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Abstract

This paper proposes a nonparametric approach for stochastic frontier (SF) models
based on local maximum likelihood techniques. The SF model is presented as encom-
passing some anchorage parametric model in a nonparametric way. First, we derive
asymptotic properties of the estimator for the general case (local linear approxima-
tions). Then the results are tailored to a SF model where the convoluted error term
(efficiency plus noise) is the sum of an half normal and a normal random variable.
The parametric anchorage model is a linear production function and an homoscedastic
error term. The local approximation is thus local linear for the production function
and local constant for the parameters of the error terms. The performance of our es-
timator is first established with a simulated data set and then with real data on milk
production in Spanish dairy farms. The methods appear to be robust, numerically
stable and particularly useful for investigating a production process and the derived
efficiency scores.
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1 Introduction

The economic function of a firm is to bid resources away from alternative uses. As a result

of such resource transfer, aggregate output may be increased or decreased. If inefficiency

exists, an increase in output can be achieved by reallocating resources to more efficient

uses. Given the seriousness of the issue (viz., the economic, political and social implications

of inefficiency), it is essential that the measurement of efficiency/performance should be

theoretically valid and subject to unambiguous interpretations.

Econometric measurement of efficiency of firms goes back to Aigner, Lovell and Schmidt

(1977) and Meeusen and van den Broeck (1977). When analyzing the performance of a

firm that is observed to produce an output level y ∈ IR using input quantities x ∈ IRd,

one typically compares the observed output level with the maximum possible output that

can be obtained from the production frontier (defined as f(x) = max{y : y ∈ P (x)} where

P (x) describes the set of outputs that are feasible for each input vector x ∈ IRd). The

estimation of the production frontier is obtained from a random sample of observed firms

{(Xi, Yi) | i = 1, . . . , n}. Then an efficiency score for a given production plan (x, y) is derived

from the distance of this point to the estimated production frontier. The same approach can

also be applied when a cost frontier is under the analysis. In the latter we seek the minimal

cost achievable for a given level of output(s).

Since the publication of the seminal papers by Aigner et al. (1977) and Meeusen and

van den Broeck (1977), econometric estimation of parametric stochastic frontier (SF) func-

tions has become a standard practice in efficiency measurement studies. However, in this

approach, the estimation relies heavily on the particular choices of the functional form of the

production/cost frontier (Cobb-Douglas, Translog,. . . , etc.) as well as the specific distribu-

tional assumptions on the error term (a convolution of a one-sided inefficiency term and of

a two-sided noise term). Typically these parametric models are written as

Yi = β0 + βTXi − ui + vi, i = 1, . . . , n, (1.1)

where ui > 0 is the inefficiency term and vi ∈ IR represents random noise. The estimation

technique is straightforward and is mostly based on the maximum likelihood principle.1 Of

course, in practice we cannot be confident about the validity of these parametric assumptions

that are used to estimate the model. The parametric form of the frontier function might

be wrong due to several reasons. For example, the parametric functional form might be

wrong, the stochastic specifications of the error components (particularly for the inefficiency

component) might be wrong, among others.

1Other methods, such as the COLS and MOLS (see Kumbhakar and Lovell, 2000) are often used.
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An alternative to the parametric SF is the deterministic nonparametric approach where

no specific parametric assumptions are made on the model. The frontier is defined as the

upper boundary of the attainable set, say Ψ = {(x, y) | x can produce y}. In these nonpara-

metric approaches the statistical properties of envelopment estimators like the DEA and

FDH2 (Farrell, 1957, Charnes, Cooper and Rhodes, 1978 and Deprins, Simar and Tulkens,

1989), rely on the so called “deterministic” assumption, viz.,

Prob((Xi, Yi) ∈ Ψ) = 1. (1.2)

The latter implies that no noise is allowed in these deterministic frontier (DF) models.

The introduction of noise in a full nonparametric setup is problematic due to identification

problems (see Hall and Simar, 2002 and Simar, 2003). Statistical inference in now available

in these nonparametric DF models (see Simar and Wilson, 2000 for a recent survey and

Kneip, Simar and Wilson, 2003 for the asymptotic properties of DEA) but assumption (1.2)

is too strong in many practical situations where we might expect measurement error, random

shocks,. . . , etc. Recently Cazals, Florens and Simar (2002) and Aragon, Daouia and Thomas

(2002) have proposed robust versions of the FDH estimator, robust to extremes values and/or

outliers since they do not envelop all the data. But these approaches still rely heavily on the

deterministic assumption (1.2), where no noise is allowed.

In the presence of panel data, Park and Simar (1994), Park, Sickles and Simar (1998),

(2003a) and (2003b), in a series of papers, consider the semiparametric estimation of SF

panel models under various assumptions on the joint distribution of the random firm effects

and the regressors and on various dynamic specifications. The nonparametric part of these

models concerns the distribution of the inefficiency terms. However, the estimators in these

panel models are based on the linearity of the efficient frontier.

Fan, Li and Weersink (1996) propose a two-step pseudolikelihood estimator in a semipara-

metric model where the production frontier is not specified, but distributional assumptions

are imposed on the stochastic components as in Aigner et al. (1977). An average produc-

tion frontier is then estimated through standard kernel methods, the shift for the frontier

is obtained through a moment condition, as in the MOLS approach (see Kumbhakar and

Lovell, 2000) and the remaining parameters of the stochastic components are estimated by

maximizing a pseudolikelihood function.

Our purpose in this paper is to propose a general nonparametric approach for stochastic

frontier models. The method is based on the local maximum likelihood principle (see Tibshi-

rani and Hastie, 1987, or Fan and Gijbels, 1996), which is nonparametric in the sense that

the parameters of a given local polynomial model are localized with respect to the covariates

2DEA is for Data Envelopment Analysis and FDH stands for Free Disposal Hull.
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of the model. As pointed out by Gozalo and Linton (2000), localizing can be viewed as a

way of nonparametrically encompassing a parametric “anchorage” model. The idea to use

local likelihood for stochastic frontier models was first suggested by Kumbhakar and Tsionas

(2002) for a particular case of the model proposed here. In this paper we develop the general

theory with all the asymptotics.

The paper is organized as follows. Section 2, presents the model and the theory with the

main asymptotic results. Section 3 analyses the practical side, viz., how to compute the local

estimators and determine the bandwidth. Section 4 reports results from both simulated and

real data, and finally Section 5 concludes the paper. Regularity conditions and proofs are

given in Section 6.

2 Main Results

2.1 The model

We consider a set of i.i.d. random variables (Xi, Yi), for i = 1, . . . , n with Xi ∈ IRd and

Yi ∈ IR. The joint pdf of (X, Y ) is decomposed into a marginal pdf for X: pdf(x) = p(x)

and a conditional pdf for Y given X: pdf(y|x) = g(y ; θ(x)), where θ(x) ∈ IRk is unknown

and has to be estimated. The function g is assumed to be known.

The localized version of the parametric model in Aigner et al. (1997) is a particular case

of our model. In this case, the conditional pdf for Y given X = x would, for instance, be

characterized through:

Y = r(X)− u+ v (2.1)

where r(x) is the frontier function, u|X = x ∼ |N (0, σ2
u(x))| and v|X = x ∼ N (0, σ2

v(x)),

u and v being independent conditionally on X. Here θ(x) = (r(x), σ2
u(x), σ2

v(x))T is a

3-dimensional local parameter. In our approach here we will consider local polynomial

approximations for θ(x). For simplicity of presentation, we treat only the cases where the

orders of local polynomials are equal for all the components of θ(·). In practice, one may

prefer to use different orders of polynomials for different components as in our numerical

illustrations below. The theory for the latter cases may be obtained along the same lines of

development as for the equal order cases.

The conditional log-likelihood can thus be written as

L(θ)
4
=

n∑

i=1

log g(Yi ; θ(Xi)) (2.2)

In the next section we consider the order-m local polynomial estimator of θ(x) when x is
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univariate and then, in the following section, we derive the local linear estimator of θ(x)

when x is multivariate.

2.2 Univariate case

Here we consider the case when d = 1. Let x be a fixed interior point in the support of p(x)

and let q ≡ log g. Denote, for j = 0, 1, . . . , m, θj ≡ (θj1, . . . , θjk)
T . Then the conditional

local log-likelihood for the m-th order local polynomial fit is given by

Ln(θ0, θ1, . . . , θm)
4
=

n∑

i=1

q(Yi ; θ0 + θ1(Xi − x) + . . .+ θm(Xi − x)m)Kh(Xi − x) (2.3)

where Kh(·) = (1/h)K(·/h), K being a kernel function and h the appropriate bandwidth.

Thus, the log-likelihood depends on the local x.

Then, the local polynomial estimator θ̂(x) is given by

θ̂(x) = θ̂0(x), (2.4)

where

(θ̂0(x), . . . , θ̂m(x)) = arg max
θ0,...,θm

Ln(θ0, θ1, . . . , θm). (2.5)

We now derive the asymptotic distribution of θ̂(x). For this we have to introduce some

additional notations. We define for v ∈ IRk,

q1(y, v)
4
=

∂

∂v
q(u, v)

q2(y, v)
4
=

∂2

∂v∂vT
q(u, v)

ρ(x)
4
= −E [q2(Y1 ; θ(X1))|X1 = x] .

We also introduce the following matrices and vectors

N
4
=




µ0 µ1 · · · µm
µ1 µ2 · · · µm+1
...

...
. . .

...
µm µm+1 · · · µ2m




where µj
4
=
∫
ujK(u)du,

S
4
=




κ0 κ1 · · · κm
κ1 κ2 · · · κm+1
...

...
. . .

...
κm κm+1 · · · κ2m




where κj
4
=
∫
ujK2(u)du,

4



θ(m+1)(x)
4
=




θ
(m+1)
1 (x)

...

θ
(m+1)
k (x)


 where θ

(m+1)
j (x)

4
=

∂m+1

∂xm+1
θj(x),

γ
4
=




µm+1
...

µ2m+1


 .

Finally, we define

v(x)
4
= E

[
q1(Y1 ; θ(X1))qT1 (Y1 ; θ(X1)) |X = x

]
.

Now we can state our theorem for the univariate case:

Theorem 2.1 Under regularity conditions (see Section 6.1), it follows that

√
nh
[
(eT0N

−1SN−1e0)ρ(x)−1v(x)ρ(x)−1/p(x)
]−1/2

×
(
θ̂(x)− θ(x)− hm+1

(m + 1)!
(eT0N

−1γ)θ(m+1)(x) + op(h
m+1)

)
d−→ N (0, Ik), (2.6)

where e0 = (1, 0, . . . , 0)T is the k-dimensional unit vector.

We notice, as for most of kernel based nonparametric estimators, the role of the bandwidth

h which balances between the bias and the variance of the estimator. An optimal asymptotic

value of h can be derived from the above theorem3 (e.g., minimizing the asymptotic MSE

would lead to h � n−1/(2m+3))

Note also as a special case, when m = 1 (local linear estimator) we have:

eT0 N
−1γ =

µ2
2 − µ1µ3

µ0µ2 − µ2
1

= µ2

eT0N
−1SN−1e0 =

κ0µ
2
2 − 2κ1µ1µ2 + κ2µ

2
1

(µ0µ2 − µ2
1)2

= κ0

where the two equalities on the right are valid for appropriate symmetric kernels, with µ0 = 1

and µ1 = µ3 = 0.

2.3 Multivariate case

In this case, θ(x) is a function of x ∈ IRd and we consider only the local linear fit. For

simplicity of presentation, we assume further that the multivariate kernel K satisfies
∫
K(u) du = 1 and

∫
uuTK(u) du = µ2Id.

3In practice the bandwidth choice is based on cross validation. We address this issue in Section 3.
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In the multiple covariate case, the conditional local linear log-likelihood is given by

Ln(θ0,Θ1)
4
=

n∑

i=1

q (Yi ; θ0 + Θ1(Xi − x))KH(Xi − x).

Here θ0 is a (k×1) vector, Θ1 is a (k×d) matrix, H is a bandwidth matrix which we assume

is positive definite and symmetric, and KH(u) = |H|−1K(H−1u). For instance we could

chose a multivariate product kernel as

K(u) = K1(u1) . . .K1(ud)

where K1(·) is a symmetric univariate probability density. In this case

∫
uuTK(u) du =

(∫
u2

1K1(u1) du1

)
Id.

The local linear estimator θ̂(x) is given by

θ̂(x) = θ̂0(x) (2.7)

where θ̂0(x) and Θ̂1(x) maximize Ln(θ0,Θ1) with respect to θ0 and Θ1.

Define ρ(·) and v(·) as in the case d = 1. Let

BH(x)
4
=




tr(θ
′′
1 (x)H2)

...
tr(θ

′′
k(x)H2)




where θj(x) is the j-th component of θ(x) and θ
′′
j (x) is the (d× d) Hessian matrix of θj(x).

Now we can state our theorem (the proof is omitted):

Theorem 2.2 Under the regularity conditions (see Section 6.1), it follows that

(n|H|)1/2

[
1

p(x)

∫
K2(u) du · ρ(x)−1v(x)ρ(x)−1

]−1/2

×
(
θ̂(x)− θ(x)− 1

2
µ2BH(x)

)
d−→ N (0, Ik). (2.8)

3 Practical Computations

3.1 Computation of the local linear estimator

We will illustrate how the computations could be performed in the case of a local linear fit

choosing for the local convolution of the noise and the inefficiency term, the convolution of

a normal and an half normal, in the spirit of Aigner et al (1977) and Meeusen and van den
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Broeck (1977). Other choices are also available, such as the convolution of a normal and an

exponential, but to save space, we present the normal-half normal case. So the parametric

“anchorage” model is the following:

Y = β0 + βTX − u+ v, (3.1)

where u ∼ |N (0, σ2
u)| and v ∼ N (0, σ2

v), u and v being mutually independent and both

independent of X.

Our nonparametric localized model is tailored as

Y = r(X)− u+ v, (3.2)

where u|X = x ∼ |N (0, σ2
u(x))| and v|X = x ∼ N (0, σ2

v(x)), u and v being independent

conditionally on X. The conditional probability density function of ε = v − u is given by4

f(ε|X = x) =
2

σ(x)
ϕ

(
ε

σ(x)

)
Φ

(
−ε λ(x)

σ(x)

)

where σ2(x) = σ2
u(x) +σ2

v(x) and λ(x) = σu(x)/σv(x). Finally, ϕ(·) and Φ(·) are the pdf and

CDF of a standard normal variable.

Thus, θ(x) = (r(x), σ2(x), λ(x))T and the conditional pdf of Y given X is

g(y ; θ(x)) =
2

σ(x)
ϕ

(
y − r(x)

σ(x)

)
Φ

(
−(y − r(x))

λ(x)

σ(x)

)
. (3.3)

The conditional local log-likelihood is given by

L(θ) ∝
n∑

i=1


−1

2
log σ2(Xi)−

1

2

(Yi − r(Xi))
2

σ2(Xi)
+ log Φ


−(Yi − r(Xi))

λ(Xi)√
σ2(Xi)




 , (3.4)

where the constants have been eliminated. Then conditional local log-likelihood for the local

linear fit at the point x, is given by

Ln(θ0,Θ1) ∝
n∑

i=1

[
−1

2
log(σ2

0 + σ2 T
1 (Xi − x))− 1

2

(Yi − r0 − rT1 (Xi − x))2

σ2
0 + σ2 T

1 (Xi − x)

+ log Φ


−(Yi − r0 − rT1 (Xi − x))

λ0 + λT1 (Xi − x)√
σ2

0 + σ2 T
1 (Xi − x)




KH(Xi − x), (3.5)

4In the case of the estimation of a cost function where ε = v + u, we would obtain:

f(ε|X = x) =
2

σ(x)
ϕ

(
ε

σ(x)

)
Φ

(
ε
λ(x)

σ(x)

)
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where θ0 = (r0, σ
2
0 , λ0)T and the (3×d) matrix of parameters Θ1 is given by ΘT

1 = (r1, σ
2
1, λ1)

with r1, σ
2
1 and λ1 being (d× 1) vectors. Let

(θ̂0(x), Θ̂1(x)) = arg max
θ0,Θ1

Ln(θ0,Θ1), (3.6)

then our local linear estimator of the model is given by θ̂0(x). From σ̂2
0(x) and λ̂0(x), values

of σ̂2
u(x) and σ̂2

v(x) can also be derived.

The estimation of the individual efficiency score for a particular point (x, y) might be

obtained by following the Jondrow, Lovell, Materov and Schmidt (1982) procedure. Denoting

ε(x) = y − r(x), it can be shown in the local parametric model chosen here that

u(x) | ε(x), X = x ∼ N+(µ∗(x), σ2∗(x))

i.e., a truncated (positive values) normal, where

µ∗(x) =
−ε(x)σ2

u(x)

σ2(x)

σ2∗(x) =
σ2
u(x)σ2

v(x)

σ2(x)
.

In particular, we can compute

E(u(x) | ε(x), X = x) =
σ(x)λ(x)

1 + λ2(x)

[
ϕ(−ε(x)λ(x)/σ(x))

Φ(−ε(x)λ(x)/σ(x))
− ε(x)λ(x)

σ(x)

]
.

As in Jondrow et al. (1982) a point estimator of the individual efficiency score for an

observation (Xi, Yi) could be obtained from ûi = Ê[u(Xi) | ε̂(Xi), X = Xi], where ε̂(Xi) =

Yi − r̂0(Xi), viz.,

ûi =
σ̂0(Xi)λ̂0(Xi)

1 + λ̂2
0(Xi)

[
ϕ(−ε̂(Xi)λ̂0(Xi)/σ̂0(Xi))

Φ(−ε̂(Xi)λ̂0(Xi)/σ̂0(Xi))
− ε̂(Xi)λ̂0(Xi)

σ̂0(Xi)

]
. (3.7)

We know of course, as in the full parametric case, that this is a rather poor predictor of

ui, since it is based on a single “noisy” observation ε̂(Xi). As usual in frontier models, if

the variables are measured in logs, a point estimate of the efficiency is then provided by

êff i = exp(−ûi) ∈ [0, 1].

In the numerical illustrations below, we will customize the analysis to the case of a

nonparametric model encompassing the anchorage parametric frontier model (3.1). So we

will use a local linear model for the frontier and a local constant model for the parameters of

the error term. In the above notation, this merits the particular choice of λ1 = σ2
1 = 0 and

Θ1 = rT1 for the setup of (3.5). Solving (3.6) requires iterative algorithms, starting with some
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initial values. For example, we could choose Θ1 = β̂T and θ0 = (β̂0, σ̂
2, λ̂), the parametric

maximum likelihood estimator from the model (3.1), as the initial values of Θ1 and θ0.

The following is an alternative way to choose the starting values. Start with the local

linear least squares estimator r̂0(x) and r̂1(x) of Gozalo and Linton (2000) and then correct

the local intercept r̂0(x) for the moment condition along the lines of the parametric MOLS

estimators (see, e.g., Kumbhakar and Lovell, 2000). Here we suggest the use of the global

parametric MLE σ̂2 and λ̂ for the moment correction. Since the local linear r̂0(x) can be

viewed as an estimator of r0(x) − E(u|X = x) = r0(x) −
√

2σ2
u(x)/π, a sensible moment

corrected estimator for the local intercept is obtained through r̂MOLS
0 (x) = r̂0(x) +

√
2σ̂2

u/π,

where σ̂2
u = σ̂2λ̂2/(1 + λ̂2). In this case, the initial values for solving (3.6) are finally given

by Θ1 = r̂1(x)T and θ0 = (r̂MOLS
0 (x), σ̂2, λ̂). In the optimization algorithms used in the

numerical illustrations below, the latter choice of starting values proved to be very efficient

and numerically stable.

3.2 Bandwidth selection

In practice we could choose a product kernel with a bandwidth H = hV where V is the

empirical variance-covariance matrix of the d covariates Xi. The choice of the bandwidth

is then reduced to the selection of the scalar h. An alternative is to use the product kernel

h−d
∏d
j=1 K(h−1(xj)), so H = hId. In the numerical illustrations below we chose the more

sensible d-dimensional vector of bandwidths h as

h = hbasesXn
−1/5, (3.8)

where sX is the vector of empirical standard deviations of the d components of X. So the

bandwidth is adjusted for different scales of the variables and different sample sizes. Then

the cross validation criterion is evaluated for a grid of values for hbase.

The cross-validation proceeds as follows. For a given value of hbase, we compute

CV (hbase) =
1

n

n∑

i=1

[Yi − (r̂
(i)
0 (Xi)− û(i)

i )]2 (3.9)

where r̂
(i)
0 and û(i) are the leave-one-out version of the local linear estimators derived above.

The optimal value for hbase is then easily found by an appropriate grid search.

If n is large, the evaluation in (3.9) could be performed on a random subsample of m

units, where m � n to reduce the computational burden. Also, a trimmed version of the

average of (3.9) might be useful in the sense that it is less sensitive to potential numerical

problems when computing the local ML many times.
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4 Numerical Illustrations

4.1 Some simulated data sets

4.1.1 Example 1: A linear model

In this first case, we chose a standard linear model where the anchorage parametric model

is true. We simulated a sample of size 100 from the model:

Y = 5 + 5X − u+ v,

where X ∼ U(0, 1), u ∼ |N (0, 22)| and v ∼ N (0, 22). The cross validation, as expected, gave

a flat value of CV (h) for values of hbase greater than, say, 6 (see Figure 1). Indeed, larger

values of hbase makes our local maximum likelihood estimator equal to the full parametric

MLE, as it should be in this particular example. A trimmed version (deleting the upper 5%

of the values in the average of (3.9)) gives very similar results. The fit proposed in Figure 2

was obtained for a value of hbase = 11 and is very good. The statistical noise introduced by

encompassing the true linear model did not affect our estimator.

Figure 1 around here

Figure 2 around here

4.1.2 Example 2: A quadratic model with heteroscedasticity

Here we simulate the data (n = 100) with a nonlinear model with heteroscedasticity for the

efficiency term. Now, the chosen parametric anchorage model is wrong but as seen below,

its localized estimated version fit the model pretty well. This illustrates the nonparametric

nature of our estimator. The model is

Y = 5 + 15X − 8X2 − u+ v,

where X ∼ U(0, 1), u|X = x ∼ |N (0, (2 + x)2)| and v ∼ N (0, 22). The bandwidth selection

procedure provided an optimal value of hbase = 1.80 as shown in Figure 3 and the excellent

fit is displayed in Figure 4. The localized ML is able to capture the curvature and is not

perturbed by the linear heteroscedasticity.

Figure 3 around here

Figure 4 around here
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4.1.3 Example 3: A multivariate quadratic model with heteroscedasticity

This is a bivariate extension of the preceding example. The model is written as

Y = 5 +X1 + 2X2 − 0.25X1X2 − u+ v,

where X1 ∼ U(0, 1), X2 ∼ U(0, 2), u|X = x ∼ |N (0, (2 + x)2)| and v ∼ N (0, 0.52). Here

again n = 100. As shown in Figure 5, the optimal bandwidth is around hbase = 9. To give

an idea of the quality of the fit in this multiple model, the left panel of Figure 6 displays

the plot of the true frontier value against the fitted values. The right panel illustrates the

quality of the prediction of the efficiency terms by showing the plot of the true simulated ui

against its predictor ûi, as provided by (3.7). Surprisingly, we can see that the difficult task

of predicting one random variable ui, conditionally on one observation of a noisy residual

ε̂(Xi) (see (3.7)) works pretty well globally. Of course, some individual prediction might be

far from the truth.

Figure 5 around here Figure 6 around here

Table 1 provides detailed results for 25 units randomly chosen. The Table also provides

the full parametric ML estimates of the frontier and of the efficiency terms. In all the cases,

the localized version is more close to the true values.

Table 1 around here

4.2 A real data example

As a final illustration, we worked out an example with real data. The analysis is based on

a balanced panel data set of 80 Spanish dairy farms for the years 1993 to 1998 (see Alvarez,

Arias and Kumbhakar (2003) for details). These are all small family farms. We consider

one output (liters of milk) and four variable inputs, viz., number of cows (Cows), kilograms

of concentrates (Conc), hectares of land (Land), and labor (measured in man-equivalent

units) (Labor). We also added a time trend variable (Trend) to capture technical change

(a shift in the production technology over time). The production function is assumed to be

Cobb-Douglas. All the variables are in logs, except the trend variable. The results from

the parametric maximum likelihood method are given in Table 2. The covariance matrix

of the estimators are computed from the inverse of the computed Hessian. The anchorage

parametric model is

Milkit = β0 + β1Cowsit + β2Landit + β3Laborit + β4Concit + β5t− uit + vit,

with the stochastic specification as in (3.1).

11



Table 2 around here

The estimated parameters are reported in Table 2. Only the Cows and Conc variables

seems to be highly significant. The Labor and Trend variables appear to be less significant

and the Land variable is far from being significant.

The localized version of these estimators requires the selection of the bandwidth. The

CV criterion was selected at m = 100 randomly chosen points with the leave-one out formula

given in (3.9). The results are shown in Figure 7: the optimal value is found to be around

hbase = 5.

Figure 7 around here

Figure 8, illustrates the variation of the estimates of the localized parameters, evaluated

at the 480 data points by plotting the histograms. The histograms of s2
0 and of λ0 clearly

indicate the presence of heteroscedasticity with an important heterogeneity in the shares

of efficiency to noise (λ0). The different histograms for the input coefficients (elasticities)

r1j , j = 1, . . . , 5 are also illuminating. Since these estimates are observation-specific (thereby

meaning that input elasticities vary across farms and over time) the variation in input elas-

ticities show that the results from the parametric CD model (that assumes same elasticities

for all observations) might be wrong. For example, the elasticity of the “Cows” variable (r11)

is evidently positive for all the farms but these are far from being the same for all farms.

That is, we find heterogeneity in the estimated elasticity of the input “Cows” among the

farms. The elasticity of the “Land” variable (r12) has an average value that is not far from

zero (this is also supported the standard MLE analysis). The elasticity of “Conc” (r14) is

positive but is less heterogeneous than the variable “Cows”. Note also that the elasticity

of “Labor” (r13) is positive but its mean is not that much different from zero. Finally, the

elasticity with respect to the “Trend” variable (r15) (which is labeled as technical change)

appears to be positive (meaning technical progress, i.e., an outward shift in the production

function). But its mean values is quite small (smaller than what it’s estimated value is in

the parametric ML model).

Figure 8 around here

In Table 3 we report the detailed results for 25 farms randomly drawn from the full data

set. The last column reports the efficiency scores. Note that in this example the average

efficiency score for the 480 farms is 0.8707.

Table 3 around here
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5 Conclusions

In this paper we have provided a nonparametric approach for estimating stochastic frontier

models. The idea is based on local maximum likelihood techniques. The model can be

presented as encompassing some anchorage parametric model in a nonparametric way. The

estimation here is obtained by localizing the likelihood function to be maximized. The

asymptotic properties of our estimator is established for the general setup of local linear

approximations.

We tailored the results to a stochastic production frontier model where the convo-

luted/composed error term (inefficiency plus noise) is the sum of an half normal and a

normal random variable. The parametric anchorage model is a linear production function

and a homoscedastic error term. The local approximation is thus local linear for the pro-

duction function and local constant for the parameters of the error terms.

The performance of the estimator is first illustrated with some simulated data sets. Then

we apply it to a real data set (Spanish dairy farms) to test the flexibility of our method. We

find enough variability in the estimated coefficient to suggest that the underlying production

technology is heterogeneous so far as the input elasticities and the estimates of variances

of the composed error are concerned. Based on this result, we conclude that estimated

technology from a parametric model and elasticities, efficiencies, etc., derived therefrom

might be wrong, especially if the technology is heterogeneous.

All these numerical illustrations indicate that the methods is robust, numerically stable

and particularly useful for investigating a production process and the derived efficiency

scores.

6 Regularity Conditions and Proof of Theorem 2.1

6.1 Regularity Conditions

The assumptions for Theorem 2.1 are as follows:

(A1) q2(u, t) < 0 for t ∈ IRk and u in the range of Y ;

(A2) E[q1(Y1 ; θ(X1) |X1] = 0;

(A3) q3(u, t), the third partial derivatives of q(u, t) with respect to t are continuous for

t ∈ IRk;

(A4) p(x) > 0, and the matrices ρ(x) and v(x) are positive definite;

(A5) p, all entries of ρ and v are continuous at x;
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(A6) K has compact support with nonempty interior;

(A7) All entries of θ have (m+ 1)-th continuous derivatives at x;

(A8) The bandwidth h tends to zero as n goes to infinity, and satisfies nh2m+3 < C for

some positive constant C.

For Theorem 2.2 we need (A1)∼(A6) plus the following assumptions:

(A7’) All entries of θ are twice partially continuously differentiable at x;

(A8’) All entries of the bandwidth matrix H tends to zero as n goes to infinity, and

satisfies n|H|5 < C for some positive constant C.

6.2 Proof of Theorem 2.1

We introduce additional notations:

θ̃(u)
4
= θ(x) + θ′(x)(u− x) + . . .+ θ(m)(x)(u− x)m/m!

âj ≡ âj(x)
4
= (nh)1/2hj

(
θ̂j(x)− θ(j)(x)

j!

)
, j = 0, . . . , m,

where

θ(j)(x)
4
=




θ
(j)
1 (x)

...

θ
(j)
k (x)


 where θ

(j)
i (x)

4
=

∂j

∂xj
θi(x)

Then, (â0, . . . , âm) is the maximizer with respect to (a0, a1, . . . , am) of

L∗n(a0, a1, . . . , am)
4
= h

n∑

i=1

[
q
(
Yi ; θ̃(Xi) + (nh)−1/2

(
a0 + a1(

Xi − x
h

) + . . .+ am(
Xi − x
h

)m
))

−q(Yi ; θ̃(Xi))
]
Kh(Xi − x).

Now, defining

Zi
4
=

(
1,
(
Xi − x
h

)
, . . . ,

(
Xi − x
h

)m)T

and

Wn
4
=

(
h

n

)1/2 n∑

i=1

[
Zi ⊗ q1(Yi ; θ̃(Xi))

]
Kh(Xi − x)

Bn
4
= − 1

n

n∑

i=1

[
(ZiZ

T
i )⊗ q2(Yi ; θ̃(Xi))

]
Kh(Xi − x)
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where ⊗ is the Kronecker product between matrices, it can be shown that

L∗n(a0, a1, . . . , am) = W T
n a−

1

2
aTBna+ op(1)

uniformly for a in any compact subset of IRmk (here a = (aT0 , . . . , a
T
m)T )).

This implies that

â ≡ (âT0 , . . . , â
T
m)T )

= B−1
n Wn + op(1) (6.1)

First we approximate E(Wn). Note that

E [q1(Y1 ; θ(X1)) |X1] = 0

from the regularity conditions. Thus,

(nh)−1/2E(Wn) = E
[{
Z1 ⊗ q1(Y1 ; θ̃(X1))

}
Kh(X1 − x)

]

= E
[
{Z1 ⊗ q2(Y1 ; θ(X1))} {θ̃(X1)− θ(X1)}Kh(X1 − x)

]
+O(h2m+2)

= E
[
{Z1 ⊗ ρ(X1)} {θ(X1)− θ̃(X1)}Kh(X1 − x)

]
+O(h2m+2)

=
1

(m + 1)!
{γ ⊗ ρ(x)} θ(m+1)(x) p(x) hm+1 + o(hm+1)

Next, we approximate V ar(Wn).

V ar(Wn) = h V ar
[{
Z1 ⊗ q1(Y1 ; θ̃(X1))

}
Kh(X1 − x)

]

= E
[{

(Z1Z
T
1 )⊗

(
q1(Y1 ; θ̃(X1))qT1 (Y1 ; θ̃(X1))

)}
(K2)h(X1 − x)

]
+O(h2m+3)

= E
[{

(Z1Z
T
1 )⊗ v(X1)

}
(K2)h(X1 − x)

]
+O(hm+1)

= {S ⊗ v(x)} p(x) + o(1).

Then, we approximate Bn

Bn =
1

n

n∑

i=1

{
(ZiZ

T
i )⊗ ρ(Xi)

}
Kh(Xi − x) +Op(h

m+1 + n−1/2 h−1/2)

= {N ⊗ ρ(x)} p(x) + o(1) +Op(h
m+1 + n−1/2 h−1/2).

Now from (6.1) we have

â0 − (eT0 ⊗ Ik)B−1
n E(Wn) = (eT0 ⊗ Ik)B−1

n (Wn − E(Wn)) + op(1).

Thus

[
(eT0 ⊗ Ik)B−1

n V ar(Wn)B−1
n (e0 ⊗ Ik)

]−1/2 (
â0 − (eT0 ⊗ Ik)B−1

n E(Wn)
)

d−→ N (0, Ik).
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Using the properties of Kronecker product that (A⊗B)−1 = A−1⊗B−1 and (A⊗B)(C⊗D) =

(AC)⊗ (BD), it may be seen that

(eT0 ⊗ Ik)B−1
n V ar(Wn)B−1

n (e0 ⊗ Ik) = (eT0N
−1SN−1e0)ρ(x)−1v(x)ρ(x)−1/p(x) + op(1)

and

(nh)−1/2(eT0 ⊗ Ik)B−1
n E(Wn) =

hm+1

(m+ 1)!
(eT0N

−1γ)θ(m+1)(x) + op(h
m+1),

which completes the proof.
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Figure 1: Example 1, Linear model: CV criterion. Computing time for the grid search over
11 values of hbase, 339 seconds on a Pentium III, 450 Mghz machine.
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Figure 2: Example 1, Linear model: The true frontier (dashed-dotted) and the local maximum
likelihood fit (solid). Computation time, 30 seconds on a Pentium III, 450 Mghz machine.
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Figure 3: Example 2, quadratic model with heteroscedasticity: CV criterion. Computing
time for the grid search over 11 values of hbase, 426 seconds on a Pentium III, 450 Mghz
machine.
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Figure 4: Example 2, quadratic model with heteroscedasticity: The true frontier (dashed-
dotted) and the local maximum likelihood fit (solid).
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Figure 5: Example 3: CV criterion. Computing time for the grid search over 7 values of
hbase, 280 seconds on a Pentium III, 450 Mghz machine.
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Figure 6: Example 3: True against estimated frontier (left panel) and true against predicted
efficiencies (right panel), for i = 1, . . . , 100.
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Figure 7: Dairy data set: CV criterion. Computing time for the grid search over 11 values
of hbase, 1042 seconds on a Pentium III, 450 Mghz machine.
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Figure 8: Distribution of localized estimates over the 480 observed points. Computing time
for all the computations, 3792 seconds on a Pentium III, 450 Mghz machine.

23



X1 X2 Y True front Fitted front MLE front True ui ûi ûMLE
i

0.3075 1.6208 7.1913 8.5491 8.6041 8.6337 1.0663 1.3686 1.4017
0.4619 1.3645 4.4324 8.1909 8.2318 8.2567 3.1721 3.6714 3.7096
0.8298 1.2496 4.9784 8.3290 8.1947 8.1834 2.7055 3.1157 3.1088
0.3001 0.7362 4.6990 6.7725 7.1242 7.1592 2.7503 2.3410 2.3864
0.7096 0.4056 5.8958 6.5207 6.7320 6.7402 1.0989 0.8618 0.8640
0.0746 0.5501 4.8044 6.1748 6.7434 6.7773 1.2518 1.8690 1.9138
0.7502 0.9631 3.1629 7.6764 7.6785 7.6811 5.0428 4.3723 4.3827
0.4689 0.8004 4.9061 7.0697 7.2923 7.3202 2.3832 2.3060 2.3416
0.9449 1.4046 8.3640 8.7541 8.5097 8.4782 1.1690 0.4489 0.4225
0.0140 0.6427 5.4701 6.2994 6.8784 6.9120 0.1809 1.3615 1.4012
0.0542 0.0969 5.2896 5.2480 5.9928 6.0166 0.5422 0.7614 0.7730
0.7384 1.5550 7.1718 8.8484 8.6676 8.6623 0.8001 1.4510 1.4477
0.6356 1.1068 5.3290 7.8492 7.8702 7.8835 2.0604 2.4585 2.4779
0.9310 0.1355 5.5749 6.2020 6.3777 6.3617 1.1841 0.8342 0.8185
0.4610 0.9924 6.6433 7.4457 7.6090 7.6371 0.8009 0.9679 0.9888
0.5129 1.6722 8.0822 8.8573 8.7693 8.7852 0.9395 0.7537 0.7552
0.4245 0.9219 6.0327 7.2682 7.4777 7.5081 0.7135 1.3997 1.4332
0.4159 1.5601 5.1533 8.5360 8.5424 8.5674 4.1503 3.2740 3.3118
0.3882 0.9835 7.1130 7.3552 7.5669 7.5990 0.1288 0.6037 0.6097
0.8555 1.3914 9.0144 8.6384 8.4453 8.4277 0.6221 0.2480 0.2320
0.8230 1.9701 2.8772 9.7633 9.4082 9.3803 6.1351 6.3280 6.3081
0.9139 0.7063 4.7090 7.3266 7.3218 7.3062 1.6680 2.5330 2.5194
0.8360 1.2440 5.4475 8.3240 8.1881 8.1760 2.3114 2.6550 2.6467
0.8681 1.0318 4.8018 7.9317 7.8462 7.8332 3.0942 2.9501 2.9404
0.7756 1.6301 7.7465 9.0357 8.8111 8.7992 1.6096 1.0540 1.0403

Table 1: Example 3: Table of some fitted values
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Parameter Estimates Std error
Const. 5.7639 0.1237
Cows 0.7274 0.0336
Land 0.0055 0.0197
Labor 0.0529 0.0329
Conc 0.3506 0.0160
Trend 0.0063 0.0036
σ2 0.0422 0.0049
λ 2.2792 0.4323

Table 2: Parametric MLE for Dairy data

Units Cows Land Labor Conc Trend Output Fit. front. ûi êff i
126 3.1864 2.5649 0.4055 11.0940 6.0 11.9694 12.0506 0.0938 0.9105
18 3.1739 2.4849 0.4055 11.2020 6.0 12.1741 12.0862 0.0401 0.9607

333 2.7600 2.0541 0.4055 9.7962 3.0 11.0250 11.2389 0.1918 0.8255
347 3.1311 2.7726 0.0000 10.7722 5.0 11.8641 11.8656 0.0617 0.9402
54 1.8405 2.3026 0.4055 9.4969 6.0 10.0470 10.3164 0.2231 0.8000

355 2.8273 2.8034 0.4055 9.9478 1.0 11.2372 11.3386 0.1039 0.9013
323 2.6101 1.9459 0.0000 9.9372 5.0 11.0377 11.1660 0.1193 0.8876
288 2.4248 2.5257 0.0000 9.8069 6.0 11.0120 11.0208 0.0562 0.9453
94 3.1398 2.1972 0.4055 11.3204 4.0 11.9653 12.0919 0.1191 0.8877

222 2.6878 2.0794 0.4055 10.0044 6.0 11.1571 11.2890 0.1225 0.8847
346 3.1135 2.7726 0.0000 10.7179 4.0 11.7776 11.8296 0.0798 0.9233
327 2.7279 2.0794 0.6931 9.9072 3.0 11.1376 11.2458 0.1041 0.9012
203 3.0445 1.8871 0.4055 10.9028 5.0 11.7769 11.8274 0.0678 0.9344
22 3.2149 2.1748 0.4055 11.1983 4.0 11.8308 12.0941 0.2369 0.7890

257 2.8848 2.4849 0.4055 9.9955 5.0 11.3363 11.4581 0.1159 0.8906
178 3.2696 2.3026 0.4055 11.3728 4.0 12.0477 12.2067 0.1436 0.8662
134 3.4965 2.6101 0.4055 11.6542 2.0 12.4795 12.4608 0.0563 0.9452
105 2.7408 2.1401 0.4055 10.4996 3.0 11.3687 11.4810 0.1082 0.8974
424 2.9285 2.9957 0.4055 9.3154 4.0 11.2699 11.3178 0.0762 0.9266
251 3.2108 2.9178 0.4055 11.1984 5.0 12.2027 12.0863 0.0476 0.9535
469 2.0669 2.2513 0.0000 9.8576 1.0 10.5367 10.6983 0.1408 0.8687

4 3.1739 2.1748 0.4055 11.5400 4.0 12.1517 12.2001 0.0691 0.9332
382 3.4372 2.7081 0.6931 11.2708 4.0 12.1887 12.3008 0.1079 0.8977
238 3.8067 2.7726 0.6931 11.8309 4.0 12.5864 12.7306 0.1228 0.8845
395 3.7062 3.4012 0.6931 11.3640 5.0 12.3323 12.4333 0.0890 0.9148

Table 3: Dairy data: Table of some fitted values
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