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Abstract. This paper extends the scope of empirical likelihood methodology in
three directions: to allow for plug-in estimates of nuisance parameters in estimat-
ing equations, slower than

√
n-rates of convergence, and settings in which there

are a relatively large number of estimating equations compared to the sample
size. Calibrating empirical likelihood confidence regions with plug-in is some-
times intractable due to the complexity of the asymptotics, so we introduce a
bootstrap approximation that can be used in such situations. We provide a range
of examples from survival analysis and nonparametric statistics to illustrate the
main results.
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1. Introduction

Empirical likelihood (Owen, 1990, 2001) has traditionally been used for providing confi-
dence regions for multivariate means and, more generally, for parameters in estimating
equations, under various standard assumptions: the number of estimating equations is
fixed, they do not involve nuisance parameters, and the parameters of interest are estimable
at

√
n-rate, where n is the sample size. Under such assumptions and with i.i.d. observa-

tions (or even dependent observations, see e.g. Ch. 8 of Owen, 2001), empirical likelihood
(EL) based confidence regions can be calibrated using a nonparametric version of Wilks’s
theorem involving a chi-squared limiting distribution.

The aim of the present paper is to develop adaptations when the traditional assump-
tions are violated. More specifically, under certain weak asymptotic stability conditions,
we establish generalisations of the basic theorem of EL to allow for plug-in estimates of
nuisance parameters in the estimating equations, for slower than

√
n-rates of convergence,

and for i.i.d. settings in which there are a relatively large number of estimating equations
compared to the sample size. Several of our examples share the characteristic that they
would be harder to analyse with other methods. In particular, the method of profile EL
(see e.g. Owen, 2001, page 42) for dealing with nuisance parameters in estimating equa-
tions is often not applicable for infinite dimensional nuisance parameters, and even when
it is applicable, implementation can be computationally difficult. The triangular array EL
theorem of Owen (2001, page 85) applies under slower than

√
n-rates, and has been useful
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in the context of nonparametric density estimation, for instance, but is not flexible enough
to handle estimating functions with plug-in.

The use of plug-in for nuisance parameters in EL confidence regions is not new. It
has recently been applied in various survival analysis contexts, see Qin and Jing (2001a,
2001b), Wang and Jing (2001), Li and Wang (2003) and Qin and Tsao (2003). The tech-
nique has also been used in survey sampling with imputation for missing response, see
Wang and Rao (2002). Our aim here, however, is to provide a more widely applicable
version of this approach, that can accommodate a wide array of examples, allowing both
plug-in and slower than

√
n-rates of convergence. We take the point of view that it is

preferable to derive a general result using generic assumptions, that can be checked fairly
easily in specific applications, rather than reinventing the basic theory on each occasion.
Calibrating EL confidence regions with plug-in is sometimes intractable due to the com-
plexity of the asymptotics, so we introduce a bootstrap approximation that can be used
in such situations.

To illustrate our general results we consider a range of examples from survival analysis
and nonparametric statistics in settings where the inference is based on estimating func-
tions. In particular, we look at functionals of survival distributions with right censored
data (treated via EL in Wang and Jing, 2001), the error distribution in nonparametric
regression (Akritas and Van Keilegom, 2001), density estimation (treated by EL in Hall
and Owen, 1993, and Chen, 1996), and survival function estimation from current status
data (van der Laan and van der Vaart, 2000).

Standard maximum likelihood theory for parametric models, as well as EL theory,
keeps the dimension of the parameter (or the number of estimating equations) fixed, say
at p, as sample size n grows. This is what leads to asymptotic normality, Wilks type
theorems for likelihood ratio statistics and Owen type theorems for EL. Portnoy (1986,
1988) and others have investigated the extent to which maximum likelihood theory based
results still hold, when p is allowed to increase with n. The canonical growth restriction
for normal approximations to hold is that p2/n → 0, while p3/2/n → 0 typically suffices
for certain quadratic approximations associated with Wilks theorems to hold.

In this article we investigate the similar problem of finding conditions under which the
EL methods continue to work adequately when p grows. The canonical growth condition
will be seen to be p3/n → 0. Under this condition, in addition to other requirements that
have to do with stability of eigenvalues of covariance matrices, minus twice the log-EL can
be approximated well enough with a certain quadratic form that in itself is close to a χ2

p.
We should add that in situations with a high number of parameters the typical aim

is not to provide a simultaneous confidence region for the full parameter vector, say
(µ1, . . . , µp). It could rather be to test whether a subset of the parameters have zero
values, or to compare one distribution with another, or to make inference for a focus pa-
rameter, say φ = f(µ1, . . . , µp). Each of these tasks can be done with EL methods, inside
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our framework for growing p. Setting a confidence for such a focus parameter φ may e.g. be
done via profile EL methods, as in Owen (2001, Section 3.4).

The paper is organised as follows. Section 2 develops the EL theory with plug-in under√
n-rate of convergence, including the bootstrap approximation of the limiting distribution

of the EL statistic. Four examples are discussed in Section 3. The theory is extended to
slower than

√
n-rate in Section 4. In Section 5 we examine the limiting behavior of the

EL statistic in situations where the number of estimating functions is allowed to increase
with growing sample size. Some examples are presented in Section 6, including setups with
‘growing polynomial regression’ and ‘growing exponential families’. Proofs can be found
in the Appendix.

2. Plug-in empirical likelihood

We first describe the general framework. The basic idea of empirical likelihood (EL)
is to regard the observations Z1, . . . , Zn as if they are i.i.d. from a fixed and unknown d-
dimensional distribution P , and to model P by a multinomial distribution Pn concentrated
on the observations. Inference for the parameter(s) of interest, θ0 = θ0(P ) ∈ Θ, is then
carried out using a p-dimensional estimating function of the form m(Z, θ, h), where, for the
purposes of the present paper, h is a (possibly infinite dimensional) ‘nuisance’ parameter
with unknown true value h0 = h0(P ) ∈ H. A slight extension would be to allow m to
change with n; our results carry through immediately, but as the applications (in Section
3) do not require such generality, we do not consider this extension. In the slower than√

n-rate applications (Section 4), however, we do need to allow for dependence on n.
When h0 is known, it can replace h in the EL ratio function

ELn(θ, h) = max
{ n∏

i=1

(nwi): each wi ≥ 0,
n∑

i=1

wi = 1,
n∑

i=1

wim(Zi, θ, h) = 0
}
,

leading to a confidence region {θ: ELn(θ, h0) > c} for θ0. Here the constant c can be
calibrated using Owen’s (1990) EL theorem: if the observations are i.i.d. and m(Z, θ0, h0)
has zero mean and a positive definite covariance matrix, then

−2 logELn(θ0, h0) →d χ2
p,

where χ2
p has a chi-squared distribution with p degrees of freedom.

2.1. Main result. We now establish a plug-in version of Owen’s result in which the
unknown h0 is replaced by an estimator ĥ, leading to a calibration for {θ: ELn(θ, ĥ) > c}
as a confidence region for θ0. For EL to be useful, there needs to exist a solution to the
above maximisation problem given the data (even when h0 is known), so the existence of
a solution at h = ĥ is assumed implicitly. Apart from this, we extract the basic structure
of Owen’s result, and only rely on ‘generic’ asymptotic stability conditions, (A1)–(A3)
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below, which do not require i.i.d. observations or consistency of ĥ, although such structure
may very well be needed to check the conditions in specific applications. The proof (in
the Appendix) is essentially the same as Owen’s, but is included here for easy reference in
developing our subsequent results.

We use the following notation: m⊗2 = mmt,

Mn(θ, h) =
1
n

n∑
i=1

m(Zi, θ, h), Sn(θ, h) =
1
n

n∑
i=1

m⊗2(Zi, θ, h).

For matrices A = (ai,j) we use |A| = maxi,j |ai,j|, and for vectors a, ‖a‖ denotes the
Euclidean norm. The conditions are as follows. Here and later we use →d and →pr

to indicate respectively convergence in distribution and in probability, while opr(·) and
Opr(·) are stochastic order notation: Xn = opr(an) means that Xn/an →pr 0 whereas
Xn = Opr(an) means that Xn/an is bounded in probability.

(A1) n1/2Mn(θ0, ĥ) →d U where U ∼ Np(0, V1) for some positive definite matrix V1.
(A2) Sn(θ0, ĥ) →pr V2 for some positive definite matrix V2.
(A3) max1≤i≤n ‖m(Zi, θ0, ĥ)‖ = opr(n1/2).

Theorem 2.1. Under conditions (A1)–(A3),

−2 log ELn(θ0, ĥ) →d U tV −1
2 U.

The limit distribution may also be expressed as r1χ
2
1,1 + · · ·+ rpχ

2
1,p, where the χ2

1,js are

independent chi-squared random variables with one degree of freedom and the weights

r1, . . . , rp are the eigenvalues of V −1
2 V1.

Remark 2.1. When V1 and V2 coincide, we have the standard χ2
p limit distribution

and there is no perturbation due to plug-in. When V1 and V2 are not identical, the weights
r1, . . . , rp may need to be estimated, for example via consistent estimators V̂1, V̂2 and
computing the eigenvalues of V̂ −1

2 V̂1. It is not possible to say anything in general about
estimation of V1, which will depend on the structure of the specific application; later in
this section we examine a bootstrap approach which can be applied when V1 is difficult to
estimate by other means. An estimator of V2 is easily provided by condition (A2), with
plug-in of a consistent estimator θ̂ for θ0. In the Appendix we show that V̂2 = Sn(θ̂, ĥ)
consistently estimates V2 under the following two additional conditions:

(A4) For some subset H̄ of H such that P{ĥ ∈ H̄} → 1, and for some δ > 0, the class
of functions F = {m⊗2(·, θ, h): ‖θ − θ0‖ < δ, h ∈ H̄} has the Glivenko–Cantelli property,
i.e.

sup
‖θ−θ0‖<δ,h∈H̄

∣∣∣ 1
n

n∑
i=1

{m⊗2(Zi, θ, h)− Em⊗2(Z, θ, h)}
∣∣∣ →pr 0.
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(A5) For any real sequence δn ↓ 0,

sup
‖θ−θ0‖≤δn,h∈H̄

|Em⊗2(Z, θ, h)− Em⊗2(Z, θ0, h)| → 0.

Remark 2.2. For i.i.d. observations, with m(Z, θ0, h0) having zero mean (where h0

is the true value of h) and a finite covariance matrix V0, the multivariate central limit
theorem implies

n1/2Mn(θ0, h0) →d N(0, V0),

so condition (A1) describes the perturbation of V0 due to replacing h0 by ĥ. In the
highly smooth case that M(θ0, ĥ) = opr(n−1/2), where M(θ, h) = Em(Z, θ, h), it can
be shown (under some additional assumptions) that there is no perturbation: V1 = V0.
For instance, suppose that the class of functions {m(·, θ0, h): h ∈ H} is Donsker, and
ĥ is consistent in the sense that ρj(ĥ, h0) →pr 0 for j = 1, . . . , p, where ρj(h, h0) =
E{mj(Z, θ0, h)−mj(Z, θ0, h0)}2. Then

n1/2Mn(θ0, ĥ) = n−1/2
n∑

i=1

{m(Zi, θ0, ĥ)−M(θ0, ĥ)}+ n1/2M(θ0, ĥ) →d Np(0, V0),

so V1 = V0, where empirical process theory is used to obtain weak convergence of the
first term, cf. van der Vaart (1998, p. 280). However, M(θ0, ĥ) = opr(n−1/2) is a strong
condition, so we have avoided using it in favour of the less restrictive condition (A1), which
is flexible enough to be checked within the context of the examples considered in the next
section.

Remark 2.3. The assumption of a normal limit in (A1) is not crucial, although the
limit distribution of the likelihood ratio statistic then takes on a more complicated form
and simulation may be needed to calibrate the confidence region. In fact, we could replace
(A1) by

(A1′) n1/2Mn(θ0, ĥ) →d U for some p-dimensional continuous random vector U .

Remark 2.4. Kitamura (1997) introduces blockwise EL with estimating functions,
without plug-in, in models having weakly dependent stationary observations. The maxi-
mum EL estimator under blocking is shown to have greater efficiency than the standard
maximum EL estimator, but the blockwise approach has not been extended to allow plug-
in. Standard EL (with plug-in), however, can still provide accurate confidence sets under
dependent observations, for according to Theorem 2.1 the limiting distribution of the stan-
dard EL statistic, while not chi-square, is of a tractable form. If m does not depend on
n and there is no plug-in, conditions (A1) and (A2) can be checked by central limit theo-
rems and ergodic theorems for weakly dependent sequences. Condition (A3) holds provided
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E‖m(Z, θ0)‖2 < ∞ by a Borel–Cantelli argument (cf. Owen, 2001, Lemma 11.2). For a one-
dimensional estimating function m(Z, θ) (p = 1) such that Em(Z, θ) = 0, the limiting dis-
tribution of the EL statistic is rχ2

1, where r =
∑∞

i=1 Cov{m(Z1, θ), m(Zi, θ)}/Var{m(Z, θ)}
could be estimated easily.

Remark 2.5. If the nuisance parameter has finite dimension q, the estimating func-
tion is smooth, and ĥ = ĥθ maximises ELn(θ, h) over h (i.e. ELn(θ, ĥθ) is a profile EL), it
is known that −2 logELn(θ0, ĥθ0) has a χ2

q limiting distribution (see Owen, 2001, page 55).
This differs from the limiting distribution of Theorem 2.1, but V1 or V2 would be singular
in this case, and our result does not apply.

2.2. Bootstrap calibration. As mentioned above, the estimation of V1 can be
difficult in certain situations and, more seriously, U may not be normally distributed, in
which case a bootstrap calibration is desirable. The procedure developed below consists
in replacing U (in the distribution of U tV −1

2 U) by a consistent bootstrap estimator, and
consistently estimating V2.

Let {Z∗
1 , . . . , Z

∗
n} be drawn randomly with replacement from {Z1, . . . , Zn}, define

M∗
n(θ, h) = n−1

∑n
i=1 m(Z∗

i , θ, h) for each θ, and h and let ĥ∗ be the same estimator
as ĥ but based on the bootstrap data. Also, let θ̂ be a consistent estimator of θ0, and
V̂2 = Sn(θ̂, ĥ).

We use the abbreviated notation ∆n = Mn − M , as a function of (θ, h), and ∆∗
n

denotes the bootstrap version of ∆n (here and in the sequel we define the bootstrap
version of any statistic as the expression obtained by replacing M,Mn, θ0, h0 and ĥ by
Mn,M

∗
n, θ̂, ĥ and ĥ∗, respectively). Let ‖ · ‖H denote a semi-norm on H. Also let Φn =

n1/2{∆n(θ0, h0) + Γ(θ0, h0)[ĥ− h0]}, where Γ(θ0, h0)[ĥ− h0] is the Gâteaux derivative of
M(θ0, h0) in the direction ĥ− h0 (see e.g. Bickel, Klaassen, Ritov and Wellner, 1993, page
453). The bootstrap analogue of Φn is denoted by Φ∗

n. Finally, let P
∗ denote the bootstrap

distribution conditional on the data. The following conditions are needed to formulate the
validity of the bootstrap approximation:

(B1) supt∈Rp |P ∗{Φ∗
n ≤ t} − P{Φn ≤ t}| →pr 0.

(B2) sup‖θ−θ0‖≤δn,‖h−h0‖H≤δn
‖∆n(θ, h)−∆n(θ0, h0)‖ = opr(n−1/2) for all δn ↓ 0.

(B3) ‖M(θ0, ĥ)−M(θ0, h0)− Γ(θ0, h0)[ĥ− h0]‖ ≤ c‖ĥ− h0‖2
H for some c > 0.

(B4) ‖ĥ− h0‖H = opr(n−1/4).
(B5) The bootstrap analogues of conditions (B2)–(B4) hold pr-a.s.

Theorem 2.2. Under conditions (A1′), (A2)–(A5) and (B1)–(B5),

sup
t≥0

∣∣∣P ∗{n[M∗
n(θ̂, ĥ

∗)−Mn(θ̂, ĥ)]tV̂ −1
2 [M∗

n(θ̂, ĥ
∗)−Mn(θ̂, ĥ)] ≤ t}

− P{−2 logELn(θ0, ĥ) ≤ t}
∣∣∣ →pr 0.

6



Remark 2.6. When θ̂ is defined as the minimiser of ‖Mn(θ, ĥ)‖, sufficient conditions
for θ̂ to be consistent can be found in Theorem 1 in Chen, Linton and Van Keilegom (2003).
In order to verify condition (B2) in the case of i.i.d. observations, it suffices by Corollary
2.3.12 in van der Vaart and Wellner (1996) to show that the class {m(·, θ, h): θ ∈ Θ, h ∈ H}
is Donsker, and that

Var{m(Z, θ, h)−m(Z, θ0, h0)} ≤ K1‖θ − θ0‖+K2‖h− h0‖H + εn

for some K1, K2 ≥ 0, and for some εn ↓ 0. The bootstrap analogue of (B2) then follows
from Giné and Zinn (1990), provided

Var∗{m(Z∗, θ, h)−m(Z∗, θ̂, ĥ)} ≤ K ′
1‖θ − θ̂‖+K ′

2‖h− ĥ‖H + ε′n

for some K ′
1, K

′
2 = O(1) a.s. and for some ε′n = o(1) a.s. Finally, condition (B3) and its

bootstrap version can often be verified by using a two-term Taylor expansion of M(θ0, ĥ)
and of M(θ̂, ĥ∗) around h0 and ĥ, respectively.

2.3. Simultaneous confidence bands. We now briefly discuss an extension of our
approach that may be useful for obtaining a simultaneous confidence band for a function
t �→ θ0(t) defined on an interval T . Given an estimating function m(Z, θ(t), h, t) of the
previous form, but now also depending on t, the earlier definitions extend in the obvious
way. It can be shown that the process −2 logELn(θ0(t), ĥ, t) has a weak limit of the form
U(t)tV2(t)−1U(t) under the following conditions:

(A1∗) n1/2Mn(θ0(t), ĥ, t) converges weakly to a process U(t).
(A2∗) supt∈T |Sn(θ0(t), ĥ, t)−V2(t)| →pr 0 for a matrix-valued function V2(t), and the

eigenvalues of V2(t) are uniformly bounded away from zero and infinity.
(A3∗) sup1≤i≤n,t∈T ‖m(Zi, θ0(t), ĥ, t)‖ = opr(n1/2).

The simultaneous confidence band would need to be calibrated from the quantiles of
supt∈T |Û(t)tV̂2(t)−1Û(t)|, where V̂2(t) is a uniformly consistent estimator of V2(t) and
Û(t) is an estimated version of the process U(t).

3. Applications of the plug-in theory

This section gives four illustrations of the preceding plug-in theory. The first uses para-
metric plug-in for a nonparametric estimand while the three others effectively use non-
parametric plug-in to solve nonparametric empirical likelihood problems.

3.1. Symmetric distribution functions. Let F be a continuous distribution
function that is symmetric about an unknown location a, so F (x) = 1− F (2a− x) for all
x. Consider estimation of θ0 = F (x) at a fixed x from n i.i.d. observations from F . The
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estimating function has p = 2 components (the first being the usual estimating function
and the second making use of the symmetry assumption):

m(X, θ, a) =
(

1{X ≤ x} − θ
1{X > 2a− x} − θ

)
.

With plug-in of the sample median â in place of a, and provided 0 < θ0 < 1, Theorem 2.1
gives

−2 logELn(θ0, â) →d χ2
2,

which is the same limit as in the case a is known. Condition (A1) can be checked using a
Skorohod construction (cf. Li and Doss, 1993, p. 788), and

V1 = V2 =
(

θ0(1− θ0) −θ2
0

−θ2
0 θ0(1− θ0)

)
.

3.2. Integral of squared densities. Let X1, . . . , Xn be i.i.d. from an unknown
density f0. The quantity θ0 =

∫
f2
0 dx is of interest for various problems related to non-

parametric density estimation. The limit distribution of the Hodges–Lehmann estimator
of location has variance proportional to 1/θ2

0, see Lehmann (1983, page 383). Similarly,
the power of the Wilcoxon rank test is essentially determined by the size of θ, see Lehmann
(1975, page 72).

To see how our extended EL machinery can be used to make inference about this
parameter, study m(X, θ, f) = f(X)−θ, for which Em(X, θ0, f0) = 0. We employ a kernel
density estimator f̂(x) = n−1

∑n
i=1 kb(Xi − x), where kb = k(·/b)/b is a scaled version

of a symmetric and bounded kernel function k using bandwidth b = bn, and wish to use
the plug-in likelihood ELn(θ, f̂). (For discussion of methods for deciding on good kernel
bandwidths, when the specific purpose is precise estimation of θ, see Schweder, 1975.) For
this we must go through conditions (A1)–(A3) of Theorem 2.1. Define

V =
∫
(f0 − θ0)2f0 dx =

∫
f3
0 dx−

(∫
f2
0 dx

)2

;

this is the variance of the limit distribution of n1/2Mn(θ0, f0). To check (A2) first, write

Sn(θ0, f̂) = n−1
n∑

i=1

{f̂(Xi)− θ0}2 =
∫

f̂2 dFn − 2θ0θ̂ + θ2
0,

in terms of the empirical distribution function Fn and θ̂ = n−1
∑n

i=1 f̂(Xi) =
∫

f̂ dFn.
One may now prove that

∫
f̂ dFn and

∫
f̂2 dFn have the required limits in probability∫

f2
0 dx and

∫
f3
0 dx, provided b → 0 and nb → ∞. This leads to Sn(θ0, f̂) →pr V and

verifies (A2).
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It is a little more laborious task to go through (A1), which also demands a more
precise study of

θ̂ =
1
n

n∑
i=1

f̂(Xi) =
1
n2

∑
i,j

kb(Xi −Xj) =
k(0)
nb

+
n− 1

n
ĝ.

Here ĝ = ĝ(0), where ĝ(y) =
(
n
2

)−1 ∑
i<j k̄b(Yi,j , y) is a natural kernel estimator of

the difference density g(y) =
∫

f(y + x)f(x) dx of Yi,j = Xi − Xj ; here k̄b(Yi,j, y) =
1
2
{kb(Yi,j − y) + kb(Yi,j + y)}. Hjort (1999, Section 7) shows that ĝ(y) has mean value

g(y)+ 1
2b

2g′′(y)
∫
u2k(u) du+ o(b2), with variance (4/n){g∗(y)− g(y)2} plus smaller order

terms, where g∗(y) = (1/4){ḡ(y, y)+ ḡ(y,−y) + ḡ(−y, y)+ ḡ(−y,−y)} and ḡ(y1, y2) is the
simultaneous density of two related differences (X2−X1, X3−X1). Thus n1/2Mn(θ0, f̂) =
n1/2(θ̂ − θ0) has mean of order O(1/(n1/2b) + n1/2b2) and variance going to 4V . This,
in conjunction with the asymptotic theory of U-statistics, verifies (A1), under the con-
ditions n1/2b → ∞ and n1/2b2 → 0. (If b = b0n

−α, we need 1
4

< α < 1
2
.) Finally, for

(A3), note that f̂(x) ≤ b−1kmax for all x, where kmax is the maximum of k(u). Hence
maxi≤n |f̂(Xi) − θ0| is bounded by b−1kmax + θ0, which implies (A3), provided only that
n1/2b → ∞. We may conclude that −2 logELn(θ0, f̂) →d 4χ2

1.

3.3. Functionals of survival distributions. Wang and Jing (2001) developed a
plug-in version of EL for a class of functionals of a survival function (including its mean)
in the presence of censoring. Denote the survival and censoring distribution functions by
F and G, respectively. The parameter of interest here is a general linear functional of F ,
say

θ = θ(F ) =
∫ ∞

0

ξ(t) dF (t),

where ξ(t) is some nonnegative measurable function for which the mean θ(F ) is finite.
The estimating function m implicit in the approach of Wang and Jing is given by

m(Z, δ, θ, G) =
ξ(Z)δ

1−G(Z)
− θ,

where Z = min(X, Y ), δ = I{X < Y }, Y ∼ G, and X and Y are independent. It is easily
shown that Em(Z, δ, θ, G) = 0, which is the basic identity underlying the interpretation of
the Kaplan–Meier estimator as an inverse-probability-of-censoring weighted average; see
Satten and Datta (2001) for discussion and references.

The censoring distribution function G plays the role of h in our framework, and we
set ĥ(t) = Ĝn(t ∧ Z(n)), where Ĝn is the Kaplan–Meier estimator of G. We refer to
Wang and Jing (2001) for the assumptions. The conditions (A1)–(A3) needed to apply
our Theorem 2.1 are now checked by referring to various parts of the proof of their The-
orem 2.1. (A1) follows from their lemma on page 524, with V1 being the asymptotic
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variance of θ̂ = θ(F̂n), where F̂n is the Kaplan–Meier estimator of F . For (A2), note that
maxi≤n |m(Zi, δi, θ0, G)− m(Zi, δi, θ0, Ĝn)| = opr(n1/2), cf. Wang and Jing (op. cit., page
525), which implies

Sn(θ0, ĥ) =
1
n

n∑
i=1

m(Zi, δi, θ0, Ĝn)2 =
1
n

n∑
i=1

m(Zi, δi, θ0, G)2 + opr(1) →pr V2,

where V2 < ∞ by their condition (C3). Condition (A3) is their displayed inequality
immediately before (4.5).

It remains to provide consistent estimators of V1 and V2, and we do this along the lines
of Remark 2.1. Stute’s (1996) jackknife estimator can be used for V̂1. Under conditions
(A4)–(A5), we have that V̂2 = Sn(θ̂, ĥ) consistently estimates V2. To check (A4), assume
that G(τH−) < 1, i.e. P{Y ≥ τH} > 0. Let G(τH−) < c < 1. Specify H̄ as the class of
increasing nonnegative functions h such that h(τH−) < c and h(t) = h(τH) for t ≥ τH .
Now,

sup
0≤t<τH

|ĥ(t)−G(t)| ≤ sup
0≤t<τH

|ĥ(t)−G(t ∧ Z(n))|+ sup
0≤t<τH

|G(t ∧ Z(n))−G(t)|

= sup
0≤t≤Z(n)

|Ĝn(t)−G(t)|+ sup
Z(n)<t<τH

|G(Z(n))−G(t)| →pr 0,

by uniform consistency of Ĝn on the interval [0, Z(n)], see Wang (1987). Thus P{ĥ ∈
H̄} = P{ĥ(τH−) < c} → 1. The class {1/(1 − h): h ∈ H̄} is contained in the class of all
monotone functions into [0, 1/(1− c)], which is Glivenko–Cantelli, see van der Vaart and
Wellner (1996, p. 149). Thus, using the preservation property of Glivenko–Cantelli classes
under a continuous function, see van der Vaart and Wellner (2000), it follows that F is
Glivenko–Cantelli. Condition (A5) follows from

E|m2(Z, θ, h)−m2(Z, θ0, h)| ≤ E (|m(Z, θ, h)−m(Z, θ0, h)| |m(Z, θ, h) +m(Z, θ0, h)|)
≤ ‖θ − θ0‖{‖θ + θ0‖+ 2E|ξ(Z)|/(1− c)}

for h ∈ H̄.

3.4. Error distributions in nonparametric regression. Consider the model
Y = µ(X) + ε, where X and ε are independent, ε has unknown distribution function Fε,
and µ(·) is an unknown regression function. We now use our approach with bootstrap
calibration to construct an EL confidence interval for θ0 = Fε(y), at a fixed point y. The
same assumptions as in Akritas and Van Keilegom (2001) are imposed. In particular, Fε

is assumed to be continuous, µ(·) is smooth and X is bounded. For simplicity we restrict
X to (0, 1).

Consider the Nadaraya–Watson estimator µ̂(x) =
∑n

i=1 Wn,i(x; bn)Yi, where

Wn,i(x; bn) = kb,x(Xi)/
n∑

j=1

kb,x(Xj),
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in terms of a kernel function k and scaled versions kb,x(u) = b−1k((u− x)/b) thereof, with
b = bn = b0n

−2/7 a bandwidth sequence (other choices of the bandwidth are possible).
The estimating function is m(X, Y, θ, µ) = I{Y − µ(X) ≤ y} − θ. We now check the
conditions of Theorem 2.1. (A1) follows from the asymptotic normality of the estimator
θ̂ = n−1

∑n
i=1 I{ε̂i ≤ y} (with ε̂i = Yi − µ̂(Xi)), given by Theorem 2 in Akritas and Van

Keilegom (2001): n1/2{F̂ε(y) − Fε(y)} = n1/2Mn(θ0, µ̂) →d N(0, V1) where V1 is defined
in their paper. Condition (A2) holds with V2 = θ0(1−θ0), provided 0 < θ0 < 1. Also (A3)
holds, since the function m is uniformly bounded by 1.

It remains to estimate V1 and V2. Note that V̂2 = θ̂(1− θ̂) consistently estimates V2.
However, V1 is harder to estimate. A plug-in type estimator can be obtained by making
use of the estimator of the error density in Van Keilegom and Veraverbeke (2002). Since
this approach requires the selection of a new bandwidth, we prefer to use the bootstrap
approach. We now check the conditions of Theorem 2.2. For (A4), set δ > 0 and define

C1+δ(0, 1) = {differentiable f : (0, 1)→ R, such that ‖f‖1+δ ≤ 1},

where

‖f‖1+δ = max{‖f‖∞, ‖f ′‖∞}+ sup
x,y

|f ′(x)− f ′(y)|
|x− y|δ ,

and ‖ · ‖∞ denotes the supremum norm. It follows along the lines of the proof of Lemma
1 in Akritas and Van Keilegom (2001), using for example δ = 1/5, that the class

{I(ε ≤ y + f(X))− θ: f ∈ C1+δ(0, 1), θ ∈ [0, 1]}
= {I{Y − h(X) ≤ y} − θ: h ∈ H̄, θ ∈ [0, 1]

}
is Donsker, and hence Glivenko–Cantelli, where H̄ = H = µ+C1+δ(0, 1), and H̄ is endowed
with the supremum norm. As a consequence, the class F in (A4) is also Glivenko–Cantelli.
Moreover, P{µ̂ ∈ H̄} → 1 by Propositions 3–5 in Akritas and Van Keilegom (2001).
Condition (A5) is satisfied since for any δn ↓ 0,

sup
|θ−θ0|≤δn,h∈H̄

|Em2(X, Y, θ, h)− Em2(X, Y, θ0, h)|

≤ δn sup
|θ−θ0|≤δn,h∈H̄

E|2I{Y − h(X) ≤ y} − θ − θ0| → 0.

Next, let us calculate Γ(θ, h)[h̄− h] for any h, h̄ ∈ H:

Γ(θ, h)[h̄− h]

= lim
τ→0

{M(θ, h+ τ(h̄− h))−M(θ, h)}/τ

= lim
τ→0

τ−1

∫
[FY |x(y + h(x) + τ(h̄(x)− h(x)))− FY |x(y + h(x))] dFX(x)

=
∫

fY |x(y + h(x))(h̄(x)− h(x)) dFX(x),

11



where FY |x and fY |x are the distribution and density function of Y given X = x, and FX

is the distribution function of X . Consequently,

Φn = n1/2
[
n−1

n∑
i=1

I{Yi − µ(Xi) ≤ y} − θ0

+ n−1

∫
fY |x(y + µ(x))

n∑
i=1

(kb,x(Xi)Yi − E{kb,x(X)Y }) dx
]
+ opr(1)

= n1/2
[
n−1

n∑
i=1

I{Yi − µ(Xi) ≤ y} − θ0

]

+ n1/2
[
n−1

n∑
i=1

fY |Xi
(y + µ(Xi))Yi − E[fY |X(y + µ(X))Y ]

]
+ opr(1).

(3.1)

In a similar way, we obtain

Φ∗
n = n1/2

[
n−1

n∑
i=1

I{Y ∗
i − µ̂(X∗

i ) ≤ y} − n−1
n∑

i=1

I{Yi − µ̂(Xi) ≤ y}
]

+ n1/2
[
n−1

n∑
i=1

fY |X∗
i
(y + µ̂(X∗

i ))Y
∗
i − E∗[fY |X∗(y + µ̂(X∗))Y ∗]

]
+ oP ∗(1).

(3.2)

Both (3.1) and (3.2) converge to zero-mean normal random variables (use e.g. the Lindeberg
condition to show the convergence of (3.2)). We next show that the asymptotic variance
of (3.2) converges in probability to the asymptotic variance of (3.1). To show this we
restrict attention to the first term of (3.1) and (3.2) (the convergence of the variance of the
second term and of the covariance between the two terms can be established in a similar
way). Note that the variance of the first term of (3.1) respectively (3.2) equals θ0(1− θ0)
respectively n−1

∑n
i=1 I{Yi− µ̂(Xi) ≤ y}[1−n−1

∑n
i=1 I{Yi− µ̂(Xi) ≤ y}]. Since it follows

from Lemma 1 in Akritas and Van Keilegom (2001) that

n−1
n∑

i=1

I{Yi − µ̂(Xi) ≤ y}

= θ0 +
n∑

i=1

[I{Yi − µ(Xi) ≤ y} − θ0] + P{Y − µ̂(X) ≤ y | µ̂} − θ0 + opr(n−1/2)

= θ0 + opr(1),

the result follows. Hence, (B1) is satisfied. For (B2) it suffices by Remark 2.6 to show
that the class {I{Y −h(X) ≤ y}− θ: 0 ≤ θ ≤ 1, h ∈ H̄} is Donsker, which we have already
established before, and that

Var
[
I{Y − h(X) ≤ y} − I{Y − µ(X) ≤ y} − θ + θ0

]
≤ K1|θ − θ0|+K2‖h− µ‖∞
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for some K1, K2 ≥ 0. A similar derivation can be given for the bootstrap analogue of (B2).
Next write

|M(θ0, µ̂)− Γ(θ0, µ)[µ̂− µ]|

=
∣∣∣P{Y − µ̂(X) ≤ y} − θ0 −

∫
fY |x(y + µ(x)){µ̂(x)− µ(x)} dFX(x)

∣∣∣
= |

∫
[FY |x(y + µ̂(x))− FY |x(y + µ(x))− fY |x(y + µ(x))(µ̂(x)− µ(x))] dFX(x)|

= 1
2
|
∫

f ′
Y | x(y + ξ(x))(µ̂(x)− µ(x))2 dFX (x)| ≤ K sup

x
|µ̂(x)− µ(x)|2,

for some ξ(x) between µ(x) and µ̂(x), and for some positive K. This shows that (B3) holds.
In a similar way, the bootstrap version of (B3) can be shown to hold. Finally, condition
(B4) follows from e.g. Härdle, Janssen and Serfling (1988), and its bootstrap version can be
established in a very similar way. It now follows that a 100(1−α)% confidence interval for
Fε(y) is given by {θ:−2 logELn(θ, µ̂) ≥ e∗1−α}, where e∗1−α is the 100(1− α)% percentile
of the distribution of

n
[
n−1

n∑
i=1

I{Y ∗
i − µ̂∗(X∗

i ) ≤ y} − θ̂
]2/

{θ̂(1− θ̂)}.

4. Plug-in empirical likelihood for slower than root-n-convergence

In this section we develop a version of our main result (Theorem 2.1) when the rate of
convergence of the sample mean of the estimating function is slower than the standard

√
n-

rate, i.e. of the form nα for some α in (0, 1
2 ). Such rates are common in smoothing problems,

inverse problems, and in settings where the observations have long-range dependence (as
opposed to the weak dependence discussed in Remark 2.4). We examine in detail an
application to density estimation, and survival function estimation for current status data,
the latter being a classic example of cube-root asymptotics (α = 1/3). In these applications
we need the estimating function m to change with n. A related result (without plug-in or
explicit rates) is the triangular array EL theorem of Owen (2001, page 85).

4.1. Main result. We need the following asymptotic stability conditions:

(C1) nαMn(θ0, ĥ) →d U ∼ Np(0, V1) for some positive definite matrix V1.
(C2) n2α−1Sn(θ0, ĥ) →pr V2 for some positive definite matrix V2.
(C3) max1≤i≤n ‖mn(Zi, θ0, ĥ)‖ = Opr(nα).

Theorem 4.1. Assume conditions (C1)–(C3) hold for an appropriate α in (0, 1
2
).

Then the statement of Theorem 2.1 is in force.

Remark 4.1. Conditions (C1), (C2) are natural extensions of (A1), (A2). However,
(C3) only requires Opr(nα) rather than opr(nα), so it is not an extension of (A3). This
is an important departure from the

√
n-rate result, and turns out to be crucial for the

application to current status data.
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Remark 4.2. As with (A1), the assumption of a normal limit in (C1) is not crucial.
In the application to current status data, however, we do have a normal limit and V1 = V2,
so it is unnecessary to estimate either V1 or V2. In general it will be necessary to estimate
both matrices for the result to be useful. Along the lines of Remark 2.1, it can be shown
that V̂2 = n2α−1Sn(θ̂, ĥ) consistently estimates V2 if θ̂ consistently estimates θ0 and the
following two additional conditions hold:

(C4) For some subset H̄ of H such that P{ĥ ∈ H̄} → 1,

sup
‖θ−θ0‖<δ,h∈H̄

∣∣∣n2(α−1)
n∑

i=1

{m⊗2
n (Zi, θ, h)− Em⊗2

n (Z, θ, h)}
∣∣∣ →pr 0.

(C5) For any real sequence δn ↓ 0,

n2α−1 sup
‖θ−θ0‖≤δn,h∈H̄

|Em⊗2
n (Z, θ, h)− Em⊗2

n (Z, θ0, h)| → 0.

4.2. Density estimation. Let X1, . . . , Xn be i.i.d. from an unknown density f0,
and suppose we are interested in estimating θ0 = f0(t), for t fixed. We do this using
the kernel density estimator f̂n(t) = n−1

∑n
i=1 kb(Xi − t), where kb(u) = b−1k(b−1u) is

a b-scaled version of a symmetric, bounded kernel function k, supported on [−1, 1]. We
choose here to employ bandwidths b = bn = b0n

−β , where 0 < β < 1/5. The β = 1/5 rate
is optimal for estimating f0(t), in the sense of minimising the asymptotic mean squared
error, but as we here aim at constructing confidence intervals, an undersmoothing rate of
β < 1/5 is preferable. Hall and Owen (1993) constructed EL confidence bands for f0, and
Chen (1996) showed that the pointwise EL confidence intervals (with and without Bartlett
correction) are more accurate than those based on the bootstrap.

Following these authors, we use the sequence of estimating functions mn(x, θ) = kb(x−
t)− θ, which does not involve plug-in, and show that our main result yields the analogue
of Wilks’s theorem. We now check the conditions of Theorem 4.1 using α = 1

2(1 − β).
Condition (C1) can be checked under mild conditions on the density, as it follows from
standard asymptotic theory for kernel density estimators that

nαMn(θ0) = b
−1/2
0 (nb)1/2{f̂n(t)− f0(t)} →d N(0, V1),

where
V1 = b−1

0 f0(t)R(k) and R(k) =
∫

k(u)2 du. (4.1)

For (C2),

n2α−1Sn(θ0) = b−1
0

b

n

n∑
i=1

{kb(Xi − t)− θ0}2

= b−1
0

1
nb

n∑
i=1

k((Xi − t)/b)2 +Opr(b)→pr b−1
0 f0(t)R(k) = V1.
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For (C3),
max
i≤n

|mn(Xi, θ0)| = O(b−1) = O(nβ) = O(nα)

because k is bounded, and β ≤ α = 1
2(1 − β), which only requires β ≤ 1/3, whereas we

assume β < 1/5.

4.3. Survival function estimation for current status data. Suppose there is a
failure time of interest T ∼ F , with survival function S = 1−F and density f , but we only
get to observe Z = (C,∆), where ∆ = 1{T ≤ C} and C ∼ G is an independent check-up
time (with density g). The observations are assumed to be i.i.d.

The nonparametric maximum likelihood estimator Sn(t) of S(t) exists. Groeneboom
(1987) showed that n1/3{Sn(t)−S(t)} converges to a non-degenerate limit law. The limit is
not distribution-free, however, and is unsuitable for providing a confidence region for S(t).
Banerjee and Wellner (2002) found a universal limit law for the likelihood ratio statistic,
leading to tractable confidence intervals. Our approach based on estimating equations
offers a simpler type of EL confidence region, and extends to the setting in which T and
C are conditionally independent given a covariate (although for simplicity we restrict to
the case of no covariates).

First consider estimation of a smooth functional of S (such as its mean):

θ0 =
∫ ∞

0

k(u)S(u) du,

where k: [0,∞) → R is fixed. This parameter can be estimated at a
√

n-rate, there is an
efficient influence curve

m(Z, θ, F, g, k) =
k(C)(1−∆)

g(C)
− θ − k(C)(1− F (C))

g(C)
+

∫ ∞

0

k(u)(1− F (u)) du,

and, given any preliminary estimators F̂ and ĝ of F and g, respectively, m(Z, θ, F̂ , ĝ, k) is
a plug-in estimating function, which yields a consistent estimator of θ0 when either F̂ or
ĝ is consistent; see van der Laan and Robins (1998).

Now consider estimation of θ0 = S(t). Van der Laan and van der Vaart (2000) intro-
duced a kernel-type estimator Sn,b(t) and showed that n1/3{Sn,b(t)− S(t)} →d N(0, V1),
for appropriate and positive V1. Their approach is to replace k above by kn = kb,t, a
kernel function of bandwidth b = bn = b0n

−1/3 centred at t. Here kb,t(u) = k((u− t)/b)/b
in terms of a bounded density k supported on [−1, 1]. This yields a sequence of (plug-
in) estimating functions mn(Z, θ, F̂ , ĝ) = m(Z, θ, F̂ , ĝ, kn), and the estimator is written
as Sn,b(t) = PnIC(F̂ , ĝ, kn), where Pn is the empirical measure of the observations, and
IC(F, g, kn)(Z) = m(Z, 0, F, g, kn) is the influence curve. The asymptotic variance of
Sn,b(t) is V1 = b−1

0 σ2R(k), where R(k) is as in (4.1) and σ2 depends on F and g, as well
as on the limits g1 and F1 of respectively ĝ and F̂ .

15



We adopt the same assumptions as van der Laan and van der Vaart. In particular,
assume that F is differentiable at t, and g is twice continuously differentiable and bounded
away from zero in a neighborhood of t. Also, ĝ and F̂ are assumed to belong to classes of
functions having uniform entropy of order (1/ε)V , V < 2, with probability tending to 1,
and ĝ, or F̂ , or both, are locally consistent at t.

Our result for estimating functions (with plug-in) under cube-root asymptotics (The-
orem 4.1 with α = 1/3) gives

−2 log ELn(S(t), F̂ , ĝ, kn) →d χ2
1.

Conditions (C1)–(C3) are easily checked by referring to van der Laan and van der Vaart’s
Theorem 2.1 and its proof. First note that Mn(θ0, F̂ , ĝ) = Sn,b(t) − S(t), so (C1) holds
(with V1 given by the asymptotic variance of Sn,b(t)). Then, with P denoting the true
distribution,

bSn(θ0, F̂ , ĝ) = bPn{IC(F̂ , ĝ, kn)− S(t)}2

= bPn{IC(F̂ , ĝ, kn)−P IC(F̂ , ĝ, kn)}2

+ 2b{Sn,b(t)− S(t)}{P IC(F̂ , ĝ, kn)− S(t)}
− b {P IC(F̂ , ĝ, kn)− S(t)}2.

(4.2)

Along the lines of van der Laan and van der Vaart (Theorem 2.1 and the start of its proof),
the last two terms are opr(b3), and to handle the first term the influence function IC is
split into a sum of two terms IC1 and IC2, where

IC2(F, g, kn)(Z) =
∫ ∞

0

kn(u){1− F (u)} du

does not give any contribution in the limit. In our case, IC2 acts as a constant function
(there are no covariates), so the first term in (4.2) with IC replaced by IC2 is O(b). The
first term of (4.2) with IC replaced by IC1 can be expressed as

bb
−3/2
0 (b3/2GnHn) + bPHn, (4.3)

where Gn =
√

n(Pn −P) is the empirical process and

Hn(F̂ , ĝ, kn)(·) = {IC1(F̂ , ĝ, kn)−PIC1(F̂ , ĝ, kn)}2.

Applying the part of their proof that deals with IC1, but with IC1 replaced by Hn and
b3/2k2

n as the envelope functions, it can be shown that b3/2GnHn is asymptotically tight.
They also show that bPHn →pr σ2R(k), with R(k) as in Section 4.2. Thus, only the
second term in (4.3) gives a contribution in the limit, and we have

n−1/3Sn(θ0, F̂ , ĝ) →pr b−1
0 σ2R(k) = V1,
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establishing (C2) with V2 = V1. Finally, (C3) can be checked using their assumption
that ĝ is asymptotically bounded away from zero in a fixed neighborhood of t. Note that
kn ≤ cb−1

n 1[t−bn,t+bn] for some constant c, so

max
1≤i≤n

|mn(Zi, θ0, F̂ , ĝ)| = Opr(b−1
n ) = Opr(n1/3).

5. Empirical likelihood asymptotics with growing dimensions

The traditional empirical likelihood theory works for a fixed number of estimating functions
p, or, when estimating a mean, for data having a fixed dimension d. The present section
is concerned with the question of how this theory may be extended towards allowing p

to increase with growing sample size. For simplicity, we assume there are no nuisance
parameters. We consider the case of i.i.d. observations Z1, . . . , Zn from a d-dimensional
distribution F = Fn with mean vector µ0,n and non-singular variance matrix Σn, so the
estimating function is simply m(Z, µ0,n) = Z − µ0,n. Inside this triangular framework
we allow d = p = pn to grow with n, and study the problem of establishing sufficient
conditions under which the standard χ2

p calibration can still be used. We shall use several
steps to approximate the EL statistic

ELn(µ) = max
{ n∏

i=1

(nwi): each wi > 0,
n∑

i=1

wi = 1,
n∑

i=1

wiZi = µ
}
, (5.1)

and approximation results will be reached under different sets of conditions.

5.1. Approximation to a quadratic form. At the heart of the standard large-
sample EL theorem lies the fact that

Λn = −2 logELn(µ0,n) is close to Qn = n(Z̄ − µ0,n)tS−1
n (Z̄ − µ0,n), (5.2)

writing

Z̄ = n−1
n∑

i=1

Zi and Sn = n−1
n∑

i=1

(Zi − µ0,n)(Zi − µ0,n)t.

In fact, under standard conditions, with fixed p, Λn = Qn+opr(1), and Qn of course tends
to a χ2

p. We aim now at investigating to what extent Λn remains close to Qn, even when
p grows with n.

We may take µ0,n = 0 for simplicity of presentation. Following Owen (2001, Ch. 3),
the maximising weights are characterised as wi = n−1(1 + λtZi)−1 for i = 1, . . . , n, where
the vector λ = (λ1, . . . , λp)t of Lagrange multipliers satisfies the p equations

g(λ) = n−1
n∑

i=1

Zi

1 + λtZi
= 0. (5.3)
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Studying Λn = 2
∑n

i=1 log(1 + λtZi) in particular necessitates having control over the size
of λtZi, after which Taylor series arguments may be employed. Below we outline the main
line of reasoning and results, with details again left for the Appendix.

Among the technical obstacles met when attempting to secure uniform smallness of
the λtZis is the need to control the behaviour of the largest and smallest eigenvalues of
Sn. This involves the behaviour of eigenvalues for Σn, as well as the closeness of Sn to Σn.
For the following result, which is proved in our Appendix, let Sn,j,k and σn,j,k denote the
(j, k) elements of Sn and Σn, and define

Ln = max
j,k≤p

|Sn,j,k − σn,j,k|.

Lemma 5.1. Assume that the Zi,js have finite qth order moments, for some q ≥ 4,
and let An(p, q) = p−1

∑p
j=1 E|Zi,j − µ0,n,j|q. Then, for a positive constant c(q),

P{Ln ≥ ε} ≤ c(q)p2

εqnq/2
An(p, q)2 for each positive ε.

Let now γ1,n and γp,n be the largest and smallest eigenvalues of Σn, and similarly γ̂1,n

and γ̂p,n the largest and smallest eigenvalues of Sn. Writing Sn = Σn +Dn, we then have,
for all unit vectors u,

utSnu ≤ utΣnu+
∑
j,k

|uj | |uk| |Dn,j,k| ≤ γ1,n + pLn,

and similarly utSnu ≥ γp,n − pLn, in that
∑p

j=1 |uj| ≤ p1/2. This shows that

γ̂1,n ≤ γ1,n + pLn and γ̂p,n ≥ γp,n − pLn.

In particular, the largest and smallest eigenvalues of Sn are only opr(1) away from those
of Σn if pLn →pr 0. A sufficient condition for this is that An(p, q) stays bounded as n

grows and that p2+q/nq/2 → 0, by Lemma 5.1; for example, stable fourth order moments
and p3/n → 0 secures such a closeness of eigenvalues. If higher order moments exist then
the condition p2/n → 0 almost suffices. With yet further conditions being imposed, like
existence of moment-generating functions or independence among components of the Zis,
even less may be required of the size of p to secure γ̂1,n−γ1,n →pr 0 and γ̂p,n −γp,n →pr 0.

Our first set of conditions establish uniform smallness in probability of the variables
Yi = λtZi. They demand that, as n grows,

(D1) for some q ≥ 4, the sequence of E‖Zi/p
1/2‖q stays bounded;

(D2) for the q of (D1), p2+4/(q−2)/n → 0;
(D3) for the q of (D1), An(p, q) of Lemma 5.1 stays bounded;
(D4) the largest and smallest eigenvalues of Σn stay away from infinity and zero.
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Lemma 5.2. Under (D1) and (D2), Bn = maxi≤n ‖Zi‖ = opr((n/p)1/2), in fact,

P{Bn ≥ (n/p)1/2ε} ≤ E‖Zi/p
1/2‖q

εq

pq

nq/2−1
for all positive ε.

If in addition (D3) and (D4) hold, then the random λ of (5.3) is of size ‖λ‖ = Opr((p/n)1/2).

We are now in a position to state precise versions of (5.2). We give three such. The first
version assumes uniform boundedness of all Zi,j components, leading to quite transparent
conditions for closeness of Λn to Qn. The second version does not assume boundedness
but spells out what is required under reasonable moments conditions. Finally the third
version works with linearly transformed versions of the Zis.

Theorem 5.1. Assume that all Zi,j components remain uniformly bounded and

that condition (D4) holds. Then, if p3/n → 0, Λn = Qn + opr(p1/2). If the more strict

requirement p4/n → 0 holds, then Λn = Qn + opr(1).

Theorem 5.2. Assume conditions (D1), (D3), (D4) hold, with p3+6/(q−2)/n → 0
replacing (D2). Then Λn = Qn+opr(p1/2). Under the tougher condition p4+8/(q−2)/n → 0,
Λn = Qn + opr(1).

In situations where the Zis have moments of all orders, the growth conditions here
come close to those of the previous theorem. If data are normal, for example, then ‖Zi‖
is bounded by a variable of the type c(χ2

p)1/2 for a suitable c, and one may show that
p3/n → 0 and p4/n → 0 again suffice for the opr(p1/2) and opr(1) statements.

Verifying condition (D4), or the corresponding statement for the eigenvalues of Sn,
which is called for in the proof of the theorem, is sometimes technically hard. A theorem of
Bai and Yin (1993) works for the case of Zi having independent components, in which case
the minimal growth condition p/n → 0 ensures that the full spectral distribution tends to
1, i.e. the largest and smallest eigenvalues of Sn tend to 1. See also Bai (1999) and the
ensuing discussion.

While Theorems 5.1–5.2 are satisfactory for several classes of problems, there are other
situations of interest where condition (D4) does not hold. For this reason we provide a
parallel theorem that demands less regarding the distribution of eigenvalues. Consider
Z∗

i = Σ−1/2
n (Zi − µ0,n), which have mean zero and variance matrix Ip, and let S∗

n be
the empirical variance matrix of these, i.e. S∗

n = n−1
∑n

i=1 Z∗
i (Z

∗
i )

t = Σ−1/2
n SnΣ

−1/2
n .

The eigenvalues of S∗
n turn out to be sufficiently well-behaved, as we demonstrate in the

Appendix while proving the following theorem.

Theorem 5.3. The conclusions of Theorem 5.2 continue to hold, without con-

dition (D4), as long as conditions (D1) and (D3) hold for the transformed variables

Z∗
i = Σ−1/2

n (Zi − µ0,n).

There is similarly a (D4)-free version of Theorem 5.1, for cases when the components
Z∗

i,j are uniformly bounded as n grows.
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The central point to note for Theorem 5.3 is that the empirical likelihood (5.1) is
invariant with respect to the transformation that maps data Zi to GnZi, where Gn is
any non-singular non-random p × p matrix. If ELn(Gnµ |Gn) is the empirical likelihood
computed on the basis of Z ′

i = GnZi, for the parameter µ̃ = Gnµ, then Gn cancels
out of the defining equation

∑n
i=1 wi(GnZi − Gnµ) = 0, showing that ELn(µ̃ |Gn) is the

same as ELn(µ) in (5.1), i.e. independent of Gn (and with the same maximising wis).
The same is true for the quadratic approximation of (5.2). We may in particular employ
Gn = Σ−1/2

n , where the resulting GnZi have covariance matrix Ip. This makes it possible
to prove Theorem 5.3 with arguments similar to those needed for Theorem 5.2, but under
the additional simplifying assumptions that Σn = Ip; see the Appendix.

Yet another version of our result emerges by dividing the Zis by γ
1/2
p,n , to avoid small

eigenvalues. This gives a parallel result to that of Theorem 5.1, where the essential condi-
tion is that the ratio γ1,n/γp,n remains bounded. See in this connection also Owen (2001,
page 86), where stability of this ratio is crucial also for some problems associated with
fixed p.

5.2. Approximation to a chi-squared. In applications of EL one typically employs
a χ2

p approximation to Λn of (5.2), with or without a Bartlett correction; see again Owen
(2001). We show here that closeness of the distribution of Λn to that of a χ2

p is still
achieved with growing p. A somewhat mild version of this statement is that

(Λn − p)/(2p)1/2 →d N(0, 1) (5.4)

as p grows with n at appropriate rate. For statistical applications, including testing and
confidence statements, the above would typically be sufficient, securing that upper quan-
tiles for the EL distribution are reasonably close to that of the χ2

p. We see below that
(5.4) often holds, but that uniform closeness of the Λn and χ2

p distributions demand rather
more.

Regarding the approximation of the distribution of Qn to the χ2
p, we work in two steps.

The first is to study the simpler case where Sn is replaced by the real Σn, i.e. involving
Q0

n = n(Z̄ − µ0,n)tΣ−1
n (Z̄ − µ0,n), while the second is to control the consequences of this

simplification.

Proposition 5.1. If E‖Zi/p
1/2‖3 stays bounded and p5/n → 0, then

an,p = max
t

|P{Q0
n ≤ t} − P{χ2

p ≤ t}|

goes to zero when n grows. Secondly, provided that E|Zi,j −µ0,n,j |6 ≤ En for j ≤ p, where

En stays bounded, the rather weaker assumption p/n → 0 secures approximate χ2
p-ness in

the sense that (Q0
n − p)/(2p)1/2 →d N(0, 1).

Remark 5.1. That the uniform bounds used above are not the best possible, though
phenomenally difficult to establish and requiring sophisticated mathematical techniques,
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becomes clearer in Bentkus and Götze (1996, 1997) as they are able to show that an,p ≤
k(p)/n for all p ≥ 6, exploiting particularities related to the quadratic form. It is not clear
how big the k(p) constants are, however.

To finish the story of the closeness of Λn to the χ2
p, we need to ascertain that Qn

is close enough to Q0
n. This is a trivial matter when p is fixed or bounded, but more

complicated when p grows. The condition given in the following result, which is proved
in our Appendix, stems from bounds originating in Lemma 5.1. It may be softened if the
Zi,jZi,k variables have moment-generating functions, for example.

Proposition 5.2. Suppose the conditions of Lemma 5.1 are in force, and add to

these that p4+4/q/n → 0. Then Qn − Q0
n →pr 0. Also, if p3+4/q/n → 0, then Qn is

approximately a χ2
p in the sense that (Qn − p)/(2p)1/2 →d N(0, 1).

Used in conjunction with theorems of the previous subsection we see that also (5.4)
holds.

Remark 5.2. The χ2
p approximation forQn and hence for Λn = −2 log ELn(µ0,n) may

be improved, with suitable corrections depending on p and n. It is worthwhile investigating
the distribution of Qn for the case of normal data. Some matrix algebra shows that

Qn =
Q′

n

1 +Q′
n/n

, where Q′
n = n(Z̄n − µ0,n)t(S′

n)
−1(Z̄n − µ0,n),

with S′
n = n−1

∑n
i=1(Zi − Z̄n)(Zi − Z̄n)t being the usual sample covariance matrix. From

classic multivariate normal theory, see e.g. Mardia, Kent and Bibby (1979, Sections 3.4–
3.5),

Q′
n ∼ n

n− 1
T 2(p, n− 1) =

np

n− p
F (p, n− p),

in terms of Hotelling T 2 and Fisher distributions, with the appropriate parameters, if data
are normal. In particular, the mean of Q′

n is np/(n− p − 2).

6. Applications with growing p

This section provides some examples where there is a growing number of parameters,
and where the theory developed in Section 5 guarantees that the empirical likelihood
methodology still is applicable.

6.1. Many independent means. Suppose that Z1, . . . , Zn correspond to p inde-
pendent samples Z1,j, . . . , Zn,j , with mean µ0,j and standard deviation σj , for j = 1, . . . , p.
EL may then be used to make simultaneous inference for the vector of mean parameters
µ0. Consider the normalised variable Up with components (Zi,j − µ0,j)/σj . It has mean
zero and variance matrix Ip. Results of Section 5 imply that the EL works properly, even
when p grows, provided p3/n → 0 and that the Up components stay uniformly bounded,
for example. This is secured by the theorem of Bai and Yin (1993) about all eigenvalues
of S̃∗

n coming close to 1, cf. Theorem 5.3.
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Similar results may be reached in other models with a growing number of mean type
parameters, possibly also in the presence of nuisance parameters. An example is analysis
of variance with a large number of groups, cf. Akritas and Arnold (2000). Our theory also
supports the use of EL theory when multiple comparisons between groups are made, since
the covariance matrix of a collection of such differences of means is well-behaved enough
to have its eigenvalues away from zero and infinity, i.e. (D4) of Theorem 5.1 will hold.

6.2. Histograms and cell probabilities. Let X1, . . . , Xn be i.i.d. real random vari-
ables with density f . For p disjoint cells C1, . . . , Cp let Zi be the vector with components
Zi,j = I{Xi ∈ Cj}, for j = 1, . . . , p. These have mean vector π = (π1, . . . , πp)t, involving
cell probabilities πj =

∫
Cj

f dx, and covariance matrix Σn, with elements πj(δj,k − πk).
The Z̄ vector has components π̂j equal to the relative frequencies in the p cells. For fixed
histogram cells,

−2 logELn(π) = n(π̂ − π)tS−1
n (π̂ − π) + opr(1), (6.1)

by standard EL theory. By our efforts in Section 5.1, (6.1) continues to hold also when p

is allowed to grow at appropriate slow rate with n.
Determining just how slow this rate must be, in order for the remainder term in (6.1)

to still go to zero in probability, turns out to be a delicate matter, and depends also on
aspects of the vector of probabilities π. It turns out that the smallest eigenvalues of Σn go
to zero with growing p, so condition (D4) of Theorems 5.1–5.2 is not met. The eigenvalues
of S∗

n for the transformed variables Z∗
i = Σ−1/2

n (Zi − π) are however well-behaved, if only
(D3) of Theorem 5.3 holds for the transformed variables. The precise condition securing
(6.1) becomes

A∗
n(p) = p−1

∑
j,k

πk(rj,k − r̃j)4 bounded as n grows,

where the rj,ks are elements of Rn = Σ−1/2
n and r̃j =

∑
k πkrj,k. This may be seen to hold

when the cell probabilities πj do not vary too much from each other.
The theory of Section 5 applies somewhat more readily to the case of Zi having

components I{Xi ≤ tj} for specified cut points t1 < · · · < tp. Then Z̄ has as com-
ponents the empirical distribution function Fn(tj) evaluated at these p points. Theo-
rem 5.1 implies that −2 log ELn(F (t1), . . . , F (tp)) is close to the natural quadratic form
n(Fn(J) − F (J))tΩ−1

n,J (Fn(J) − F (J)), where Fn(J) is Fn(t) evaluated at positions J =
{t1, . . . , tp}, and so on. This is since the eigenvalues of the variance matrix do not flee to
zero for this problem.

6.3. Kernel density estimation. Let f̂ be a kernel density estimator based on
X1, . . . , Xn, as in Section 4.2, where we take the kernel k to be bounded and symmetric
with support [−1, 1]. We assume that the real density f is bounded and continuous.
Consider f̂(t1), . . . , f̂(tp) at different positions. This fits in with the setup of Section 5,
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with Zi having components Zi,j = kb(Xi − tj) for j = 1, . . . , p. Its mean is f̄(t) evaluated
at t1, . . . , tp, where f̄ = kb ∗ f , i.e. f̄(t) =

∫
k(u)f(t+ bu) du = f(t) + 1

2k2b
2f ′′(t) + o(b2),

where k2 =
∫

u2k(u) du. Also, the variance matrix of Zi takes the form b−1Ωn, where
Ωn has diagonal elements R(k)f(tj)− bf(tj)2 +O(b2) and elements −bf(tj)f(tl) +O(b2)
outside the diagonal, provided the points are at least b apart. Hence the eigenvalues of Ωn

are essentially R(k)f(tj), when b is small and the tj points at least b apart.
We wish to conclude from this that the empirical likelihood ELn(f̄(t1), . . . , f̄(tp)) has

the property

−2 logELn(f̄(t1), . . . , f̄(tp)) = nb




f̂(t1)− f̄(t1)
...

f̂(tp)− f̄(tp)




t

Ω̂−1
n




f̂(t1)− f̄(t1)
...

f̂(tp)− f̄(tp)


 + δn, (6.2)

where Ω̂n is an empirical version of Ωn and where δn is opr(1) or perhaps opr(p1/2), depend-
ing on growth conditions for p. Neither of Theorems 5.1–5.3 can be applied directly; for
example, conditions (D1) and (D3) are not met for the Zis. Variations of the arguments
used to prove Theorem 5.3 will however suffice. The point is that the EL is invariant with
respect to linear transformations of data, as explained at the end of Section 5.1. Here we
work with Z ′

i with components b{Zi,j − f̄(tj)}. These are then uniformly bounded. Also,
Z ′

i has mean zero and variance matrix bΩn. One may now go through arguments used
to prove Theorem 5.3 and verify that (6.2) holds with δn = opr(p1/2), when p3/n → 0
and b → 0 at a speed where b = O(1/p); this latter requirement comes from keeping the
smallest eigenvalue of Ωn away from zero. This also entails the usual nb → ∞ requirement.

6.4. Growing polynomial regression. Consider the regression model

Yi = ξ(Xi) + εi for i = 1, . . . , n,

where the pairs (Xi, εi) are i.i.d., with Xis coming from some density f and the εis having
mean zero and standard deviation σ0. The main objective is to make inference about ξ(x).
We do not strive for the fullest generality in this application of our theory, and are content
to work with the following scenario: f is known (e.g. the uniform on the unit interval),
and ξ(x) may be expanded in terms of basis functions ψ0, ψ1, ψ2, . . . that are orthonormal
w.r.t. f , i.e.

∫
fψjψk dx = δj,k, and where we take ψ0 = 1. We might for example take

ψj(x) = φj(F (x)) where the φjs are orthogonal w.r.t. the uniform on the unit interval and
F the c.d.f. of f . Hence ξ(x) =

∑∞
j=0 bjψj(x), where we assume that Eξ(X)2 =

∑∞
j=0 b2j

is finite, and also that ξ(x) is bounded.
In this setup, consider as pth order model

Yi = ξp(Xi) + ε′i, with ξp(x) =
p∑

j=0

bjψj(x) = (ψ(p)(x))tb(p),
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where the residuals are ε′i =
∑∞

j=p+1 bjψj(Xi) + εi with variance σ2
p = σ2

0 +
∑∞

j=p+1 b2j ;
including more terms in the regression structure makes the residuals smaller in size, and
vice versa. Consider Zi = Yiψ

(p)(Xi), a vector of dimension p + 1, with mean value seen
to be b(p). We will consider conditions under which −2 logELn(b(p)), based on Z1, . . . , Zn,
can be approximated by a χ2

p+1 distribution.

The key to verifying (5.2) lies in controlling the sizes of the eigenvalues of the covari-
ance matrix of Zi, which may be written

Σn = EY 2
i ψ(p)(Xi)ψ(p)(Xi)t − b(p)(b(p))t = σ2

0Ip + Ωp,

where Ip and Ωp are of size (p+ 1)× (p+ 1) and where the elements of the non-negative
definite Ωp matrix are

∫
ξ(x)2ψj(x)ψk(x)f(x) dx − bjbk. The eigenvalues of Σn take the

form σ2
0 + φj , where the φjs are the eigenvalues of Ωp, and are hence bounded downwards

by σ2
0 . They are also bounded upwards, since for any unit vector u, utΩpu is bounded by

M2
∫
(u0ψ0 + · · ·+ upψp)2f dx = M2, where M bounds |ξ(x)|.
As explained near the end of Section 1, we may now use EL methods to produce

confidence regions for all of or some of the bj parameters, to test whether some of them
are equal to zero, and via profile EL methods (as in Owen, 2001, Ch. 3.4) make inference
for any smooth function of the bjs, like the regression function itself at given positions.

6.5. Density estimation with orthogonal expansions. For i.i.d. dataX1, . . . , Xn

from an unknown density, consider the growing class of models

fp(x | a) = f0(x)cp(a1, . . . , ap)−1 exp
{ p∑

j=1

ajψj(x)
}
.

Here f0 is a ‘start density’, around which one models a flexible log-linear structure for
deviations, the ψj functions are orthonormal w.r.t. f0, i.e.

∫
f0ψjψk dx = δj,k, and cp is

the appropriate normalising constant.

Here we can carry out EL analysis for ξ = (ξ1, . . . , ξp)t, where ξj =
∫

fψj dx, and a
growing p. This is done via the vectors Zi = (ψ1(Xi), . . . , ψp(Xi))t. The eigenvalues of its
covariance matrix will typically be well-behaved, with reasonable conditions on f , and there
is stability of fourth order moments if for example the ψjs are bounded. Thus EL theory
holds for analysis of the ξjs, if p3/n → 0. One may next transform ξ analysis to a analysis.
To do this, one lets for each given ξ vector a be the maximiser of

∑p
j=1 ajξj − log cp(a),

corresponding to selecting the fp(x | a) model that minimises the Kullback–Leibler distance
from f to its approximant. See in this connection Barron and Sheu (1991) for information
on how quickly the best fp comes close to any given f , as p grows.
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Appendix: Proofs

Proof of Theorem 2.1. The statement is established by a routine extension of the
proof given in Owen (2001, p. 219) for estimating equations not depending on a nuisance
function h. Write ELn(θ0, ĥ) =

∏n
i=1(1 + λtWn,i)−1, where λ is the solution of

1
n

n∑
i=1

Wn,i

1 + Yn,i
= 0, (A.1)

Wn,i = m(Zi, θ0, ĥ) and Yn,i = λtWn,i. Hence, since we can write

log(1 + Yn,i) = Yn,i − 1
2
Y 2

n,i +
1
3

Y 3
n,i

(1 + ξn,i)3
,

where ξn,i lies between 0 and Yn,i, we have

−2 log ELn(θ0, ĥ) = 2
n∑

i=1

log(1 + Yn,i) = 2
n∑

i=1

Yn,i −
n∑

i=1

Y 2
n,i +

2
3

n∑
i=1

Y 3
n,i

(1 + ξn,i)3
.

In order to obtain the limiting law of −2 logELn(θ0, ĥ) we need to develop an explicit
asymptotic expression for λ. Let λ = ‖λ‖u, where u is a random unit vector. As in Owen
(2001, p. 220) we write

‖λ‖ {utSn(θ0, ĥ)u−max
i≤n

‖Wn,i‖utMn(θ0, ĥ)} ≤ utMn(θ0, ĥ).

From assumptions (A1) and (A3) it now follows that

‖λ‖ {utSn(θ0, ĥ)u+ opr(1)} = Opr(n−1/2)

and hence ‖λ‖ = Opr(n−1/2), since by assumption (A2), utSn(θ0, ĥ)u is asymptotically
bounded between the largest and smallest eigenvalues of V2. Next, rewrite (A.1) as

0 =
1
n

n∑
i=1

Wn,i

(
1− Yn,i +

Y 2
n,i

1 + Yn,i

)
= Mn(θ0, ĥ)− Sn(θ0, ĥ)λ+

1
n

n∑
i=1

Wn,iY
2
n,i

1 + Yn,i
.

The norm of the last term above is bounded above by

1
n
‖λ‖2

n∑
i=1

‖Wn,i‖3

|1 + Yn,i|
= Opr(n−1)opr(n1/2) = opr(n−1/2),

from assumption (A2) and the fact that maxi≤n |Yn,i| = opr(1) by assumption (A3). Hence

λ = S(θ0, ĥ)−1Mn(θ0, ĥ) + βn,
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where βn = opr(n−1/2). We may now write

−2 logELn(θ0, ĥ) = 2nλtMn(θ0, ĥ)− nλtSn(θ0, ĥ)λ+
2
3

n∑
i=1

Y 3
n,i

(1 + ξn,i)3

= nMn(θ0, ĥ)tSn(θ0, ĥ)−1Mn(θ0, ĥ)− nβt
nS(θ0, ĥ)βn + opr(1)

= nMn(θ0, ĥ)tSn(θ0, ĥ)−1Mn(θ0, ĥ) + opr(1) →d U tV −1
2 U,

(A.2)

where U ∼ N(0, V1), and where assumptions (A1) and (A2) are used in the last step. That
the third term on the right hand side of (A.2) vanishes in probability is since its norm is
bounded by

2
3
‖λ‖3

n∑
i=1

‖Wn,i‖3

|1 + ξn,i|3
= Opr(n−3/2)Opr(n)opr(n1/2) = opr(1).

The statement of the theorem then follows using Lemma 3 of Qin and Jing (2001a) to
re-express the distribution of U tV −1

2 U as the weighted sum of independent χ2
1 random

variables.

Proof of the claim of Remark 2.1. Conditions (A4) and (A5) imply that, given
any real sequence δn ↓ 0,

sup
‖θ−θ0‖≤δn, h∈H̄

∣∣∣ 1
n

n∑
i=1

{m⊗2(Zi, θ, h)−m⊗2(Zi, θ0, h)}
∣∣∣ →pr 0.

The consistency of θ̂ then implies Sn(θ̂, ĥ)− Sn(θ0, ĥ) →pr 0. Thus

|V̂2 − V2| ≤ |Sn(θ̂, ĥ)− Sn(θ0, ĥ)|+ |Sn(θ0, ĥ)− V2| →pr 0,

where we have used assumption (A2) for the last term, so V̂2 consistently estimates V2.

Proof of Theorem 2.2. By equation (A.2), the singular value theorem applied to
V −1

2 and V̂ −1
2 , and the Cramér–Wold device, it suffices to show that V̂2 →pr V2 and that

P ∗{n1/2[M∗
n(θ̂, ĥ

∗)−Mn(θ̂, ĥ)] ≤ t} − P{U ≤ t} = opr(1).

The former follows from Remark 2.1, under conditions (A4) and (A5). For the latter,
define, for any sequences α1

n, α
2
n ↓ 0,

An,αn
=

{
|θ̂ − θ0| ≤ α1

n, sup
t

|Bn(t)| ≤ α1
n, sup

‖θ−θ0‖≤α1
n,‖h−h0‖H≤α1

n

‖Cn(θ, h)‖ ≤ α2
nn

−1/2,

‖ĥ− h0‖H ≤ α1
nn

−1/4
}
,
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where Bn(t) respectively Cn(θ, h) is the expression between absolute values (norm-signs) in
condition (B1) respectively (B2). Then, by conditions (B1), (B2), (B4) and the consistency
of θ̂, α1

n and α2
n can be chosen such that P (An,αn

) → 1 as n tends to infinity. Hence it
suffices to establish the convergence in probability, conditionally on the event An,αn

. It
now follows from condition (B5) that

‖M∗
n(θ̂, ĥ

∗)−M∗
n(θ̂, ĥ)− Γ(θ̂, ĥ)[ĥ∗ − ĥ]‖

= ‖Mn(θ̂, ĥ∗)−Mn(θ̂, ĥ)− Γ(θ̂, ĥ)[ĥ∗ − ĥ]‖+ oP ∗(n−1/2)

≤ c‖ĥ∗ − ĥ‖2
H + oP ∗(n−1/2) = oP ∗(n−1/2) a.s.

In a similar way it follows from (B2), (B3) and (B4) that

‖Mn(θ0, ĥ)−Mn(θ0, h0)− Γ(θ0, h0)[ĥ− h0]‖ = opr(n−1/2).

Hence condition (B1) implies that

n1/2{M∗
n(θ̂, ĥ

∗)−Mn(θ̂, ĥ)}
= n1/2{M∗

n(θ̂, ĥ)−Mn(θ̂, ĥ) + Γ(θ̂, ĥ)[ĥ∗ − ĥ]}+ oP ∗(1) a.s.

has the same limiting distribution as

n1/2{Mn(θ0, h0) + Γ(θ0, h0)[ĥ− h0]} = n1/2Mn(θ0, ĥ) + opr(1),

which by condition (A1′) converges to U .

Proof of Theorem 4.1. The proof is similar to Theorem 2.1, but there are some
key steps where the argument needs to be modified. The first point of departure is in
finding the order of the Lagrange multipliers. Now, using conditions (C1) and (C3),

‖λ‖ {utSn(θ0, ĥ)u+Opr(1)} = Opr(n−α),

whereas before the Opr(1) term was asymptotically negligible. Multiplying both sides of
the above display by n2α−1 and using condition (C2) we find that

‖λ‖ {utV2u+ opr(1) +Opr(n2α−1)} = Opr(nα−1).

Then, since the term Opr(n2α−1) = opr(1) in the case 0 < α < 1/2, the Lagrange multipliers
have order ‖λ‖ = Opr(nα−1). Next,

βn = Sn(θ0, ĥ)−1‖λ‖2Opr(nα)Opr(n1−2α) = Opr(n3α−2).

This leads to bounds on the two remainder terms in the expansion (A.2) of the likelihood
ratio statistic:

nβt
nS(θ0, ĥ)βn = Opr(n2(2α−1)) →pr 0
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and

‖λ‖3
n∑

i=1

‖Wn,i‖3

|1 + ξn,i|3
= Opr(n3(α−1))Opr(n)Opr(nα)Opr(n1−2α) = Opr(n2α−1) →pr 0.

Hence the likelihood ratio statistic has the decomposition

−2 logELn(θ0, ĥ) = nαMn(θ0, ĥ)t{n2α−1Sn(θ0, ĥ)}−1nαMn(θ0, ĥ) + opr(1) →d UV −1
2 U,

as required.

Proof of Lemma 5.1. We may take µ0,n = 0 without loss of generality. For the
components of the p × p matrix Dn = Sn − Σn we can bound P{|Dn,j,k| ≥ ε} via the
Markov inequality. We find

P{|Dn,j,k| ≥ ε} ≤ E|
√
nDn,j,k|q
(
√
nε)q

≤
c(q)V q/2

n,j,k

nq/2εq
,

for a constant c(q), by results of von Bahr (1965). Here Vn,j,k = E(Zi,jZi,k)2 − σ2
n,j,k is

the variance of Zi,jZi,k. This may be further bounded by

Vn,j,k ≤ (E|Zi,j|4)1/2(E|Zi,k|4)1/2 ≤ (E|Zi,j|q)2/q(E|Zi,k|q)2/q

for q ≥ 4. This gives

P{Ln ≥ ε} ≤
∑
j,k

c(q)E|Zi,j|q E|Zi,k|q
nq/2εq

,

which is seen to imply the lemma.

Proof of Lemma 5.2. To gauge the size of Bn we cannot appeal to arguments
involving the Borel–Cantelli lemma, as Owen (2001, Ch. 11) could when analysing the
fixed p situation. However,

P{Bn ≥ (n/p)1/2ε} ≤ nP{‖Zi‖ ≥ (n/p)1/2ε} ≤ n
pq

nq/2εq
E‖Zi/p

1/2‖q,

proving the first part of the lemma.
Next write λ = ‖λ‖u where u has length 1. From (5.3) and utg(λ) = 0 we find

via some rearranging that utZ̄ = utS̃nu ‖λ‖, where S̃n = n−1
∑n

i=1 ZiZ
t
i/(1 + Yi). Then

utSnu ≤ utS̃nu(1 + ‖λ‖Bn), which gives

‖λ‖(utSnu− utZ̄Bn) ≤ utZ̄.

Here |n1/2utZ̄| ≤ |n1/2Z̄|, which is Opr(p1/2), since its square nZ̄tZ̄ is seen to have mean
of order p. This leads to

‖λ‖ ≤ n1/2utZ̄ n−1/2

utSnu− n1/2utZ̄Bnn−1/2
≤ Opr(p1/2)n−1/2

γ̂p,n +Opr(p1/2)opr(1/p1/2)
,

in terms of the smallest eigenvalue of Sn. Accordingly, by remarks made after Lemma 5.1,
‖λ‖ = Opr((p/n)1/2).
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Proof of Theorems 5.1 and 5.2. We have already seen that Λn = 2
∑n

i=1 log(1+
Yi), with control over the size of Yi = λtZi. Writing

Bn = max
i≤n

‖Zi‖ = (n/p)1/2εn, (A.3)

we have maxi≤n |Yi| ≤ ‖λ‖Bn = Opr(1)εn →pr 0 by Lemma 5.2. In particular, the event
Ωn that |Yi| ≤ 1

2
for each i ≤ n has probability going to 1. For |y| ≤ 1

2
, log(1 + y) =

y − 1
2y

2 + 1
3y

3h(y), where |h(y)| ≤ 2. This enables our writing

Λn = 2
n∑

i=1

log(1 + Yi) = Un + Vn,

under Ωn, with Un = 2
∑n

i=1(Yi − 1
2Y

2
i ) and Vn = 2

∑n
i=1

1
3Y

3
i h(Yi). The point is that Un

is close to the quadratic form Qn of (5.2) while Vn will be small.
We first check the size of the last term in the (5.3) based expansion

0 = n−1
n∑

i=1

Zi

(
1− Yi +

Y 2
i

1 + Yi

)
= Z̄ − Snλ+ αn,

which will be used to construct a sufficiently precise approximation for λ. Under Ωn,
(1 + Yi)−1 ≤ 1 + 2|Yi| ≤ 2, and

‖αn‖ ≤ 2n−1
n∑

i=1

Y 2
i ‖Zi‖ ≤ 2Bnλ

tSnλ

= Opr((n/p)1/2)εnOpr((p/n))max eigen(Sn) = Opr((p/n)1/2)εn.

We have λ = S−1
n (Z̄n + αn) and learn that

Un = 2nλtZ̄ − nλtSnλ = nZ̄tS−1
n Z̄ − nαt

nS
−1
n αn = Qn − δn,

where |δn| ≤ ‖n1/2αn‖2 min eigen(Sn) has size Opr(p)ε2
n. Also,

|Vn| ≤ (4/3)
n∑

i=1

|Yi|3 ≤ (4/3)‖λ‖Bnnλ
tSnλ

= nOpr((p/n)3/2)Opr((n/p)1/2)εn = Opr(p)εn.

To sum up these efforts,

Λn = Qn − δn + Vn = Qn +Opr(pε2
n) +Opr(pεn) = Qn +Opr(pεn).

Theorem 5.1 deals with the case where all |Zi,j| ≤ M for some M . Then εn of (A.3)
is at most Mp/n1/2. The implications of p3/n → 0 and p4/n → 0 are therefore that
respectively p1/2εn and pεn go to zero in probability, proving Theorem 5.1.
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For the case of Theorem 5.2, a bound for P{εn ≥ ε} is provided by Lemma 5.2, with
implications for P{p1/2εn ≥ ε} and P{pεn ≥ ε}. Working through these deails one arrives
at the conclusion of Theorem 5.2.

Proof of Theorem 5.3. As argued in Section 5.1, the invariance property of the EL
allows us to trace the arguments used above to prove Theorem 5.2 in the current situation,
where Σn = Ip and µ0,n = 0. The proof is seen to go through, down to the representation
Λn = Qn − δn + Vn. Examination of the details shows that

|δn| ≤ Opr(pε2
n)γ̂

2
1,n/γ̂p,n, |Vn| ≤ Opr(pεn)γ̂1,n.

The point is now that the eigenvalues of Sn are secured good behaviour, in view of argu-
ments used after Lemma 5.1 and involving pLn →pr 0.

Proof of Proposition 5.1. For this part of the problem we may again take µ0,n = 0
and in addition Σn equal to the identity matrix Ip, to simplify matters. We need to bound
an,p = maxt |P{nZ̄tZ̄ ≤ t} − P{χ2

p ≤ t}|. One knows that an,p → 0 for fixed p, as a
consequence of the central limit theorem for Nn = n1/2X̄ . The maximal approximation
error will however grow with growing dimension. Bhattacharya and Ranga Rao (1976) give
various uniform upper bounds for approximating the distribution of Nn with a Np(0, Ip).
These bounds are often quite weak in that the uniformity in question includes all the
‘worst case’ scenarios. When the sets for which probability approximations are sought are
all convex, however, as with the quadratic form Q0

n, sharper bounds can be established.
Finessing earlier results in the literature, Götze (1991) was able to show that

an,p ≤ b(p)E‖Zi‖3/n1/2 = b(p)p3/2/n1/2E‖Zi/p
1/2‖3,

where b(p) = O(p). In fact, b(p) ≤ 158 p+10 for all p ≥ 6, with a mild constraint involved
for the form of the probability mechanism behind the Xis. The first part of the proposition
follows from this.

Approximations involved for the second part of the proposition can be made stronger
in that a smaller class of sets is involved, namely those of the type {Q0

n ≤ p+(2p)1/2t}. The
statement follows in fact from efforts of Portnoy (1988, Section 4), who used a martingale
central limit theorem.

Proof of Proposition 5.2. We may transform Zi to Z∗
i = Σ−1/2

n (Zi − µ0,n) here,
as in the preamble to Theorem 5.2. We therefore assume without loss of generality that
Σn = Ip and µ0,n = 0. Write now Sn = Ip +Dn where Dn becomes small, as per Lemma
5.1. Hence Σn may be inverted to give S−1

n = Ip − Dn +D2
n − · · ·, giving, on a set with

probability going to 1,
Qn −Q0

n = −nZ̄tDnZ̄ + opr(1).
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The first term may be bounded by

∑
j,k

n|Z̄n,jZ̄n,k| |Dn,j,k| ≤ Ln

∑
j,k

n|Z̄n,jZ̄n,k| ≤ Ln‖n1/2Z̄n‖2 = Opr(p2Ln),

in terms of the Ln of Lemma 5.1. This goes to zero in probability if p2+2q/nq/2 → 0. The
statement involving (Qn −p)/(2p)1/2 is proved similarly, using also Proposition 5.1, seeing
that its distance to (Q0

n − p)/(2p)1/2 is of size Opr(p3/2Ln).

Acknowledgments. The research of Ingrid Van Keilegom was supported by IAP re-
search network grant nr. P5/24 of the Belgian government (via its Belgian Science Policy).
Ian McKeague was supported by NSF Grant 0204688. The three authors are also grateful
to the biostatistical working group NorEvent at the University of Oslo and its director
Professor Odd Aalen for support in connection with a Research Kitchen in Oslo, where
they also benefitted from discussions with Gerda Claeskens.

References

Akritas, M.G. and Arnold, S. (2000). Asymptotics for analysis of variance when the number
of levels is large. Journal of the American Statistical Association 95, 212–226.

Akritas, M.G. and Van Keilegom, I. (2001). Nonparametric estimation of the residual
distribution. Scandinavian Journal of Statistics 28, 549–568.

von Bahr, B. (1965). On convergence of moments in the central limit theorem. Annals of
Mathematical Statistics 36, 808–818.

Bai, Z.D. and Yin, Y.Q. (1993). Limit of the smallest eigenvalue of a large dimensional
sample covariance matrix. Annals of Probability 21, 1275–1294.

Bai, Z.D. (1999). Methodologies in spectral analysis of large dimensional random matrices,
a review [with discussion]. Statistica Sinica 9, 611–677.

Banerjee, M. and Wellner J.A. (2002). Confidence intervals for current status data.
Preprint.

Barron, A.R. and Sheu, C. (1991). Approximations of density functions by sequences of
exponential families. Annals of Statistics 19, 1347–1369.

Bentkus, V. and Götze, F. (1996). Optimal rates of convergence in the CLT for quadratic
forms. Annals of Probability Theory 24, 466–490.

Bentkus, V. and Götze, F. (1997). Uniform rates of convergence in the CLT for quadratic
forms in multidimensional spaces. Probability Theory and Related Fields 109, 367–
416.

Bhattacharya, R.N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic
Expansions. Wiley, New York.

Bickel, P.J., Klaassen, C.A., Ritov, Y. and Wellner, J.A. (1993). Efficient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins Univ. Press, London.

31



Chen, S.L. (1996). Empirical likelihood confidence intervals for nonparametric density
estimation. Biometrika 83, 329–341.

Chen, X., Linton, O. and Van Keilegom, I. (2003). Estimation of semiparametric models
when the criterion function is not smooth. Econometrica 71, 1591–1608.
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