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Abstract

Given n independent and identically distributed observations in a set G = {(x,y) € [0, 1]? x
R : 0 <y < g(x)} with an unknown function g, called a boundary or frontier, it is
desired to estimate g from the observations. The problem has several important applications
including classification and cluster analysis, and is closely related to edge estimation in image
reconstruction. It is particularly important in econometrics. The convex-hull estimator of
a boundary or frontier is very popular in econometrics, where it is a cornerstone of a
method known as ‘data envelope analysis’ or DEA. In this paper we give a large sample
approximation of the distribution of the convex-hull estimator in the general case where
p > 1. We discuss ways of using the large sample approximation to correct the bias of
the convex-hull and the DEA estimators and to construct confidence intervals for the true

function.
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1 Introduction

Let (X1,Y1),...,(X,,Y,) be i.i.d. random variables distributed in a set G C IRP*! where
G={(z,y) €0, 1P xR : 0<y<g(x)} (1.1)

for some function g > 0 defined on [0,1]P. The function g is called boundary. This pa-
per addresses the problem of estimating the boundary g based on the random sample
(X1,Y1),...,(X,,Y,). See Korostelev and Tsybakov (1993b) for several important appli-
cations of this problem.

Consider the class, denoted by Geony, of all sets G under boundaries g which are convex
on [0, 1]?. Here and below, by convexity we mean ‘upward’ convexity, i.e. we say a function g
is convex on a convex set A if g (Ax1 + (1 — N)ax2) > Ag(x1)+(1—N)g(x2) for any 1, 2 € A
and 0 < XA < 1. A natural estimator of G in Gcony is the convex-hull of (X1,Y7),..., (X, Yn)
and [0, 1]7 x {0}, i.e. the smallest convex set containing (X 1,Y7),...,(X,,Y,) and [0, 1] x
{0}. In fact, it may be shown that it is the maximum likelihood estimator in the case
where (X;,Y;)’s have the uniform density on G. The convex-hull estimator §eony Of g is
then defined to be the ‘roof’ of the convex-hull. It is the ‘lowest’ convex function on [0, 1]?
that lies above all the observations.

Estimation of the boundary or frontier g is particularly important in econometrics where
it is used to evaluate the performance of an enterprise in terms of technical efficiency. In
this context, X ; describes the input parameter vector of the i-th enterprise, Y; corresponds
to its scalar productivity, and G is the production set of technically feasible pairs of input
vector  and productivity y. The technical efficiency is defined as the relative distance from
the observed productivity to the boundary. Convexity of the boundary is often assumed in
econometrics where it is termed “decreasing returns to scale”. Furthermore, the boundary
is usually monotone nondecreasing, which is due to free disposability of most production
sets. The production set G is said to be free disposable if (z,y) € G implies (z',y') € G
for any ' > x and vy’ < y. Throughout this paper, inequalities between two vectors are
to be understood componentwise. The data envelope analysis or DEA approach based
on Farrell’s (1957) idea is a natural nonparametric way of estimating a convex and free
disposable production set. The DEA estimator of GG is defined to be the smallest free
disposable set containing the convex-hull estimator described above. The corresponding

estimator of g, which we denote §gea, is then its upper boundary. The latter is the ‘lowest’



monotone nondecreasing convex function on [0,1]? that lies above all the observations.
The DEA estimator of GG is also the maximum likelihood estimator, now in the class G,
provided that (X, Y;)’s have the uniform density on G, where G, is the class of all sets
G under boundaries which are monotone nondecreasing and convex on [0,1]?. The DEA
estimator has been extensively used in the economics and business literature since Charnes,
Cooper and Rhodes (1978) popularized it in terms of linear programming techniques.

The convex-hull and the DEA estimator of G are known to achieve the minimax optimal
rate of convergence n~2/(P+2) with respect to the metric d(G1,G2) = mes(G1AG») in the
corresponding classes Geony and G, respectively. Here, mes(G1AG3) is the Lebesgue
measure of G1/AG», the symmetric difference between GG1 and Go, see Korostelev, Simar
and Tsybakov (1995b). Also, it was shown by Kneip, Park and Simar (1998) that §qea (),
thus Jeonv () too, converges to g(x) for a given point = € (0,1)? at the rate n=2/(P+2),
However, we are not aware of any earlier work for the limit distribution of §conv O Gdea
except Gijbels, Mammen, Park and Simar (1999) which treated only the case where p = 1.

The main purpose of this paper is to provide a large sample approximation of the
distribution of §eony in the general case where p > 1. It will be proved in Section 2 that
for each fixed & the DEA estimator §qea () equals geony () with probability tending to one
under the condition that g is strictly increasing in a neighborhood of . Thus, under that
condition ggea(x) has the same limit distribution as geony (). The convex-hull and DEA
estimators are biased downward. One may use the large sample approximation derived in
this paper to correct the bias of these estimators and to construct confidence intervals for
the true function. This will be treated in this paper, too.

The present paper extends the earlier results of Gijbels et al. (1999) to the case of
higher dimensional data. This generalization is not straightforward, but is much more
involved than the two-dimensional case (p = 1) due to complicated configurations of the
convex-hull estimator in high dimension. We tackle this problem by considering a canonical
transformation of the coordinate system. The techniques used in the proof of the main
theorem may be applied to various problems in boundary or frontier estimation.

The problem we discuss here is closely related to density support estimation. The latter
was first considered by Geffroy (1964) and Rényi and Sulanke (1963, 1964). Geffroy (1964)
studied asymptotic properties of a piecewise-constant support estimator, while Rényi and

Sulanke (1963, 1964) considered the case of convex support G and proposed the convex-hull



of sample points as an estimator of G. Ripley and Rasson (1977) considered a blown-up
version of the convex-hull to correct the downward bias. All these four papers treated the
two-dimensional case only. Moore (1984) studied Bayesian estimation of a convex set. For
other recent related works, see for example Korostelev and Tsybakov (1993a), Korostelev,
Simar and Tsybakov (1995a), Mammen and Tsybakov (1995), Hardle, Park and Tsybakov
(1995), Hall, Park and Stern (1998), and Hall and Park (2002).

Next section contains the main results. Formal definitions of the convex-hull and the
DEA estimators are given in Subsection 2.1. Also, a proof is provided for the fact that
Jdea() is asymptotically equivalent to geony () when g is strictly increasing in a neighbor-
hood of . The main results for the large sample approximations of the sampling distribu-
tions of the convex-hull and the DEA estimators are presented in Subsection 2.2. In Section
3, a practical guide for application of the proposed large sample approximation is provided,

and some numerical results supporting our findings are illustrated.

2 Main results

2.1. Definitions and basic properties. Here, we introduce formal definitions of the
convex-hull and the DEA estimators together with some of their basic properties. Let
X ={(X;,Y;) : i=1,...,n} be a random sample from a density f on a set G of the form

(1.1) with a unknown boundary g. Throughout this paper, we assume
AssumpTION (Al).  f(x,y) =0 for y > g(x), and g is convex on [0, 1]P. O

Write conv(X) for the convex-hull of the random sample X, i.e.

conv(X) = {(ZR:QXZ,ETZ:SZYZ> : zn:fz =land§ > 0fori= 1,...,n}.
i=1 i=1

i=1
The convex-hull estimator of G is defined to be the smallest convex set containing conv(X)

and [0,1]7 x {0}. Thus,

Geonv = {(M11 + Xoxo, \iy1) : (x1,11) € conv(X), o € [0,1]7

AL+ A2 =1, A, A0 >0} .
The convex-hull estimator of the boundary ¢ is then defined by

gCOHV(w) = Sup {y Z 0 : (w7 y) E GCOHV}’ (2'1>



which is the ‘lowest’ convex function on [0, 1]? that lies above all the observations in X.

The DEA estimator of G is the free disposal hull of the convex-hull estimator Geony
which is given by

Gaen = {(w,y) : & > wand y < v for some (u,v) € Gconv} .

The DEA estimator jgea () of the boundary g is defined as at (2.1) with Ggea taking the
role of éconv there. By their definitions, §qea = Geonv €verywhere. The following proposition

gives a necessary and sufficient condition for ggea(€) = Jeonv ().
PROPOSITION 1.  §dea(T) = Jeonv(x) if and only if Geony (') < Jeonv () for any &’ < a.

PROOF.  First, we show ‘only if’ part. Let Gdea(a:) ={y: (z,y) € @dea}, and define

@Conv(w), likewise. Then, Ggea(€) = Jeonv () implies Gdea(m) = Gconv(cc). Thus,

~ ~

Gconv(w,) C Gdea(w,) C Gdea(w) = Gconv(w)-

The second inclusion follows from free disposability of Gea.- Next, we show ‘if’ part. It
suffices to show that Gdea(w) C Geonv (z) under the condition. Suppose y € @dea(w). Then,
by the definition of Gyea, there exists a (x',y’) such that y’ € Gconv(m’), ' <xandy >y.
By the condition, Gconv(:c’) C Gconv(w). Thus,

~ ~

y/ S Gconv(w,) C Gconv(w)7 y, >,
which implies y € Gconv(w). This completes the proof of the proposition. O

The next proposition enables us to focus on the convex-hull estimator only. It tells us
that the ggea () has the same limit distribution as the convex-hull estimator eony () when

g is strictly increasing in a neighborhood of @. For the proposition, we need in addition

AsSuMPTION (A2).  The density function f is bounded away from zero and continuous

in a neighborhood, below the boundary, of (x, g(x)). O

PROPOSITION 2.  Assume the conditions (A1) and (A2). If g is strictly increasing in

a neighborhood of x, then P {§qea(T) = Jeonv(®)} — 1 as n goes to infinity.
PrROOF. Let r and § be positive numbers. For j = 1,...,p, define

cj:(—r,...,—r,é,—r,...,—r)T



where 0 appears at the j-th position. Let B; (1 < j < p) be p-dimensional balls with
radius r around x + ¢;. For a given J, one may find r small enough such that every point
uw in Bj’s satisfies 17(u — x) > 0, where 1 is the p-vector with all entries being 1, that is,

1=(1,1,...,1)T. Then, by the construction of B;’s it follows that, for any combination of

uy,...,up with u; € B; and @’ < x, there exist A1,..., Ap41 > 0 such that
p+1 p
Z )\j = 1, Z )\juj =+ )\p+1:13' =x. (2.2)
j=1 J=1

Next, let D = [g(x), g(x) +r] C IR. Then, the condition (A2) ensures that there exist r
and ¢ small enough such that the density f is bounded away from zero on B; x D’s. Also,
from the condition that g is strictly increasing in a neighborhood of & we obtain B; xD C G
for all j if r is taken sufficiently small. Let E,, denote the event that, for each j =1,...,p,
there exists at least one sample point (X ;,Y;) € B; x D. Then,

P n
P(En)zl—Z{l—/ f} —1
= B;xD
as n tends to infinity.

We prove that the event E,, implies §gea(®) = Jeonv(®). By Proposition 1, the latter
follows if we show Geonv(€') < geonv(x) for any @’ < x. Let (X;,Y;) € Bj x D for j =
1,...,p. Note that

Vi > g(z) > 9(2") > geonv(z')

for any @’ < x, where the second inequality follows from the convexity condition in (A1)
and the condition that ¢ is strictly increasing in a neighborhood of . Thus, from (2.2)

there exist A1,..., A\pr1 > 0 with Z?g A; = 1 such that

p
Z)\ij—l—)\erl.’L'/ = @
=1

P
Z )\]Y] + )\p+1 gconv(xl) 2 gconv(xl)-
j=1
Since Geony 1S a convex set containing (@, Geonv(x)) and (X ;,Y;) for j =1,...,p, we obtain
p A
x, Z )\ij + )\p-i-l gconv(w,) € Geony-
j=1
Thus, Geonv() > ?:1 AiY; 4+ Apt1 Geonv (T) > Geonv(x'), which completes the proof of

Proposition 2. O



2.2. Large sample approximation. We shall derive a large approximation to the distri-
bution of Geonv (o) for a given point ¢ € (0,1)P. For this, we assume in addition to (A1)

and (A2)

AssuUMPTION (A3). The boundary g is twice continuously differentiable and strictly

convex in a neighborhood of xy. O

We point out that consistency in terms of Ly distance over [0, 1] rather than geony (o) —
g(xp) for a fixed point &y does not need the differentiability condition, see for example
Korostelev, Simar and Tsybakov (1995b).

To describe the large sample approximation, define fo = f(zo,g(x0)). Write V2g(xo)
for the matrix which has as its entries the second-order partial derivatives of g at xg, i.e.
(V2g(:c))ij = (8%/0x;0z;)g(x). If g is strictly convex in a neighborhood of z¢, then the
matrix V2g(x) is negative definite, so that —V2g(x)/2 is positive definite. Let A denote
the diagonal matrix whose diagonal entries are the eigenvalues of —V?2g(xg)/2, and write
P for the orthogonal matrix formed by its associated orthonormal eigenvectors. Thus,
—V2g(x)/2 = PAPT.

Let g be the fixed point at which we want to estimate g. We begin by making a
canonical transformation of the coordinate system. Consider a linear transformation that
takes (X4, Y;) to

X, = pYERIAN2PT(X; — x0)
(2.3)

v/ = a2 @Y, - g(@) - T (X - 20) |

)

where b = Vg(x), the gradient vector of g at ®g. Write X' = {(X},Y/) : i=1,...,n}.

1771

Let Zeony(+) be the roof of the convex-hull conv(X’), i.e.

Zeonv(x') = sup {y' : (2',y') € conv(X')}. (2.4)

LeEmMA 1.  With probability tending to one as n goes to infinity,

Zconv(o) = n?/(p+2) {!?conv(xO) - g(l‘o)} .
ProOOF.  First, we note that, with probability tending to one, gconv(x) equals
Jeonv () = sup{y : (x,y) € conv(X)}.

Now, we observe from (2.3) that Y7 ; &X5 = 0 and ¢/ = Y1, &Y/ if and only if xy =



P &GX and y = n2/(P+2) {3, &Y; — g(xo)}. This implies

{y/ : (0,y') € conv(X')} = {y' : (wo, n~ 2 eF2)y/ —i—g(azo)) € conv(é‘c')},

so that gconv($0) = n_2/(p+2)Zconv(0) + g(-’Bo), Le. Zconv(O) = n?/(P+2) {gconv(mO) - 9(330)}‘
a

In the new coordinate system obtained from the transformation at (2.3), which we

denote by (x’,y’), the set G has as its boundary the surface with the equation

Yy = gn(a) (2.5)

where g,(x') = —x'x’ + o(1) uniformly on any compact set of x’. Furthermore, the

density, denoted by f,, in the new coordinate system is a bounded, continuous function in

the half-space below the new boundary. For each sequence €,, | 0, it satisfies

sup’ | nl[ A2 fu(=',y) = fo| — 0 (2.6)

where sup’ denotes the supremum over pairs (’,y’) such that

12| < €@t and — e,n? P2 < f < —2Tg.

Define s = (||A||/f2)Y/+2). Consider a new random sample, denoted by X'*, from the

uniform distribution on
B.={(&',y): ' € T, —aTa/ — in?P+D) </ < T’} (2.7)

where Z, = [—(y/k/2)nY®+2) (\/k/2)n'/?+2)]P. Note that the uniform density on B, is
given by n~ 1k~ (P*+2)/2 which equals n~1||A||~'/2 fy, and that all points in X* lie below the
perfectly quadratic surface with the equation 3’ = —2'7@’. Let Zony(-) be the version of

Zeonv(+) as defined at (2.4), now constructed from the new sample X'*.
LEMMA 2. ZCOHV(O) has the same limit distribution as Zgony(0).

ProOOF. Given ¢ > 0, let £. denote the event that ZCOHV(O) is completely determined
by those points of X’ that fall within the region R. = [—c¢,c/P*!. Then, it may be shown
that

lim liminf P(&.) = 1. (2.8)

C—00 N—0o0
The property (2.8) continues to hold for the event £} defined now for the new sample A™*

and Zeony(0). We prove (2.8) before we go on further.



Let gy, 0 denote the maximum of the function g, on the boundary of the p-dimensional
rectangle [—c, c]P. Note that g0 — go < 0 as n— oo for any ¢ > 0. Consider the sets in
IRP*! which take the form Ay x -+ x A, x [max{—c, gn0},c] where A; are either [—c, 0] or
[0,c]. There are a total of ¢ = 2P sets of this form. Call them R.; for i =1,...,q. Let &.;
denote the event that there exists at least one sample point in R.;. Clearly, NJ_,&.; C &,

since the convex-hull estimator is determined by p + 1 sample points. Thus, by (2.6)

P(&) > PN &)
> ipw ~(g-1)
> Z - {1- PXLY) € Re)"] — (g 1)
> zq: [1-{1-n"t} ]~ (@- 1),
where r5(c)— 00 88 c— 0 foir:elach i=1,....q Thus,

q
lim liminf P(&,) > lim > (1-e @)~ (g—1) = 1.
=1

c—00 N—00 -

Let Zeony be the version of Zconv constructed from the points in SN X’ where S denotes
the half-space below the perfectly quadratic surface with the equation 3y’ = —a/Ta’. Let
S, denote the half-space below the surface with the equation 3y’ = g, (2’). Then, by (2.5)
(SAS,)NR. tends to the empty set as n goes to infinity, where AAB denotes the symmetric
difference of the sets A and B. Thus, by (2.6)

P[(X,Y]) € (8AS,) N R = / fulx! ) )dx'dy = o(n™1).
(SASW)NRe.

This implies

P[Zconv(o) — Zconv(O) |gc]
> 1 — PJthere exists a sample point in (SAS,,) N R.| &

— 1

as n— oo for any ¢ > 0.
Let p. = P[(X1,Y{) € SNR.]. Let N, denote the number of points in X' NS N R..
The random variable V. has a binomial distribution with n number of trials with success

probability p.. Since np. = O(1) by (2.6), it follows that for any given ¢ > 0

lim liminf P(N. < M) = 1. (2.9)

M—oco N—00



We note that conditional on the event N, = m, the m points of X’ in SN'R, are independent
and identically distributed with the density

fn('v ')ISﬂRc('v ) _ ISORC('7 )
Jsrr. fn(@ y))da'dy’ — p(SNR,)

{1+0(1)}, (2.10)

where o(1) is uniform on SNR, and p denotes the Lebesgue measure on IRP™!. Now, define
pi and N/ in the same way as p. and N, but with the random sample X'*. The properties
(2.9) and (2.10) continue to hold for N} and X*. By (2.10), the conditional distribution
of ZCOHV(O) given the event £ N {N. = m} is asymptotically the same as that of Z.uy(0)
given the event £ N {N} = m} for each finite m. This implies that for any finite M > 0
the conditional distribution of Zeony(0) given the event . N {N, < M} is asymptotically
the same as that of Zeony(0) given the event £ N {NF < M}. This together with (2.8) and

(2.9) completes the proof of Lemma 2. O
From Lemma 1 and Lemma 2 we have the following theorem.

THEOREM 1.  Let « be a fixed point in (0,1)P. Suppose that the assumptions (A1) ~
(A3) hold. Then, n*P+2) (Geony (20) — g(0)) and Zeony (0) have the same limit distribution.

The following corollary is a direct consequence of Theorem 1 since Jgea(€0) = Jeonv(Z0))

with probability tending to one, as is demonstrated in Proposition 2.

COROLLARY 1. Suppose that g is strictly increasing in a neighborhood of x, and
that the assumptions for Theorem 1 are satisfied. Then, n%®+?) (Gyea(x0) — g(20)) and

Zconv(0) have the same limit distribution.

The only unknowns in the asymptotic approximation n%®*2) (Geony(x0) — g(20)) ~
Zeonv(0) are fo and ||Al|. Once these have been determined, Monte Carlo methods may
be used to simulate the distribution of Z.ony(0). We shall discuss estimation of fo and ||Al|

in the next section.

REMARK. The results in Theorem 1 and Corollary 1 remain valid when the data
come from a Poisson process with intensity nf(-) where f is supported on G. One may
verify this by going through the arguments in the proofs for the i.i.d. case and making use
of the properties of Poisson processes. For treatments of Poisson process data in boundary

estimation, see Hall, Park and Stern (1998) and Hall and Park (2002).



3 Applications in Practice

3.1. Estimation of parameters. — For the estimate of fy, the density at a point (xg, g(x¢)),
we propose an analogue of the estimate proposed by Gijbels et al. (1999). We consider the
hypercube

C(.’L’(),5) = ($01 - 5/2, o1 +5/2) X (ZL‘OQ - 5/2, 02 +5/2) X o0 X (-TOp - 5/2, Top +5/2)
for some § > 0, where z(; denotes by the j-th component of p-vector xg, j =1,...,p. Let
D(w075) = {(u7y) ’u S C(x075)7gconv(w0) —0<y< gconv(u)}-

A simple estimator of fj is given by

5, - T T(X0.Y) € Dl )
0 (Do)

where y(-) denotes the Lebesgue measure in IRPT.

Next, we consider estimation of the Hessian matrix of the frontier function g to get an

estimate of ||A||. Take a positive number h. Define

Xp(xo, h) = {(X i, Jeonv (X)) | X € Cxo, h)} U {(x0, Jeonv (x0) }-

It is a collection of ‘boundary points’ in a neighborhood of x(. Fit a second order polynomial

regression surface with the points in Xj(xg, h) by the ordinary least squares method to get

glu,h) = a+b"u — u’ Bu.
The p X p matrix B captures the curvature of the convex-hull near the point (zq, jeony (Z0))-
Note that positive definiteness of B is insured unless all the points in Xp(xo, h) lie on a

hyperplane. We propose to use
Al = 1Bl
as an estimator of |A|. One may verify that both fy and ||A|| are consistent estimators

of fo and ||A]|, respectively, if § and h are chosen so that both nd?*1 and nh?*2 tend to

infinity as n goes to infinity.

3.2. Bias correction and confidence interval. The convex-hull estimator is biased down-
ward. We may use the distribution of Z ony(0) to quantify this bias, and may improve the

convex-hull estimator by correcting the bias.

10



Let {Z%,,(0)}2 | be the set of B values of Zcony(0), each of which is computed from
a random sample from the uniform distribution on Bs, where & = (||A]|/ Y @+2) and
B, is defined at (2.7). Since the empirical distribution of {Z%,,(0)}#, approximates

conv

the distribution of Zgony(0), we may estimate the asymptotic mean, denoted by &, of

n2/(p+2){§conv(m0) - 9(1:0)} by
B
én =B"! Z Zgonv(o)'
b=1
Thus, a bias corrected estimator of g(x¢) is given by

gconv («'BO) - n72/(p+2)én-

b

b v (0)}2., also enables us to construct a confidence

The empirical distribution of {Z,
interval for g(z¢). Let g, be the a-th quantile of the empirical distribution of {Z% (0)}Z ;.

conv

Then 100(1 — «)% confidence interval for g(x() is given by

_ 2/ 0+2) /(p+2) 5 } _

[!?conv(mo) QI—a/Qa Geonv (T0) — n? da/2

The confidence interval lies above the value geony (o) since Go/2 < Gi—aj2 < 0. One may
construct confidence intervals using the bias corrected estimator. However, it is easy to
see that the resulting confidence intervals are the same as those based on the un-corrected
Geony -

One may use bootstrap techniques as alternatives for estimating the bias of the convex-
hull estimator. However, it is well known that the ordinary bootstrap approximation in fron-
tier estimation is inconsistent, see Bickel and Freedman (1981), Simar and Wilson (2000).
Recently the subsampling bootstrap has been proposed as a consistent alternative, which
gives accurate estimates of confidence intervals in particular, see Politis and Romano (1994),
Kneip, Simar and Wilson (2003), Jeong and Simar (2004). But these are sensitive to the
choice of the subsample size, and the automatic choice of the subsample size is still an open
problem. Another promising resampling technique is the translation bootstrap of Hall and
Park (2002), but it is also sensitive to the choice of the ‘translating amount’ and the value
of the correction factor (the absolute constant x in their notation) is not available in the

case of the convex-hull estimator.

3.3. Simulation study. We investigate the validity of our large sample approximation
given in Theorem 1 through a simulation study. Also, we address finite sample performance

of the bias corrected estimator and the interval estimator proposed in Subsection 3.2.

11
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Figure 1: The finite sample distributions of convex-hull estimators and their large sample
approzimations. The solid curves are the empirical distribution of n? P2 {§eon (0.5,0.5) —
9(0.5,0.5)} based on M = 1000 samples of size (a) n = 400 and (b) n = 1000, and the
dotted curves are the simulated distributions of Zeony(0,0).

The simulation setup is as follows. We take p = 2 and
o g(x1,x2) = 293292, where (z1,12) € [0, 1]°.

e (X1, X>) follows the uniform distribution on [0,1]?, and Y; = g(X31, X3)e™"" where

Vi ~ Exp(3), where Exp(6) denotes the exponential distribution with mean 1/6.

We simulated M = 1000 samples of size n = 400 and 1000. For each sample we calcu-
lated 7% P2 {§eony (0.5,0.5) — ¢(0.5,0.5)}. The solid curves in Figure 1 are the empirical
distributions of the resulting M = 1000 values. The dotted curves are the distributions of
{25, (0,0)}2_, for B = 5000, where the true value of x was used to generate the uniform
random numbers X*. We observe that the actual distributions of n?/ (p+2>{gcom(0.5, 0.5) —
9(0.5,0.5)} are well approximated by those of Z.on(0,0) and they are getting closer as n

increases. This supports our large sample approximation given in Theorem 1.
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Next, for investigating the finite sample performance of the bias correction and the
interval estimation proposed in Subsection 3.2, we generated M = 500 samples of size
n = 400 and n = 1000. Based on these Monte Carlo replications, we approximated the biases
and the mean squared errors, at three different locations (0.3,0.3), (0.5,0.5) and (0.7,0.7),
of the convex-hull estimator and its bias corrected version. The results are summarized in
Table 1, where the standard errors of the Monte Carlo biases are also presented in brackets.
The table demonstrates that the proposed approach really works. We also calculated the
coverage probabilities of the confidence intervals for ¢(0.5,0.5) at the nominal level 95%.
The computed coverage probabilities were .918 for n = 400 and .944 for n = 1000. We
obtained similar results for other points of (z1,x2). The smoothing parameters § and h for
this simulation were predetermined. We used ¢ and h which minimized the mean squared
errors of fo and |||, respectively. These smoothing parameter values were obtained from

a separate simulation study conducted in advance.

Table 1: Comparison of the convex hull estimator and its bias corrected version. Multiplied
by 102 for the biases and standard errors and by 10* for the MSE.

Convex hull Bias-corrected

n x Bias (S.E.) MSE Bias (S.E.) MSE

400 (0.3,0.3) -1.71329 (0.028) 3.31642  0.77069 (0.032) 1.11126
(0.5,0.5) -1.28232 (0.023) 1.91194  0.19286 (0.029) 0.46112

(0.7,0.7) -1.08464 (0.019) 1.35921 0.38666 (0.027) 0.50616

1000 (0.3,0.3) -1.03389 (0.017) 1.21256  0.35360 (0.019) 0.29658
(0.5,0.5) -0.76730 (0.014) 0.68202  0.15178 (0.017) 0.16211

(0.7,0.7) -0.68976 (0.012) 0.54473 0.12836 (0.016) 0.13807
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