. For instance, a real function g on R

that is piecewise continuous, but for which each piece is locally in Cs, can be an element

of Bs
p,p(R), despite the possibility of discontinuities at the transition from one piece to

the next, provided p > 0 is sufficiently small, and some technical conditions are met

on the number and size of the discontinuities, and on the decay at ∞ of g.

To end this section and since our estimation procedures will be based on a wavelet

Galerkin projection method, we recall here some useful results on linear Galerkin

projection methods for solving linear problems with additive white noise of the form

g = K f + σdW. For a more detailed description the reader is referred to the paper by

Cohen et . al [5]. Let g ∈ L2(E, µ), then the function gj ∈ Vj is said to be the Galerkin

approximation of g if for all v ∈ Vj:

〈Kgj, v〉 = 〈Kg, v〉.
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Let Gj ∈ R
2jd

be the vector of wavelet coefficients of gj ∈ Vj, then the Galerkin

projection method for approximating g amounts to solve the following linear system:

Gj = K−1
j GK,

where Kj = (〈Kψλ, ψµ〉)|λ|<j,|µ|<j is a symmetric positive definite matrix, and GK =

(〈Kg, ψµ〉)|µ|<j is a “data” vector. Now, define the Galerkin wavelets u
j
λ ∈ Vj as:

〈Ku
j
λ, v〉 = 〈ψλ, v〉, for all v ∈ Vj.

Let U
j
λ be the vector of wavelet coefficients of u

j
λ ∈ Vj, then:

U
j
λ = K−1

j Ψλ,

where Ψλ = (〈ψλ, ψµ〉)|µ|<j is a vector with zero entries except the λ-th component

which is equal to 1. Note that,

〈uj
λ, Kg〉 = (U

j
λ)T(〈ψµ, Kg〉)|µ|<j

= (U
j
λ)TGK

= ΨT
λK−1

j GK = ΨT
λGj = Gj,λ,

where Gj,λ = 〈gj, ψλ〉 denotes the λ-th component of Gj. Hence, if we define gj ∈ Vj by

〈gj, ψλ〉 = 〈Kg, u
j
λ〉, then gj is the Galerkin approximation of g.

3 Information projection based estimation

One of the most important problems confronting an investigator in statistical modeling

is the choice of an appropriate model to characterize the underlying data. This

determination can often be facilitated by the use of a model selection criterion, which

judges the propriety of a fitted model by assessing whether it offers an optimal balance

between "goodness of fit" and parsimony. Kullback’s directed divergence between

the true model and a fitted approximating model is such a criterion. The directed

divergence, also known as the Kullback-Leibler information, the I-divergence, or the

relative entropy, assesses the dissimilarity between two statistical models.

Information projection for the estimation of density functions has been studied

by Barron and Sheu [2]. They obtained various existence results and asymptotic
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bounds for the distance
∫

p log(p/q) between two probability density functions p

and q. Their estimation procedure is based on sequences of exponential families

spanned by orthogonal functions such as polynomials, splines and trigonometric

series. Estimation of density functions by approximation of log-densities with wavelets

has been considered by Koo and Kim [13].

In this section, we adapt the results of Barron and Sheu [2] to the context of log-

intensity functions approximated by wavelet series with the use of the Kullback-

Leibler distance between two point processes. More precisely, let j ≥ 0. If θ denotes

a vector in R
2jd

, then θλ denotes its λ-th component. The wavelet based exponential

family Ej at scale j will be defined as the set of functions:

Ej =







f j,θ(.) = exp( ∑
|λ|<j

θλψλ(.)), θ = (θλ)|λ|<j ∈ R
2jd







.

Following Csiszár [6], the intensity f j,θ in the exponential family Ej that is closest to the

true intensity f in the relative entropy sense is characterized as the unique intensity

function in the family for which 〈 f j,θ̂t
, ψλ〉 = 〈 f , ψλ〉. It seems therefore natural to

estimate the unknown intensity function f , by searching for some θ̂t ∈ R
2jd

such that:

〈 f j,θ̂t
, ψλ〉 =

1

t

∫

u
j
λdG = α̂t

λ, for all |λ| < j.

If there exists a solution to this problem, then f j,θ̂t
will be called the Galerkin information

projection estimate of f at scale j.

We already pointed the advantage of such an approach since one can guarantee

that the intensity function estimates are positive. The following lemma states some of

the I-projection properties onto Ej (see also Csiszár [6]).

Lemma 3.1 Let α ∈ R
2jd

. Assume that there exists some θ(α) ∈ R
2jd

such that for all |λ| < j:

〈 f j,θ(α), ψλ〉 = αλ.

Then, for any intensity function f ∈ L2(E, µ) such that 〈 f , ψλ〉 = αλ and for all θ ∈ R
2jd

, the

following Pythagorian-like identity holds:

∆( f ; f j,θ) = ∆( f ; f j,θ(α)) + ∆( f j,θ(α), f j,θ).
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A consequence of the above lemma, and since ∆( f ; h) > 0 unless f = h almost

everywhere, is that θ(α) (if it exists) uniquely minimizes ∆( f ; f j,θ) for θ ∈ R
2jd

.

From now on assume that there exists some constant Aj < ∞ such that for all v ∈ Vj:

‖v‖∞ ≤ Aj‖v‖L2 .

A key lemma relating distances between the intensities in the parametric family to

distance between the corresponding wavelet coefficients is then the following:

Lemma 3.2 Let θ0 ∈ R
2jd

, α0,λ = 〈 f j,θ0
, ψλ〉 and α ∈ R

2jd
a given vector. Let b =

exp(‖ log( f j,θ0
)‖∞) and e = exp(1). If ‖α − α0‖2 ≤ 1

2ebAj
, then the solution θ(α) to

〈 f j,θ(α), ψλ〉 = αλ for all |λ| < j

exists and satisfies:

‖θ(α) − θ0‖2 ≤ 2eb‖α − α0‖2 (3.1)

‖ log(
f j,θ(α0)

f j,θ(α)
)‖∞ ≤ 2ebAj‖α − α0‖2 (3.2)

∆( f j,θ(α0); f j,θ(α)) ≤ 2eb‖α − α0‖2
2. (3.3)

The proof of this lemma relies upon a series of lemmas on bounds within exponential

families for the Kullback-Leibler distance and is given in the Appendix A.

4 Linear estimation

Let M be some fixed constant and let Fs
p,q(M) denote the set of scaled intensity

functions such that

Fs
p,q(M) =

{

f = exp(g), ‖g‖Bs
p,q

≤ M
}

.

Note that assuming that f ∈ Fs
p,q(M) implies that f is strictly positive.

For f ∈ Fs
p,q(M) we define

Dj = ‖g − Pjg‖L2

γj = ‖g − Pjg‖∞
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Basic to our analysis is a decomposition of the relative entropy between the true and

the estimated intensity into the sum of two terms which correspond to approximation

error and estimation error (bias and variance in a familiar mean squared error

analysis). The proof of this result, which relies upon some concentration inequalities

for Poisson processes, is postponed in the Appendix A .

Theorem 4.1 Assume that ψ is compactly supported and that f ∈ Fs
p,q(M) (with s > d/p ≥

d/2). Let M1 > 1 be a constant such that M−1
1 ≤ f ≤ M1 (see Lemma 7.4), and let

ǫj = 2M2
1e2γj+1DjAj. If ǫj ≤ 1, the information projection exists, i.e. there exists θ∗j ∈ R

2jd

such that:

〈 f j,θ∗j
, ψλ〉 = 〈 f , ψλ〉 for all |λ| < j

and the approximation error satisfies

∆( f ; f j,θ∗j
) ≤ Ceγj D2

j

Moreover, suppose that ψ is in Hs+d/2−ν (with s > ν − d/2) and has r vanishing moments

with r > s + d/2. Let δt
j = 4M2

1e2ǫj+2γj+2A2
j ρj,t, where ρj,t = (2j(ν+d/2)/

√
t +

2j(ν+ 3
2 d)/t)2 + 2−2js. If δt

j ≤ 1, then for every η2 ≤ 1
δt

j
there is a set of probability less than

exp(−η), such that outside this set there exists some θ̂t ∈ R
2jd

which satisfies:

〈 f j,θ̂t
, ψλ〉 =

1

t

∫

u
j
λdG for all |λ| < j

and the estimation error satisfies

∆( f j,θ∗j
; f j,θ̂t

) ≤ Cη2e1+γj+ǫjρj,t.

Note that by using the above theorem, explicit bounds are obtained which are

applicable for each finite value of j and t, subject to ǫj and δt
j ≤ 1. We can now state

the general result on the nonadaptive Galerkin information projection estimator of the

unknown intensity function.

Theorem 4.2 Assume that ψ is compactly supported and that f ∈ Fs
2,2(M) (with s > d/2).

Moreover, suppose that ψ is in Hs+d/2−ν (with s > ν − d/2) and has r vanishing moments

with r > s + d/2. Let j(t) be such that 2−j(t) = ( 1
t )

1/(2s+2ν+d). Then, with probability

tending to 1 as t → ∞, the Galerkin information projection exists and satisfies

∆( f ; f j(t),θ̂t
) ≤ O

(

(
1

t
)2s/(2s+2ν+d)

)
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The above estimator therefore converges almost surely with the optimal rate for

intensities in Fs
2,2(M). However, the main defect of the estimator defined in Theorem

4.2 is that it is suited for smooth functions and does not attain the optimal rates

when for example g = log( f ) has singularities. We therefore propose in the next

section another estimator derived by applying an appropriate nonlinear thresholding

procedure.

5 Nonlinear estimation

It is well known that linear estimators do not achieve the optimal rates of convergence

when the functions to be recovered belong to Besov spaces Bs
p,p with index 1 ≤ p < 2

(the case of functions which are not very smooth). In order to attain such a rate we

need therefore some kind of nonlinear procedure and this is our aim in this section.

Our estimation procedure simply consists of applying a soft thresholding algorithm

on the data to which we apply the Galerkin information projection inversion which

was described previously, exploiting the fact that the model with Poisson intensity is

not too different than the usual Gaussian white-noise model.

Let us first recall that the coefficients defining the Galerkin information projection

estimate of f at scale j, as derived in the previous section, are given by:

α̂t,λ =
1

t

∫

u
j
λdG = (U

j
λ)T 1

t

(
∫

ψµdG

)

|µ|<j

,

where U
j
λ = K−1

j Ψλ.

For some j ≥ 0 (to be fixed further), we define the following thresholded coefficients:

δt(α̂t,λ) = (U
j
λ)T

(

Tǫ(t)(
1

t

∫

ψµdG)

)

|µ|<j

for all |λ| < j,

where Tǫ(t)(x) = sign(x)(x − ǫ(t))+ for x ∈ R denotes the usual soft thresholding

operator.

In order to build an optimal solution for the Poisson inverse problem we will use a

level dependent wavelet thresholding procedure by setting ǫ(t) = 2ν|λ|t−1/2
√

| log t|.
The role of 2ν|λ| is to take into account the amplification of the noise by the inversion

process. The following theorem shows that the resulting estimator behaves in an

optimal way provided that the cutoff resolution level j(t) is chosen such as 2−j(t) ≤
t−1/(2ν) where ν is the degree of ill-posedness of the estimator.
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Theorem 5.1 Assume that ψ is compactly supported and that f ∈ Fs
p,p(M) with s > 0 and

1/p = 1/2 + s(2ν + d). Moreover, suppose that ψ is in Hs+d/2−ν (with s > ν − d/2) and

has r vanishing moments with r > s + d/2. Also assume that K is an isomorphism between L2

and Hν and that it has the smoothing property of order ν with respect to the space Bs
p,p. Then,

the above described Galerkin information projection estimator, say f j(t),θ̂t
, satisfies the minimax

rate

E

(

∆( f ; f j(t),θ̂t
)
)

≤ O

(

(
1

t

√

| log t|)2s/(2s+2ν+d)

)

provided that j(t) is such that 2−j(t) ≤ t−1/(2ν).

Note that the lower bound on j(t) does not depend on the unknown smoothness

of f and therefore Theorem 5.1 allows to build an adaptive solution to our Poisson

inverse problem. The assumption that K−1 maps Hν into L2 in the above theorem is

also implicit in the vaguelette-wavelet method of Donoho [8] for white noise inverse

problems.

6 Implementation and some numerical results

The purpose of this section is to describe the implementation of our approach and

to briefly explore the performance of our method from a numerical point of view.

As in Cohen et al. [5] we will focus on a simple example of a logarithmic potential

kernel in dimension one. We will consider its action on two typical test intensity

functions, which, together with their folded versions by the action of K are displayed

in Figure 6.1.

The logarithmic potential operator K that we will consider is defined by

K f (x) =

∫ 1

0
k(x, y) f (y) dy,

where

k(x, y) = − log(
1

2
| sin

y − x

2
|), x, y ∈ [0, 1].

Such a kernel is singular on the diagonal x = y but integrable. The corresponding

operator is known to be an elliptic operator of order −1, which maps H−1/2 into H1/2

and therefore satisfies the assumptions made in this paper with ν = 1. The first test

function we will consider is

f (x) = max{1 − |30(x − 0.5)|, 0.1}, x ∈ [0, 1],
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Figure 6.1: Artificial intensity functions (left) and their folded versions (right) by the
action of the logarithmic potential kernel. Top-left : the intense peak ; Bottom-left: the
burst-like intensity.

which presents an intense peak and is badly approximated by the singular functions

of K but has a very sparse representation in a wavelet basis. We will also consider a

fast rise-exponential model often used by astrophysicists to model burst phenomena

which is of the form f (x) = f0 + ∑
3
i=1 fi(x) where f0 models the relatively constant

background level of gamma-ray photon arrivals and fi models the ith peak in the burst

of a form

fi(x) =







Ai exp
(

−|x − mi|/σ
νi
r,i

)

, if x ≤ mi

Ai exp
(

−|x − mi|/σ
νi
r,i

)

, if x ≤ mi.

In the expression above mi denotes the location of the ith peak, and the factors Ai, σr,i,

σd,i and νi control respectively the amplitude, the rise, the decay and the peakedness.

Most often data can only be observed in binned form because of the discrete nature

of the measurement apparatus or because binning may be enforced by data handling

and computing efficiency. We therefore have chosen to discretize K for a maximal

resolution level J = 11 by computing the stiffness matrix KJ with entries

(KJ)ℓ,k=0,...,2J−1 =
(

〈KJφJ,ℓ, φJ,k〉
)

ℓ,k=0,...,2J−1

14



where the φJ,k = 2J/2 I[k2−J ,(k+1)2−J) are the Haar scaling functions. Each integral

〈KJφJ,ℓ, φJ,k〉 =

∫ 1

0

∫ 1

0
k(x, y)φJ,ℓ(x)φJ,k(y)dxdy

was computed by Riemann approximation at scale 2−16. Note that the kernel k is

such that k(x, y) = h(x − y) where h(·) is a 1-periodic function. The discretization

KJ of K is therefore a Toeplitz cyclic matrix and the Fast Fourier Transform makes

the computation of the action of K on functions approximated in the Haar basis

numerically fast and easy. But this is not the only reason we have used the Haar

based discretization for both f and KJ . More specifically, the Haar scaling basis at

resolution J, induces a partition of the interval [0, 1) into 2J disjoints and measurable

bins Bk = [k2−J , (k + 1)2−J). Integrating the function tKJ f with respect to the Poisson

counting measure G simply leads to observed data consisting of counts observed in

the bins Bk. By the Poisson nature of G, these are independent Poisson counts with

expected values within each bin t
∫

Bk
h, k = 0, . . . , 2J − 1. Moreover, taking a high

resolution J permits the approximation of
∫

Bk
h by 2−Jh(k/2J ) and this is what we have

done for creating the simulated data in the examples.

For the examples treated in this paper, the estimation was implemented using

Symmlets with 6 vanishing moments. Since the set {x1, . . . , xn}, of the n = 2J points at

which the data is sampled is dyadic any scalar product involving a wavelet at a lower

resolution is computed via the discrete wavelet transform. The Information projection

estimator was obtained by solving the system of equations given in Theorem 4.1 at a

maximal resolution Jmax.

To find the estimate θ̂t we have used, inspired by a similar approach in Koo and

Kim [14], a modified version of the Newton-Raphson method. Let S(θ) denote the

Jmax-dimensional vector of elements

S(θ)λ =
(

δt(α̂t,λ) − 〈 ft,θ, ψλ〉
)

and H(θ), the Jmax × Jmax Hessian matrix whose (λ, λ′) entry is given by

H(θ)λ,λ′ =

∫

ft,θ(x)ψλ(x)ψλ′(x)dx.

The method to compute θ̂t is to start with an initial guess θ
0 and iteratively determine

θ
m+1 according to

θ
m+1 = θ

m + H−1(θ
m)S(θ

m)

15



with a standard criterion for stopping the iterations.

One difficulty in implementing the above algorithm is that Symmlets have no close

functional expression and the integration involved in the computation of the Hessian

H can be very time consuming if ones has to compute a table of the appropriate

values of the function ψλ. We have used instead an efficient filter-bank algorithm

for computing such integrals similar to the one used by Vannucci and Corradi [26] or

Kovac and Silverman [15] to compute the diagonal elements of the covariance structure

of wavelet coefficients, which amounts in computing the fast 2-dimensional wavelet

transform of the diagonal matrix whose diagonal is the vector ft,θ(xi), i = 1, . . . , Jmax

and to retain only the diagonal blocks of the transform.

For our first example, we consider the peaky function and chose a maximal

resolution Jmax = 10 and an “observation time” t = 108 (corresponding to the noise

level used by Cohen et al. [5] for a similar white noise model). A typical sample from

the simulated model is shown in Figure 6.2.
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x 10

7 true signal and observed data

Figure 6.2: Simulated Poisson data obtained by folding the peaky function with the
logarithmic potential.

Let us recall that our non-linear information projection estimator depends on

the cutoff level j(t) given by 2−j(t) ≤ ( 1
t )

1/(2ν) and the level dependent thresholds

ǫ(t) = 2ν|λ|t−1/2
√

| log t|. We therefore have used these expression with ν = 1 to
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estimate the unfolded intensity function. Figure 6.3 displays the non-linear Galerkin

estimator for the folded Poisson data displayed in Figure 6.2. We observe, and this is

true also for the second example, that the peak is very well estimated. However, some

oscillations are observed on the right side of the central peak. A possible remedy to

this defect could be to use a translation invariant procedure but such an approach is

beyond the scope of this paper.
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21
true signal and estimate

Figure 6.3: The unknow intensity (solid) and the non-inear Garlekin estimate (dashed).

Our second example concerns the burst-like intensity function. The data displayed

in Figure 6.4 is simulated as above using for an unfolded intensity a burst signal with

a constant intensity of 20 assigned to the background and three peaks.

Since we are using the same logarithmic potential kernel to fold the intensity,

we have also used here a value of ν equal to 1. Maximal resolution, smooth

cutoff level and thresholds were chosen exactly as in the previous example and

the estimation procedure provides us the fit in Figure 6.5 for the unfolded burst-

like intensity, confirming the good behavior of our procedure even for complicated

intensity structures.
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Figure 6.4: Simulated Poisson data obtained by folding the burst-like intensity with
the logarithmic potential.
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Figure 6.5: The unknow intensity (solid) and the non-inear Garlekin estimate (dashed).

7 Conclusions

The methodology of this paper was motivated by wavelet-vaguelette (WVD) methods

that have been developed in the literature for solving inverse problems with Gaussian
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white-noise perturbations. Such methods have been proved very efficient for

recovering signals folded by homogeneous operators, but are not designed to handle

more general operators or Poisson inverse problems. The method developed here

combines the numerical simplicity of Galerkin projection methods with the optimality

of adaptive wavelet thresholding methods, which are easier to handle than WVD

approaches. The underlying intuition is again that if the operator involved in the

folding process lends to a fairly sparse representation in wavelets, and if the intensity

to be unfolded is mostly smooth with some singularities, then the inversion of the

truncated operator will not be too onerous, and the approximate representation of

the intensity will do a good job of capturing the singularities. Moreover, the adopted

thresholding makes the method adaptive.

Our attention was restricted to inverse problems, in which E0 and E1 are identical

Borel subsets of R
d and the operator K is self-adjoint positive definite. In the case

where E0 6= E1 and K is not self-adjoint but just injective one may choose, as it is done

in Cohen et al. [5], E1 = K(E0) and solve instead the inverse problem K∗h = K∗K f

where K∗ denotes the adjoint of K. In such a way we are led back to the wavelet

Galerkin information projection method developed in this paper.

Another approach, which is worth investigating in the future, would be to derive

a Landweber-type iterative algorithm that involves a denoising procedure at each

iteration step and provides a sequence of approximations converging in norm to the

maximum penalized likelihood minimizer as it is done by Figueiredo and Nowak [10],

who derive such an iterative algorithm for inverting a convolution operator acting on

objects that are sparse in the wavelet domain.
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Appendix: Proofs of the main results.

We first derive the proof of Lemma 3.1.

PROOF OF LEMMA 3.1. Note that:

∆( f ; f j,θ) = D( f , f j,θ) +

∫

(− f + f j,θ(α))dµ +

∫

(− f j,θ(α) + f j,θ)dµ,

where

D( f , f j,θ) =

∫

f log(
f

f j,θ
)dµ = D( f , f j,θ(α)) + D( f j,θ(α), f j,θ),

by Lemma 4 of Barron and Sheu [2], which completes the proof. �

To prove Lemma 3.2 we need some preliminary lemmas on bounds within

exponential families for the Kullback-Leibler distance; their proofs can be easily

derived from the proofs of Lemma 1 and Lemma 4 of Barron and Sheu [2] and thus

they are omitted.

Lemma 7.1 Let f and h be two intensity measures in L2(E, µ). Assume that log(
f
h ) is

bounded, then

∆( f ; h) ≥ 1

2
e−‖ log(

f
h )‖∞

∫

f (log(
f

h
))2dµ

∆( f ; h) ≤ 1

2
e‖ log(

f
h )‖∞

∫

f (log(
f

h
))2dµ

Lemma 7.2 For j ≥ 0, let θ0, θ ∈ R
2dj and b = exp(‖log( f j,θ0

)‖∞), then

‖ log(
f j,θ0

f j,θ
)‖∞ ≤ Aj‖θ0 − θ‖2

∆( f j,θ0
; f j,θ) ≥ 1

2b
e−Aj‖θ0−θ‖∞‖θ0 − θ‖2

2

∆( f j,θ0
; f j,θ) ≤ b

2
eAj‖θ0−θ‖∞‖θ0 − θ‖2

2

We can proceed to the proof of Lemma 3.2.

PROOF OF LEMMA 3.2. This proof is inspired by the proof of Lemma 5 of Barron and

Sheu [2]. Let

F(θ) = θ · α − H(θ),
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where H(θ) =
∫

f j,θ(x)dµ(x). If α = α0, then the result is trivial. Now, if α 6= α0, note

that for any θ ∈ R
2dj

∆( f j,θ0
; f j,θ) = α0 · (θ0 − θ) + H(θ) − H(θ0).

Hence,

F(θ0) − F(θ) = ∆( f j,θ0
; f j,θ) − (α0 − α) · (θ0 − θ).

So, by Lemma 7.2 and the Cauchy-Schwartz inequality, we have that

F(θ0) − F(θ) ≥ 1

2b
e−Aj‖θ0−θ‖∞‖θ0 − θ‖2

2 − ‖α0 − α‖2‖θ0 − θ‖2.

This inequality is strict if θ 6= θ0. For all θ such that ‖θ0 − θ‖2 = 2eb‖α0 − α‖2,

F(θ0) − F(θ) > 2eb‖α0 − α‖2
2

(

e1−2Ajeb‖α0−α‖2 − 1
)

.

The right side is positive whenever 2Ajeb‖α0 − α‖2 ≤ 1. Hence, F(θ0) > F(θ) for all θ

such that ‖θ0 − θ‖2 = 2eb‖α0 − α‖2. Consequently, F has an extreme point θ∗ such that

‖θ0 − θ∗‖2 < 2eb‖α0 − α‖2. The gradient of F at θ∗ must satisfy:

< f j,θ∗ , ψλ >= αλ for all |λ| < j

and so θ(α) = θ∗. Hence, inequality (3.1) immediately follows. Inequality (3.2) follows

from Lemma 7.2. Since F(θ(α)) ≥ F(θ0), we have that:

∆( f j,θ(α0); f j,θ(α)) ≤ (α0 − α) · (θ0 − θ(α))

≤ ‖α0 − α‖2‖θ0 − θ‖2

≤ 2eb‖α0 − α‖2
2,

which completes the proof �.

To prove the main results of this paper we shall need a series of technical lemmas,

stated and proved below. Throughout this section, C will denote a constant whose

value may change from line to line.

Lemma 7.3 If ψ is compactly supported, then

‖ ∑
|λ|=j

βλψλ‖∞ ≤ C2jd/2‖β j‖2
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PROOF: This lemma immediately follows from the proof of Lemma 1 of Koo and Kim

[13]. �.

The following lemma is similar to Lemma 2 of Koo and Kim [13]:

Lemma 7.4 Assume that ψ is compactly supported and that f ∈ Fs
p,q(M). If s > d/p ≥ d/2,

then there exists a constant M1 such that

0 <
1

M1
≤ f ≤ M1 < ∞.

PROOF: Let g = log( f ) = ∑
∞
j=−1 ∑|λ|=j βλψλ. Since ‖g‖Bs

p,q
≤ M, we have

‖β j‖p =



 ∑
|λ|=j

|βλ|p




1/p

≤ M2−js′ ,

where s′ = s + d(1/2 − 1/p). If s > d/p ≥ d/2, then:

‖β j‖2 ≤ ‖β j‖p ≤ C2−js′ . (7.1)

Then, by Lemma 7.3

‖g‖∞ ≤
∞

∑
j=−1

‖ ∑
|λ|=j

βλψλ‖∞ ≤
∞

∑
j=0

C2jd/2‖β j‖2 ≤ C
∞

∑
j=0

2j(d/2−s′) ≤ C
∞

∑
j=0

2−j(s−d/p).

Since s > d/p, ∑
∞
j=0 2−j(s−d/p) < ∞ and therefore there exists some constant M1 > 1

such that ‖g‖∞ = ‖ log f ‖∞ ≤ log M1. �

Now, we give bounds for Aj, Dj and γj.

Lemma 7.5 Assume that ψ is compactly supported, then:

Aj = C2jd/2

Moreover suppose that f ∈ Fs
p,q(M). If s > d/p ≥ d/2, then

Dj ≤ C2−j(s+d(1/2−1/p))

γj ≤ C2−j(s−d/p)
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Proof: The result for Aj immediately follows from Lemma 7.3. Note that from equation

(7.1),

D2
j = ∑

j′≥j

‖β j′‖2
2 ≤ C ∑

j′≥j

2−2j′(s+d(1/2−1/p)) = O(2−2j(s+d(1/2−1/p))).

By definition,

γj = ‖g − Pjg‖∞ ≤ AjDj ≤ C2−j(s−d/p),

which completes the proof. �

We may now proceed to the proofs of our main results.

PROOF OF THEOREM 4.1.

Approximation error term: Let g = log( f ) = ∑
∞
j=−1 ∑|λ|=j βλψλ, and for all |λ| < j, let

αj,λ = 〈exp(Pjg), ψλ〉 and αλ = 〈 f , ψλ〉 . Observe that the coefficients (αj,λ − αλ), |λ| < j,

are the coefficients of the orthogonal projection of f − exp(Pjg) onto Vj. Hence by

Bessel’s inequality

‖αj − α‖2
2 ≤ ‖ f − exp(Pjg)‖2

L2 .

Given our assumptions on ψ and f , Lemma 7.4 implies that

‖αj − α‖2
2 ≤ M1

∫

( f − exp(Pjg))2

f
dµ,

and so by Lemma 2 of Barron and Sheu [2],

‖αj − α‖2
2 ≤ M1e2‖g−Pjg‖∞

∫

f (g − Pjg)2dµ ≤ M2
1e2γj D2

j .

Now, apply Lemma 3.2 with θ0,λ = βλ, αλ = 〈 f , ψλ〉 for all |λ| < j and b =

e‖ log(exp(Pjg))‖∞ . Since ‖ log( f / exp(Pjg))‖∞ = γj, we have that ‖ log(exp(Pjg))‖∞ ≤
log M1 + γj and therefore b ≤ M1eγj . From Lemma 3.2, we have that if M1eγj Dj ≤ 1

2ebAj
,

i.e if ǫj ≤ 1, then θ∗j = θ(α) exists. By Lemma 3.1 (Pythagorean-like relationship), we

obtain that

∆( f ; f j,θ∗j
) ≤ ∆( f ; exp(Pjg)).

Thence, by Lemma 7.1,

∆( f ; f j,θ∗j
) ≤ 1

2
e‖g−Pjg‖∞

∫

f (g − Pjg)2dµ.

≤ 1

2
M1eγj D2

j ,
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which completes the proof of the first assertion of the theorem.

Estimation error term: Using the above notation and proof, and since, by assumption

ǫj ≤ 1, let θ∗j ∈ R
2jd be the parameter vector achieving the minimum of the relative

entropy for intensities in the exponential family. For all |λ| < j, define α0,λ = 〈 f , ψλ〉 =

〈 f j,θ∗j
, ψλ〉 and let α̂t,λ = 1

t

∫

u
j
λdG. It is easy to see that E(α̂t,λ) = 〈uj

λ, K f 〉. We now

have

‖α̂t − α0‖2
2 = ∑

|λ|<j

(α̂t,λ − α0,λ)2 ≤ 2 ∑
|λ|<j

(

α̂t,λ − 〈uj
λ, K f 〉

)2
+ 2

(

〈uj
λ, K f 〉 − α0,λ

)2
.

(7.2)

Concerning the second member of the right hand side of inequality (7.2), and since

α0,λ = 〈 f , ψλ〉 note that

(〈uj
λ, K f 〉 − 〈 f , ψλ〉)2 = (〈 f , Ku

j
λ − ψλ〉)2 ≤ ‖ f ‖2

L2‖Ku
j
λ − ψλ‖2

L2

= ‖ f ‖2
L2

(

‖Ku
j
λ‖

2
L2 + 1 − 2〈Ku

j
λ, ψλ〉

)

By definition we have that 〈Ku
j
λ, ψλ〉 = 〈ψλ, ψλ〉 = 1. It follows that

‖Ku
j
λ‖

2
L2 = ∑

|µ|<j

〈Ku
j
λ, ψµ〉2 + ∑

|µ|≥j

〈Ku
j
λ, ψµ〉2

= 1 + ∑
|µ|≥j

〈Ku
j
λ, ψµ〉2.

Given the assumptions on the wavelet ψ and the operator K, u
j
λ belongs to Hs+d/2−ν

and hence Ku
j
λ belongs to Hs+d/2. Since r > s + d/2, it follows from approximation

theory that

∑
|µ|≥j

〈Ku
j
λ, ψµ〉2 ≤ 2−2j(s+d/2),

and therefore

(〈uj
λ, K f 〉 − 〈 f , ψλ〉)2 ≤ ‖ f ‖2

L2 2−2js−jd.

Thence we obtain for the second member of the right hand side of inequality (7.2)

∑
|λ|<j

(〈uj
λ, K f 〉 − 〈 f , ψλ〉)2 ≤ ‖ f ‖2

L22−2js. (7.3)

To control the first term of the right hand side of inequality (7.2), let Sj = span{u
j
λ; |λ| <

j} and set

χ2(Sj) = ∑
|λ|<j

(

α̂t,λ − 〈uj
λ, K f 〉

)2
= ∑

|λ|<j

(

1

t

∫

u
j
λdG − 〈uj

λ, K f 〉
)2

.
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Noticing that

χ(Sj) = sup
{a∈Rjd;‖(aλ)|λ|<j‖2<1}

∫

∑|λ|<j aλu
j
λ

t
(dG − tK f dµ) ,

we can use Corollary 1 of Reynaud-Bouret [22] about concentration inequalities for

Poisson processes to get, for any w > 0 and ǫ > 0,

P

{

χ(Sj) ≥ (1 + ǫ)E(χ(Sj)) +
√

12v0w + κ(ǫ)b0w
}

≤ exp(−w), (7.4)

where κ(ǫ) = 1.25 + 32/ǫ,

v0 = sup
{a∈Rjd;‖a‖2<1}

∫

∑|λ|<j(aλu
j
λ)2

t2
tK f dµ,

and

b0 = sup
{a∈Rjd;‖a‖2<1}

‖ ∑|λ|<j aλu
j
λ‖∞

t
.

In what follows we provide a precise control of the constants v0 and b0 involved in

inequality (7.4). It is easy to show that

v0 ≤ ‖K f ‖∞

t
sup

{a∈Rjd;‖a‖2<1}

∫



 ∑
|λ|<j

aλu
j
λ





2

dµ.

For any vector a ∈ R
jd we have

∫



 ∑
|λ|<j

aλu
j
λ





2

dµ = ∑
|λ|<j,|λ′|<j

aλaλ′

∫

u
j
λu

j
λ′dµ (7.5)

≤ ∑
|λ|<j

aλaλ′‖u
j
λ‖L2‖u

j
λ′‖L2 . (7.6)

As argued in Cohen et al. [5], the ellipticity property (2.1) yields

‖u
j
λ‖

2
H−ν/2 ≤ < Ku

j
λ, u

j
λ >=< ψλ, u

j
λ >

≤ ‖ψλ‖L2‖u
j
λ‖L2 = ‖u

j
λ‖L2 .

and the inverse inequality (see Cohen et al [5]) states that ‖u
j
λ‖L2 ≤ 2νj/2‖u

j
λ‖H−ν/2

which implies that (dividing by ‖u
j
λ‖L2):

‖u
j
λ‖L2 ≤ 2νj. (7.7)
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Using the above bound in the last inequality (7.6) we finally obtain:

∫



 ∑
|λ|<j

aλu
j
λ





2

dµ ≤ 22νj



 ∑
|λ|<j

aλ





2

≤ 2j(2ν+d)‖a‖2
2.

It follows that

v0 ≤ ‖K f ‖∞
2j(2ν+d)

t
.

Now, by definition of the constants Aj and since ∑|λ|<j aλu
j
λ ∈ Vj, we have

‖ ∑
|λ|<j

aλu
j
λ‖∞ ≤ Aj‖ ∑

|λ|<j

aλu
j
λ‖L2 ,

and it follows that, for ‖a‖2 ≤ 1,

‖ ∑
|λ|<j

aλu
j
λ‖L2 ≤ 2j(ν+d),

which combined with the statements of Lemma 7.5 gives

b0 = O

(

2j(ν+ 3
2 d)

t

)

.

Now, recall that Var( 1
t

∫

u
j
λdG) = 1

t

∫

(u
j
λ)2K f dµ. Hence, using again the bound in

inequality (7.7) we have

∑
|λ|<j

Var(
1

t

∫

u
j
λdG) ≤ 1

t
‖K f ‖∞2j(d+2ν), (7.8)

which implies that

E(χ2(Sj)) ≤
1

t
‖K f ‖∞2j(d+2ν).

Combining equations (7.8) and (7.3) yields finally

E



 ∑
|λ|<j

(
1

t

∫

u
j
λdG − 〈 f , ψλ〉)2



 ≤ 2

(

1

t
‖K f ‖∞2j(d+2ν) + ‖ f ‖2

L22−2js

)

From Cauchy-Schwartz inequality and expression (7.4) with ǫ = w it follows that

there exists a constant C > 0, such that, for any w > 0:

P

{

χ2(Sj) ≥ C(1 + w)2(2j(ν+d/2)/
√

t + 2j(ν+ 3
2 d)/t)2

}

≤ exp(−w).
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Combining the above inequalities, and using the fact that f is bounded in L2 we get

finally:

P

{

‖α̂t − α0‖2
2 ≥ C(1 + w)2ρj,t

}

≤ exp(−w).

It remains to set η = (1 + w) and recall that ρj,t = (2j(ν+d/2)/
√

t + 2j(ν+ 3
2 d)/t)2 + 2−2js

to get

P

{

‖α̂t − α0‖2
2 ≥ C1η2ρj,t

}

≤ exp(−η).

Now, applying Lemma 3.2 with θ0 = θ∗j , α = α̂t and b = e
‖ log( f j,θ∗

j
)‖∞

, we have that

‖ log( f j,θ∗j
/ exp(Pjg))‖∞ ≤ ǫj, and so b ≤ M1eǫj+γj . Hence, if η2ρt

j ≤ 1
4e2b2A2

j

, that is if

δt
j ≤ 1/η2, then except in the set above, Lemma 3.2 implies that θ̂t = θ(α̂t) ∈ R

2jd
exists

and satisfies

∆( f j,θ∗j
; f j,θ̂t

) ≤ 2eb‖α − α0‖2
2

≤ 2M1e1+ǫj+γjη2ρj,t,

which completes the proof. �

PROOF OF THEOREM 4.2. From the bounds for Aj, ∆j and γj given by Lemma 7.5

and since s > d/2, we obtain that γj(t) → 0 as t → ∞ and so ǫj(t) = 0(Aj∆j) =

0(2−j(t)(s−d/2)). Hence, ǫj(t) → 0 as t → ∞ which implies that δt
j(t) = 0(2−j(t)(2s−d)).

Since ǫj(t) → 0 and δt
j(t) → 0 as t → ∞, Theorem 4.1 implies that

∆( f ; f j(t),θ∗j(t)
) ≤ O

(

2−2j(t)s
)

,

while for the estimation error, we have that as t → ∞, then with probability tending to

1, f j(t),θ̂t
exists and by Borel-Cantelli’s Lemma satisfies

∆( f j(t),θ∗
j(t)

; f j(t),θ̂t
) ≤ O

(

2−2j(t)s
)

.

The result now follows from the Pythagorean-like relationship (Lemma 3.1)

∆( f ; f j(t),θ̂t
) = ∆( f ; f j(t),θ∗j(t)

) + ∆( f j(t),θ∗j(t)
; f j(t),θ̂t

).

�
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PROOF OF THEOREM 5.1. Note that

‖δt(α̂t) − α0‖2
2 = ∑

|λ|<j

(δt(α̂t,λ) − 〈 f , ψλ〉)2

≤ 2



 ∑
|λ|<j

(δt(α̂t,λ) − 〈uj
λ, K f 〉)2 + (〈uj

λ, K f 〉 − 〈 f , ψλ〉)2





From the proof of Theorem 4.1 (see eq. (7.3)), we have (with the assumed conditions

on ψ and K)

∑
|λ|<j

(〈uj
λ, K f 〉 − 〈 f , ψλ〉)2 ≤ ‖ f ‖2

L22−2js.

Remark that the space Bs
p,p is continuously embedded in Hζ whenever ζ ≤ s + d/2 −

d/p = 2νs/(2ν + d). Moreover, since 2ν/(2ν + d) < 1 and f is uniformly bounded we

therefore obtain the estimate

∑
|λ|<j

(〈uj
λ, K f 〉 − 〈 f , ψλ〉)2 ≤ O

(

2−4js ν
2ν+d

)

.

This gives the optimal order
(

1
t

)2s/(2s+2ν+d)
provided j(t) is large enough so that

2−j(t) ≤ ( 1
t )

ν+d/2
ν(2s+2ν+d) . For t > 1, we have ( 1

t )
1/(2ν) ≤ ( 1

t )
ν+d/2

ν(2s+2ν+d) , since s ≥ 0, with

equality if s = 0. Therefore, if 2−j(t) ≤ ( 1
t )

1/(2ν), we obtain

∑
|λ|<j

(〈uj
λ, K f 〉 − 〈 f , ψλ〉)2 ≤ O

(

(

1

t

)2s/(2s+2ν+d)
)

. (7.9)

Note also that

∑
|λ|<j

(δt(α̂t,λ) − 〈uj
λ, K f 〉)2 = ∑

|λ|<j

[

ΨT
λK−1

j

(

Tǫ(t)(
1

t

∫

ψµdG) − 〈h, ψµ〉
)

|µ|<j

]2

= ‖K−1
j

(

Tǫ(t)(
1

t

∫

ψµdG) − 〈h, ψµ〉
)

|µ|<j

‖2
2,

where h = K f . Since K is an isomorphism between L2 and Hν, using the proof of

Theorem 1 of Cohen et al. [5] we have, that for any U = (uλ)|λ|<j ∈ R
2jd,

‖K−1
j U‖2

2 ≤ C‖U‖Hν = ∑
|λ|<j

22ν|λ||uλ|2. (7.10)
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Hence, it follows that

∑
|λ|<j

(δt(α̂t,λ) − 〈uj
λ, K f 〉)2 ≤ ∑

|λ|<j

22ν|λ|
(

Tǫ(t)(
1

t

∫

ψλdG) − 〈h, ψλ〉
)2

We remark that Tǫ(t)(
1
t

∫

ψλdG) − 〈h, ψλ〉 is exactly the error when estimating 〈h, ψλ〉
by the thresholding procedure on the “data” 1

t

∫

ψλdG. We are thus left with finding

a threshold ǫ(t) and some appropriate bounds for the estimation of h based on the

thresholded coefficients Tǫ(t)(
1
t

∫

ψλdG), |λ| < j, which would yield a bound for

E‖δt(α̂t) − α0‖2
2.

To simplify the notation set β̂λ,t = 1
t

∫

ψλdG and let βλ,0 =
∫

ψλhdµ. Since G

is a Poisson process with intensity th it is easy to see that E(β̂λ,t) = βλ,0 and that

Var(β̂λ,t) = 1
t

∫

ψ2
λhdµ = 1

t σ2
λ. In order to bound the intensity estimation risk by

a corresponding white noise model risk, we will apply Lemma V of Cavalier and

Koo [3] to construct an approximation η̂λ,t having an exact Gaussian distribution with

the same mean βλ,0 and the same variance Var(β̂λ,t). To this end, let gλ = 1
σλ

ψλ and

note that
∫

g2
λhdµ = 1 and ‖gλ‖∞ = 1

σλ
‖ψλ‖∞ = 2|λ|d/2

σλ
:= Hλ say. We construct

η̂λ,t = βλ,0 + t−1/2σλZλ by the following recipe.

Firstly, if σλ ≥ C2|λ|d log3 t
t , then use Lemma V of Cavalier and Koo [?] to construct Zλ

and note that

Vλ,t = E
(

β̂λ,t − η̂λ,t

)2
=

σ2
λ

t
E(t−1/2Sλ,t − Zλ)2 ≤ C2|λ|dt−2,

where Sλ,t =
∫

ψλ(dG − thdµ).

Secondly, if σλ < C2|λ|d log3 t
t , choose an independent Zλ ∼ N(0, 1) and simply use the

inequality

Vλ,t ≤ 2Var(β̂λ,t) + 2t−1σ2
λ ≤ C2|λ|d

log3 t

t2
.

In either case, we have therefore for all |λ| < j and all t > 0,

Vλ,t ≤ C2|λ|d
log3 t

t2
.

To apply the Gaussian approximation to Tǫ(t)(β̂λ,t) note that

E
(

Tǫ(t)(β̂λ,t) − βλ,0

)2 ≤ 2E
(

Tǫ(t)(β̂λ,t) − Tǫ(t)(η̂λ,t)
)2

+ 2E
(

Tǫ(t)(η̂λ,t) − βλ,0

)2
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Since the mapping y → T(y, ǫ) is a contraction (see Donoho et al. [9]) regardless of the

value of ǫ, it follows that

E
(

Tǫ(t)(β̂λ,t) − βλ,0

)2 ≤ 2Vλ,t + 2r(ǫ(t); t−1/2σλ; βλ,0),

where r(ǫ(t); σ; β) is the Gaussian mean squared error E(Tǫ(β + σZ) − β)2 for

estimation of β from a single Gaussian observation with mean β and variance σ2. Since

all intensities h ∈ Fs
p,p(M) are uniformly bounded we have σλ ≤ ‖h‖∞ and therefore

E
(

Tǫ(t)(β̂λ,t) − βλ,0

)2 ≤ 2Vλ,t + 2r(ǫ(t); t−1/2‖h‖∞; βλ,0). (7.11)

Using the level dependent threshold ǫ(t) = 2ν|λ|t−1/2
√

| log t|, the upper bound in

inequality (7.11), the fact that h belongs to a Besov ball Bs+ν
p,p (M̃) for some finite constant

M̃ and the stability property (7.10), we obtain the rate

E



 ∑
|λ|<j

(δt(α̂t,λ) − 〈uj
λ, K f 〉)2



 = O

(

(
1

t

√

| log t|)2s/(2s+2ν+d)

)

,

as a particular case of classical results on soft wavelet thresholding (for example see

Cohen et al. [4]). Combining the above upper bound with inequality (7.9) and using

again Lemma 3.2 concludes the proof of the theorem. �
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