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SUMMARY. Variance components are useful parameters to quantify the different
sources of randomness in hierarchical models. In generalized mixed models and in
frailty models a direct interpretation of the variance components is however not
straightforward. A better approach is to see how the estimated values of the variance
components affect the variability of specific quantities of interest. Depending on the
concrete study such quantities might be the prevalence or the median time to event.
In this note we discuss different examples from veterinary science with clustering
between animals and show for these examples how variance components can be

interpreted in the case of a normal, binary and time to event response variable.
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1 Introduction

In recent years the use of hierarchical models has become the standard approach to
describe the different sources of randomness typically present in complex experimen-
tal data sets, e.g. in randomised block designs it might be better to think about the
block effects as a random effect rather than taking the classical approach in which
the block effects are modelled as fixed effects parameters. Apart from the fact that
mixed effects models describe the structure of the design in a more accurate way
and that they use the available information in the data more efficient in the case
of an unbalanced design (Duchateau and Janssen, 1999), the inferential procedures
for mixed models also provide us with estimates of the variance components present
in the mixed model under consideration. This is useful since these variance compo-
nents are often more than just nuisance parameters (Carroll, 2003). For instance,
in animal breeding the heritability coefficient is defined in terms of the variance
components and therefore the variance components are actually the parameters of
interest. Another example (Section 2) is the development of reference tables for
particular measurements on animals. Also here it is the variability between ani-
mals together with the mean value of the measurement under consideration that
allows the investigator to determine a standard range of values for normal animals.
Even if the variance components are nuisance parameters, it is important to eval-
uate the remaining variability in the data after adjustment by covariates. In large

epidemiological studies with many covariates, it is likely that one or more of these



covariates influence the outcome significantly due to high power to detect even small
and maybe clinically meaningless effects. In such cases, it is important to assess the
variability remaining in the data after covariate adjustment as the covariates might
only explain a small part of the variability in the data (Section 3). In mixed models
the interpretation of the estimates of the variance components is easy as the random
effect operates on the same scale as the actual values. This is however not true in
generalized mixed models and frailty models. For these models there is a need to
interpret (the size) of the estimates of the variance components through their effects
on quantities that have a biological and understandable meaning for the study at
hand. In Section 3 we demonstrate this idea for a logistic mixed regression model
with success proportion as quantity of interest. In Section 4 we consider frailty
models and demonstrate how the variance component influences the median time
to event (Duchateau et al., 2002) and the success proportion at a particular time

point.

2 Heterogeneity in linear mixed models

Echographic measurements of the volume of the thyroid gland of dogs (beagles) can
possibly be used to diagnose decreased thyroid gland functioning as diseases such as
hypothyroidy (too low production of thyroid gland hormones) are associated with
shrinking of the thyroid gland. Whether the echographic measurement is useful for

this purpose largely depends on the variation in the volume of the thyroid gland



in the healthy dogs population as this variation will determine the range of values
of the echographic measurements that can be considered to be normal. The aim
of the study was therefore to establish reference tables to differentiate hypothyroid
dogs (with shrunk thyroid glands) from healthy dogs. There are two measurements
(left and right side) for each dog. Studying heterogeneity in data with normally
distributed random error term and random effect is straightforward as the random
error term and the random effect operate at the same scale and influence the observed
value in a linear manner. Therefore, the variability in the data due to different

random sources can be compared in the linear mixed model. The model is given by
Yij = b+ di + e (1)

with y;; the volume for the j* side of dog i (i = 1,...,23), u the overall mean,
d; the random ‘" dog effect and ej; the random error term. It is assumed that
all d;’s and e;;’s are mutually independent and furthermore that d; ~ N(0,03) and
e;; ~ N(0,0%). The estimate of the overall mean is i = 0.415, the estimates of the
variance components are 0121 = 0.0103 and o2 = 0.0084.

Thus, the variance of an individual measurement on a healthy dog (either left or
right) is given by Var (y;;) = Var (y;2) = 02+ 02, and thus 90% of the measurements
on healthy dogs will fall in the interval [; — 1.645,/0% + 0% i + 1.645,/07% + 02].
Substituting the variance component estimates leads to the interval [0.19;0.64].
When both sides would be assessed in the determination of the volume, the variance

of the average would be given by Var {0.5(y;1 + yi2)} = 02 + 0.502 and the 90%



interval, after substituting the variance component estimates, by [0.22;0.61].
Considering the two measurements thus leads to a substantial reduction of the range
of the 90% interval.

Investigators are sometimes interested as well in the proportion of the total variance

explained by the dog factor which in this case is estimated to be

&2 0.0103
100 4 _ —100 =55
* 521 52 X 0.0103 + 0.0084

The proportion of the variability explained by the dog factor can be easily derived
in the mixed model, which will no longer be true for the more complex models

considered in Sections 3 and 4.

3 Heterogeneity in generalized mixed models

The interpretation of heterogeneity in generalized mixed models based on the esti-
mated variance components is more difficult because the random effect influences
the observations in a non-linear way. Furthermore, the response measured on an
observational unit, in our case study the number of animals infected, is binomially
distributed whereas the random effect representing the cluster is assumed to come
from a normal density. Therefore, it is difficult to compare the variance components
of these two strata.

Interpretation of heterogeneity within the context of a generalized mixed model
is studied in the following case study with binary outcome. Within each of 60

randomly selected farms, 30 pigs are individually screened for the presence of the



bacterial species Salmonella. This observational study was set up to investigate
which factors at the farm level explain differences in prevalence over the different
farms. The variance component attached to the farms can be considered to be a
nuissance parameter, but we will demonstrate that it is worthwhile to study the
variance component in the model with the covariates included as it gives us an idea
of the remaining variability in the data.

First a model was fitted without covariates and with farm as random effect

1og( B )—um (2)
i

with p; the conditional proportion of infected pigs given the random farm effect
fi, p the overall mean and f; is the random effect of farm ¢. The distributional
assumption is f; ~ N (O, a]%) and the f;’s are independent. We observe the number
of pigs with Salmonella infection z; with n; pigs tested in farm ¢. The conditional
distribution of z; is binomial with parameters n; and p;, i.e. x; ~ B (ng;p; | fi)-
Fitting this model gives i = 0.646 and &]2« = 7.74. Thus, for a farm with random
effect equal to 0, the conditional prevalence is estimated as 65.6% (= exp(f)/{1 +
exp(f1)} ).

Adding covariates to the model we see that only the factor 'type of floor’ explains
the Salmonella prevalence in a significant way (p-value is 0.0052). We therefore

propose the following extended model

log (1 f}) = p+ bz + Bozin + fi (3)

with z;; = 1 for fully slatted floor and 0 otherwise; ;5 = 1 for more than 50% but
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not fully slatted floor and 0 otherwise; finally x;; = z;5 = 0 corresponds to equal
to or less than 50% slatted floor. Fitting this model gives i = 6.21, 51 = —6.06,
BQ = —3.89 and the variance estimate decreases to 6]% = 4.52.

The conditional prevalence for a farm with random effect equal to 0 and fully slatted
floor is estimated as 53.8% (=exp(fi + 41)/{1 + exp(ji + $1)}), for more than 50%
but not fully slatted floor as 91.1% and for less than 50% slatted floor as 99.8%. At
this stage, it is important to interpret the variance components of the two models in
order to assess whether the inclusion of the factor 'type of floor’ leads to a substantial
decrease of the variability of the prevalence over the different farms.

Since (2) implies p; = g(fi) = exp (1 + fi) / {1 + exp (u+ f;)} we easily obtain (see

Appendix) that

1 1 D 2
foi(p) = Varo; exp [—T‘% {log (E) - M}

Therefore the between farm variability a]% determines the shape of the prevalence

1t
p(1—p)

(4)

density. The variance of the random effects that operate on the logit scale can be
interpreted in terms of the spread of the prevalences over the farms by using the
density function (4).

In order to compare the variability of the observed prevalences with the variability
predicted from the logistic regression mixed model without covariates, the observed
frequencies for 10 classes (0-10%, ..., 90-100 %) were derived and expected frequen-
cies were obtained for these classes using the density function (4) with the estimates

for 1 and a]% inserted. The observed and expected probabilities for these 10 classes



are similar (Figure la).

The introduction of the covariate 'type of floor’ decreases the variance at the level
of the random effect in a substantial way from 7.74 to 4.52. The density function of
the Salmonella prevalence for each floor type is also given by (4) with u replaced by
1, 4 PB1 or g+ By depending on the floor type. For the two categories without fully
slatted floors, this leads to density functions that are concentrated around a high
prevalence value with small probability to find farms in these two categories with low
prevalence. The reduction of the variance, however, has little or no impact on the
density function of the prevalence for the farms with fully slatted floor: prevalences
in this type of farms still vary widely between 0 and 1 (Figure 1b).

In order to study the effect of different values of the variance component at different
values for i, the density function of p for a set of combinations of 1 and afc is shown
in Figure lc-d. Prevalences are more concentrated around a particular point when
the variance of the random effect falls between 0.1 and 0.5 in the case that u equals
0.646 (Figure 1c). With higher values for p such as 2.2, this is true even for much
higher values for the variance (Figure 1d). Thus the variance can not be assessed

by itself but needs to be evaluated in conjunction with the overall prevalence.

4 Heterogeneity in frailty models

Also for survival data hierarchical models are needed for a good description of the

design. As a case study, we investigate the time to first tick contact in cows. Cows



are clustered within farms leading to random farm effects. We first consider the

frailty model without covariates
hi(t) = wiho(t) (5)

with h;(t) the hazard of first contact at time ¢ conditional on the frailty (random
farm effect) u;, ho(t) the baseline hazard of first contact at time t. We assume a

one-parameter gamma density for u; with mean 1 and variance o2

wtexp (—u/o?)
o2/ (1/02)

For cow j in farm ¢ we observe the minimum of the censoring time c;; and the time
to first tick contact ¢;;. We assume here an exponential model for the tick contact
times, which is reasonable in the case that the tick challenge is constant in the period
considered. The conditional distribution of the observed event times is then given
by ti; ~ exp (h; | u;) with h; = u;hy.

We simulated data for 250 farms each with 90 cows that were followed up for 160
days with hg = 0.01 and ¢ = 0.04. As a treatment factor, grazing system was
considered: half the farms were supposed to use a communal grazing system, the
other half a paddock grazing system with no or little contact between animals from
different farms. A value of 3 = —0.225 was used in the simulation for the effect of
the paddock grazing system.

Fitting the frailty model by the penalised likelihood approach (Klein and Moeschberger,
1997) gives ﬁo = 0.00897 and 62 = 0.053. For a random farm effect equal to 1, the
median time to contact is thus estimated as log(2)/ho=77 days.
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This model can be further extended with the grazing system covariate

where z; is 0 for animals on communal grazing system farms and 1 for animals on
paddock grazing system farms.

Fitting the extended model gives ho = 0.00979, 62 = 0.044 and § = —0.1933. Thus,
for a random farm effect equal to 1 the median time to first contact corresponds to
71 days for animals on communal grazing and to 86 days for animals on paddock
grazing.

A direct interpretation of the estimated variance component, describing the between
farm variability, is not easy since it operates on the hazard of first contact in a
multiplicative way while the quantity of interest is the median time to first contact.
Since, with m; the median time to first contact for farm 4, (5) implies m; = g(f;) =

log(2)/(u;hg), we easily obtain (see Appendix) that

2 1
log 2\ 1 1\!"oz log 2
™m; =\ 5 a7 o |\ “ - 7
Jns(m) <agh0> T(1/02) <m) P\ T o2Zmng (™)

In order to compare the variability of the Kaplan-Meier estimated median time to

first contact from the different farms with the variability predicted from the frailty
model without covariates, the observed frequencies for 16 classes were derived and
expected frequencies were obtained for these classes using the density function (7)
with the estimates for hy and o2 inserted. The observed frequencies correspond
well with the expected frequencies from the frailty model (Figure 2a). The density
functions for the median time to first contact for the two groups in the extended
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model (6) do not only differ with respect to the mode but also with respect to the
shape. Although both density functions are based on the same variance component
estimate 02, the density function is flatter for the group of herds with higher median
time to contact, the farms with paddock grazing (Figure 2b). Thus, the effect of the
variance of the random effect on the spread of the median event time also depends
on the overal hazard rate, hy for the farms with communal grazing and hgexp(()
for the farms with paddock grazing.

Alternatively, the percentage of animals with first tick contact before a particular
time point ¢, p;, defined from the survival model as p; = 1 — exp(—thgu), can be
used as a summary statistic to interpret the variance o2. The density function of the
percentage of animals with first contact over the different farms at time ¢ is given

by (see Appendix)

<1
1 o1 [ —log(l —py) | -
Fon(pr) = : 1 — py) ot {— 8
(r) thoagl/"u>r(1/ag)( t) ®)

Obviously, the density function of the percentage of animals with tick contact over
the different farms is the flattest for that time point where the mode of the density
function is close to 50%, corresponding to the percentage considered at 67 days
(Figure 2c,d). The density function of the percentage of first tick contact at either
an earlier (e.g. 30 days) or later time point (e.g. 150 days) is more concentrated as

at those timepoints most farms have low, resp. high proportions of first tick contact.
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5 Conclusions

Even if the variance seems to be a nuisance parameter, it is important in models with
random effects to be able to interprete the value that the variance takes. Reporting
the variance of the random effects in generalised mixed models and frailty models as
such is not helpful as the actual value needs to be interpreted in terms of parameters
that are easily understood by the investigator. Furthermore, even small absolute
values for the random effects variance might lead to large variance in terms of
the parameter of interest. For instance, Yamaguchi and Ohashi (1999) reported
an estimated variance of a random effect in a frailty model of 0.01 as negligible,
whereas it results in a 90% interval of median event times from 2 to 5 years. The
same value for the variance might correspond to large variation in the parameter of
interest in one model but not in another model, as the effect of the magnitude of
the variance depends on the parameterisation and the mean value of the parameter
of interest. Few diagnostic tools are available for survival models; even fewer exist
for the random effects within the context of survival models. For instance, the best
linear unbiased predictions of the random effects should be used with caution as they
are shrinkage estimators and thus shrunk towards the mean and their variance will
typically underestimate the variance (Morris, 1993). The reparameterisation given
in this paper for the logistic regression mixed model and the frailty model allows us
to depict the density function of the parameter of interest and compare it with the

observed frequencies to assess whether the model assumptions seem reasonable. The
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heterogeneity in the frailty model was interpreted in this paper assuming constant
hazard rate. In most practical situations, however, the Cox proportional hazards
model is used as the assumption of constant hazard rate can not be made and the
models are then fitted by penalised partial likelihood (McGilchrist, 1993; Therneau
et al., 2003). Currently we further investigate how to interprete the heterogeneity

within the context of the Cox model.
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APPENDIX

Derivation of (4). Consider the logistic regression model

log <L> =ptf
l—p
where the random effect f ~ fr(f) =N (O, 0]%). Since

__exp(ut f)
1+ exp(u+ f)

=g(f)

is a montone transformation of f, we have
fo0) = £ (97' (D)) 2 41(p)
p dp

and thus

fo(p) = \/%O.f P {_2%? {log (1%) N Hﬂ p(1 1— p)

Derivation of (7) and (8). Consider the frailty model
h(t) = uho(t)

with the assumption that ho(t) = hg, constant over time and u from a gamma

density with mean 1 and variance o2

1
w7 exp (—u/o?)

21/ (1/02)

un~ fu(u) =

Here, interest is in the median time to event, i.e. m = log2/hou = s(u) which is

again a montone transformation of u and thus we have

Fm(m) = fu (s7H(m)) %swm)'
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leading to

log 2 You g 1\ 5z log 2
fm(m)_(agho> I'(1/02) (E) P\ T 2,

For this frailty model, the relationship between the percentage failure before a par-
ticular time point t, p;, and w is p; = 1 — exp(—thou) = z(u) which is again a

monotone transformation with

o) = £ (7 00) | 700

leading to

1 —L—1 [ —log(1l—py) g
fo(e) = 1 — py) thovi {—
) e oy tho
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Figure 1: The density function for the prevalence over different farms in the logistic
mixed regression model. Observed (bars) and expected (circles) frequencies are
shown in (a), the density functions of the prevalence for the three different types
of floor are shown in (b). Finally, the density functions for different values of the

variance are shown with p equal to 0.645 (c) and 2.19 (d).
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Figure 2: The density function for the median time to insemination and success
proportion at a particular time point over different farms in the frailty model. Ob-
served (bars) and expected (circles) frequencies of median event times are shown in
(a), the density functions of the median for the two types of farms in (b). Finally,
the density functions of the proportion of animals with tick contact at different time
points (see legend: time points 30, 67, 150 and 190 days considered) are shown for
the farms with free roaming animals (hg = 0.00979) (c) and for farms with herded

animals (hoexp(5) = 0.00807)(d).
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