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Abstract

Treatment outcome research investigates the heterogeneity in outcome between patients

according to factors such as country or institution. Most treatment outcome studies are

performed on data from registries. However, data from multi-center clinical trials may

also be relevant for treatment outcome research. The treatment and outcome measures

are more standardized and more detailed information on prognostic factors, measured

in a standardized way, is available. In this paper, we investigate the heterogeneity be-

tween institutions in disease-free survival in an international multi-center randomized

breast cancer trial with 2793 patients from 14 institutions. To explain heterogeneity, fac-

tors inherent to the institution and factors inherent to the patients, e.g. patient baseline

characteristics, are considered. Most often descriptive statistics are used but these lead

to highly subjective conclusions and can thus be misleading. We demonstrate how the

frailty model can be used to investigate heterogeneity between institutions in an objec-

tive way. In particular we show that although descriptive statistics suggest that type of

surgery explains heterogeneity in disease free survival, frailty modeling reveals that the

geographical area is in fact the only factor which explains differences in outcome between

institutions in this study.

Keywords: frailty model, treatment outcome, multicenter clinical trial, heterogeneity.
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1 Introduction

While the main objective of randomized controlled clinical trials is to compare treatments

for a specific disease, the objective of treatment outcome studies is to investigate the het-

erogeneity in outcome between patients according to factors such as country, institution

or physician. Such studies can lead to improvements in the quality of care by pointing out

which factors are associated with a better outcome. There is no unique way of conduct-

ing, analyzing and drawing conclusions from a treatment outcome study. A broad set of

questions can be investigated and a wide range of approaches can be used in an attempt

to answer these questions [1].

Most of the published treatment outcome studies have been performed using cancer reg-

istry data. In this paper we will study the heterogeneity between institutions in cancer

clinical trials with time to event endpoints (e.g. overall survival, disease-free survival,. . . ).

However most of our findings can be easily extended to other disease types. Although one

might argue that the strict conditions under which patients are treated within a clinical

trial lead to less variability in outcome, one of the objectives of this paper is to show that

this might also be advantageous. The availability of most important variables, measured

in a standard way, makes the analysis more trustworthy as compared to an analysis based

on registry data.

Once it has been shown that there is heterogeneity in outcome between institutions,

a key issue in treatment outcome studies is to explain the heterogeneity using both ”in-

stitution” and ”patient” level factors. In most treatment outcome studies, these two steps
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(showing heterogeneity in outcome and attempting to explain it) are performed using

mainly descriptive statistics and sometimes fixed effect models. However such methods

do not allow one to conclude that there exists more heterogeneity than what is to be

expected only by chance nor to explain this heterogeneity. In these treatment outcome

studies, trying to explain heterogeneity often consists in ”looking at” heterogeneity in

distribution of important prognostic factors across institutions. Such analyses are highly

subjective and their interpretation therefore controversial. In this paper, we demonstrate

how the frailty model can be used as an objective tool to demonstrate the presence of

heterogeneity in time to event outcomes between institutions and to identify institution

and patient level factors that explain this heterogeneity.

We first review the advantages of using clinical trial data over registry data to perform

treatment outcome research (section 2) and the factors that may explain heterogeneity

among institutions in the context of clinical trial data (section 3). Section 4 presents the

classical techniques of treatment outcome research which are mainly based on descrip-

tive methods while we show in section 5 how these methods can be supplemented by the

frailty model. These two sections are illustrated by a case study investigating the het-

erogeneity in outcome found between institutions in an international breast cancer phase

III trial (EORTC Trial 10854) comparing surgery followed by a short intensive course of

peri-operative polychemotherapy versus surgery alone. This trial accrued a total of 2793

patients in 13 European and one South African institution. These results are discussed in

the last section.
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2 Use of clinical trial data to perform treatment out-

come research

Treatment outcome research has mainly been based on cancer registries because they con-

stitute a large amount of data that are representative of the whole population under study

and are therefore not affected by selection biases as is the case for clinical trials. There are,

however, also some major drawbacks. The major sources of information for most registries

are medical records, pathology files and death certificates. However, the completeness of

follow up and validity of the data (e.g. reliability of the diagnosis, classifications of lesions,

staging information, . . . ) can be influenced by a number of factors which may differ from

registry to registry [1]. Furthermore, time to event endpoints can hardly be considered

when using data from registries. First, the start date from which the duration of the event

is measured is often ill-defined and may vary from one registry to the other. If the date

used as a starting point (e.g. date first seen in the hospital, date of diagnosis, date of

first treatment, . . . ) in one of the databases is earlier in the course of the disease, then

the time to event may seem to be longer for patients in this database. The choice of a

starting date is linked to problems of lead-time bias (time to event appears to be longer

because screening or early diagnosis accelerates the diagnosis while the date of event is

not postponed). Second, the accuracy of the end date depends on the follow up methods.

Some registries use active follow up procedures (contacting either the hospital or general

practitioner responsible for the patient’s care) to ascertain the long term outcome (e.g.

progression or death), while others depend on more passive data collection [2].
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Surprisingly, only few treatment outcome studies use data from randomized multicen-

ter trials. Although one might argue that the strict conditions under which patients are

treated within a clinical trial lead to less outcome variability, this can also be advan-

tageous, especially if heterogeneity is detected, at the time of interpreting the results.

Standardization of the treatment and a standardized measurement of important variables

(pertaining to diagnosis, tumor staging, prognostic factors, treatment, follow up data, . . . )

makes the analysis more trustworthy as compared to an analysis based on registry data.

Even if patients entered in a clinical trial are not a random sample of the population

defined by the inclusion and exclusion criteria of the trial, the collection of important

prognostic factors and eligibility criteria allow us to check whether differences in outcome

are due to differences in the patient populations referred to the different institutions.

Furthermore, the starting date for time to event endpoints is defined for all the patients

as the date of randomization and all patients are followed in the same way, usually until

death. Although the sample size of cancer clinical trials is generally much smaller than

what is available through registries, we have shown in previous work that in most tumor

types, the sample size achieved in large multicenter phase III trials is sufficient to perform

treatment outcome research [3].

3 Explaining heterogeneity between institutions

In the presence of heterogeneity between institutions, the key point is to find factors that

explain this heterogeneity. The location and the characteristics of an institution might

influence the type of patients treated in this institution. Furthermore, each institution

could decide to enter only a sub-population of the population described in the protocol
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by the eligibility criteria, for example because they have a competitive study running.

Two types of factors can be considered when trying to explain heterogeneity in outcome:

factors that change only at the institution level and factors that change at the individual

patient level.

Explaining heterogeneity by institution specific information

Institution level factors, i.e. factors that have the same value for all patients treated

within the same institution but which vary between institutions, might explain hetero-

geneity in outcome. Typically such factors inherent to the institution are institution’s

location (geographical area, urban/rural location, . . . ), institution type (teaching insti-

tution, specialized cancer center, . . . ) and institution’s size. However, once such factors

are found to explain (part of) the heterogeneity between institutions, the interpretation

of such findings remains challenging and requires further investigation. To avoid contro-

versy at the time of interpreting the results, we have to keep in mind that differences in

outcome between categories of institutions could simply be due to differences in patient

populations referred to such institutions (e.g. worst cases are usually referred to university

hospitals).

Explaining heterogeneity by patient specific information

Patient level factors are factors that do not have the same value for all patients treated

within the same institution. Typical examples of such factors are the baseline charac-

teristics of the patients treated. As mentioned above, differences in outcome between

institutions or groups of institutions might be due to differences in the institution’s pa-

tient population.
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An individual patient level factor can only explain heterogeneity found between institu-

tions if two requirements are fulfilled. First, the factor should have a significant impact

on the outcome of the patient, i.e. should be of prognostic importance for the disease.

Second, there has to be an imbalance in the distribution of the factor over the different

institutions, so that some institutions have relatively more patients of good prognosis

according to this factor than others.

A major question addressed by treatment outcome research based on non clinical trial

data (e.g. registry data) is whether differences in outcome can be explained by differences

in treatment policy between institutions. On the other hand, in randomized clinical trials,

all patients are treated according to the same protocol and the treatment assignment is

often stratified by institution so that the proportion of patients assigned to a particular

treatment arm is virtually the same in all institutions. Therefore, even if the experimen-

tal treatment arm has a significant impact on the outcome of the patients as compared

to the control treatment arm, the second requirement is not fulfilled and the treatment

assignment can therefore never explain heterogeneity in outcome among institutions.

4 Statistical techniques most often used in treatment

outcome research

Showing heterogeneity in outcome between institutions

The techniques most often used to evaluate whether there is heterogeneity in time to event

outcomes between institutions are based on descriptive methods including tables of the
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percentage of patients with an event per institution, Kaplan-Meier curves by institution,

possibly with summary statistics such as the median time to event and the event free rate

at some fixed time points. However such descriptive results are difficult to interpret and it

is impossible to conclude whether there is more heterogeneity between institutions than

what is expected only by chance.

The Cox proportional hazards model with institution included as a fixed effect or a log-

rank test between institutions is sometimes used. Note that a fixed effect for institution

assumes that the levels of these factors (namely the institutions considered) are by them-

selves of interest and have been intentionally ”fixed” by the study design. Andersen et al.

[4] showed that a fixed effect test for institutions rejects the hypothesis of no institution

effect too often when the null hypothesis is true unless the number of subjects in each

institution is very large. This type of test should therefore not be used.

Explaining heterogeneity in outcome between institutions

When investigating whether institution level factors could explain potential heterogene-

ity in outcome, similar techniques are used grouping institutions according to the factor

considered rather than looking at individual institutions.

At the patient level, the prognostic importance of factors is usually studied by means

of the logrank test or the univariate Cox model. Once important prognostic factors are

identified, descriptive tables are most often used to study heterogeneity in the distribution

of these factors over institutions. Conclusions drawn from these analyses too often assume

that imbalances in an important prognostic factor is enough to explain heterogeneity in
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outcome.

A better, more objective method to describe the heterogeneity in distribution of factors

over institutions is based on the generalized mixed model [5] with a random institution

effect.

The generalized linear mixed model

The heterogeneity in distribution of baseline characteristics over institutions can be mod-

eled using the generalized linear model.

Consider the binary baseline characteristic X with two levels say x0 and x1. The ob-

served number of patients with baseline characteristics x0 in a particular institution i

(with corresponding observed probability pi) can be assumed to follow a binomial distrib-

ution with parameters ni, the number of patients in the institution and πi the probability

of having baseline characteristics x0 in institution i. To study the heterogeneity in the

distribution of X over institutions we will consider the heterogeneity of πi over institu-

tions fitting a generalized linear mixed model with a logistic link function and a random

institution effect ci:

ηi = ln
πi

1− πi
= β0 + ci with nipi ∼ B(ni,πi). (1)

The random institution effect ci is assumed to come from a normal distribution ci ∼

N(0, σ2c ). Therefore, the estimate of the variance σ
2
c describes the heterogeneity among

institutions. The overall probability over the different institutions is estimated by

π̂0 =
exp(β̂0)

1 + exp(β̂0)
. (2)
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The predicted probability for the ith institution is estimated by:

π̂i =
exp(η̂i)

1 + exp(η̂i)
. (3)

Note that ηi ∼ N(β0,σ2c ) with β0 and σ2c the population parameters. To get a feel for the

heterogeneity between institutions we consider the interval spanned by the 5th and the

95th quantiles of the distribution of ηi, i.e. [β0 − 1.65σc, β0 + 1.65σc]. By back transfor-

mation we obtain the following inter-quantile interval around πi : exp(β0 − 1.65σc)
1 + exp(β0 − 1.65σc)

,
exp(β0 + 1.65σc)

1 + exp(β0 + 1.65σc)

 (4)

with 90% of the institutions having probabilities within these limits. Inserting the esti-

mated values for β0 and σ2c will thus provide us with an interpretation of the variance

component σ2c .

This model is fitted with the SAS procedure PROC NLMIXED [6] which integrates the

random effect out of the likelihood by using its density function. Approximate standard

errors of the estimates are based on the information matrix of the likelihood function and

predictions of the random effect are based on empirical Bayes estimation.

A case study: EORTC Trial 10854

EORTC trial 10854 is a multicenter randomized phase III trial comparing one course

of peri-operative chemotherapy (experimental arm) with no further treatment (control

arm) following potentially curative surgery of carcinoma of the breast [7,8]. Between May

1986 and March 1991, a total of 2793 T1−2−3 N0−1−2 M0 breast cancer patients were

accrued by 14 institutions in 8 countries (7 European countries and South Africa). Note

that 2 institutions recruited more than half of the patients, 4 institutions recruited an
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intermediate number of patients and 8 institutions recruited less than 100 patients each

(Table 1). After a median follow up of 10.7 years, no significant differences between the

two treatment arms were found for overall survival (HR: 0.906; 95%CI: 0.786-1.043, p-

value: 0.1701) while a difference in disease free survival (DFS) was significant in favor

of the experimental arm (HR: 0.855; 95%CI: 0.755-0.968, p-value: 0.0133). In this study,

we primarily consider heterogeneity in disease free survival among institutions; secondary

endpoints are overall survival and time to loco-regional recurrence.

In all tables and figures, institutions are ordered in the same way according to 5 a-priori

defined geographical areas: institutions 1 to 3 are located in The Netherlands, institutions

4 and 5 in Poland, institutions 6 to 9 are in France, while institutions 10 to 13 are located

in South Europe and institution 14 in South Africa.

Heterogeneity in outcome between institutions

There seems to be some variation in outcome among institutions (Table 1). The 5 year

disease free survival varies between 57.8% (institution 14; 95% CI: 51.0-64.5%) and 81.5%

(institution 9; 95% CI: 79.0-84.1%). Kaplan-Meier disease free survival curves for each

institution are shown in Figure 1. However, the large number of curves plotted on the

same figure makes the interpretation difficult. Furthermore we have to keep in mind that

the width of the confidence interval associated with each curve varies with the number of

events in each institution. A classical logrank test leads to a significant difference between

the institutions (p < 0.001). Therefore substantial heterogeneity in outcome among insti-

tutions seems to be present.
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Explaining heterogeneity by institution specific information

There seems to be a relationship between the geographical area and the disease free sur-

vival in each institution (Table 1). Pooling data by geographical area, South Africa and

South Europe have the lowest 5 year disease free survival (57.8%, 95%CI: 51.0-64.5 and

66.8%, 95%CI: 58.9-73.8 respectively) with institution 5-year disease free survival rates

between 57.8% and 70.2%. At the other extreme France seems to have the highest 5 year

survival (79.2%, 95%CI: 77.4-81.0) with 5-year disease free survival rates between 75.2%

and 81.5%. The situation in Poland and in The Netherlands is more difficult to interpret.

Explaining heterogeneity by patient specific information

Univariate analyses identified the type of surgery (mastectomy versus breast conservative

surgery), axillary nodal status (negative versus positive), tumor size (not palpable or less

than 2 cm versus 2 cm or more or advanced disease) and presence/absence of other con-

comitant diseases as having a prognostic impact on the disease free survival of the patients

(Table 2). Note that according to the design of this study, randomization occured after

surgey, therefore type of surgery should indeed be considered as a baseline characteristic

As expected, the treatment allocation over institutions is perfectly well balanced due

to the stratification applied and can thus not explain heterogeneity (Table 1 - Figure 2a).

On the other hand, type of surgery has the largest imbalance in distribution over in-
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stitutions. The observed percentage of patients who undergo mastectomy varies between

27.1% (institution 9) to 97.5% (institution 4). The generalized linear model estimates the

average probability of undergoing mastectomy to be 72.8% with a wide inter-quantiles

interval (Table 3 - Figure 2b) which confirms this apparent heterogeneity in distribution.

Therefore type of surgery fulfils the two criteria as it is a strong prognostic factor for

disease free survival and it shows a large variability in distribution over institutions. We

would therefore be tempted to argue that the imbalance in the type of surgery over in-

stitutions explains the heterogeneity found in disease free survival between institutions.

However, the classical methods do not allow us to conclude that type of surgery actually

explains this heterogeneity and we need additional statistical tools to draw any conclu-

sions. One of the main problems is that the observed association is based on means over

institutions, both for the outcome and the prognostic factor, whereas the association

should be demonstrated on an individual patient level.

The other important prognostic factors, namely axillary nodal status, tumor size and

presence of other concomitant diseases also have quite a large variability in distribution

over institutions and might therefore also be seen as a possible explanation for the het-

erogeneity in outcome between institutions.

5 Treatment outcome research using the frailty model

Heterogeneity between institutions in time to event endpoints can be modeled by the

frailty model [9,10,11]. Furthermore, both institution level and patient level factors can

be introduced in the model to assess their effect on reducing (and thus explaining) the
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between institution heterogeneity.

In the shared frailty model a random effect is introduced for each institution so that pa-

tients from one institution share the same random effect. The random effect describes the

unobserved influences common to all patients of that particular institution. The variance

of this random effect is a measure of the heterogeneity in outcome between institutions.

As a further exploratory tool we can also plot the value of the predicted random in-

stitution effect obtained from a model with and without fixed effects for the factors of

interest.

The frailty model

The frailty model is an extension of the Cox model allowing for a random institution

effect. The hazard rate for subject j in institution i is given by

λij(t) = λ0(t) exp(wi + βIZij) j = 1, . . . , ni; i = 1, . . . , G (5)

where λ0 is the baseline hazard rate, Zij is the incidence vector of the covariates for pa-

tient j in institution i and β is the vector of unknown regression coefficients and wi is the

random effect for institution i. The wi’s are assumed to be independent and identically

distributed.

An equivalent formulation of the frailty model is

λij(t) = λ0(t)ui exp(β
IZij) j = 1, . . . , ni; i = 1, . . . , G (6)
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where ui = exp(wi) is now called the frailty term for institution i. Institutions with a

frailty term larger than 1 will have a higher hazard rate and therefore patients in that

institution will experience, on average, the event at an earlier time than patients in an

institution with a frailty term smaller than 1. In the further discussion the wi’s will mainly

be used because they can be seen as random effect terms in a linear model for the log-

hazard function, which makes a graphical interpretation easier.

We will assume that the frailties come from a one-parameter gamma density with mean

1 and variance θ, i.e.fu(u) =
1

Γ( 1θ )
θ−

1
θu

1
θ−1 exp(−uθ ). The variance θ of the frailty term

represents the heterogeneity among institutions and is thus called the heterogeneity pa-

rameter. If θ equals 0 there is no heterogeneity between institutions.

The two most commonly encountered approaches for fitting semiparametric frailty models

are based on the EM algorithm [9] and on the penalized partial likelihood [11,12]. For the

one-parameter gamma frailty density, the two approaches give the same solution [11,3]

and the penalized partial likelihood implemented in Splus was used to fit the models.

Interpretation of the heterogeneity parameter in a gamma frailty model

To get a better interpretation of a particular value of the heterogeneity parameter θ,

we look at the impact of such a value on the spread of the median time to event from

institution to institution by considering the density function of the median time to event

over institutions. We show in the appendix that, if we assume a constant baseline hazard
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λ0, this density function fT0.5,z(t) is given by

fT0.5,z(t) =

 ln(2)

θλ0 exp(βz)

1θ 1

Γ(1θ )

w
1

t

W1+1θ
exp

− ln(2)

θλ0t exp(βz)

 (7)

In trials with a long median time to event where in most institutions the median

has not been reached, such as the early breast cancer clinical trial considered in this

manuscript, the median time to event is a rather meaningless summary statistic. Although

not commonly used in the medical context, the 25% quantile instead of the median time

to event is more relevant in this setting. While the median disease free survival represents

the time point at which half the patients have experienced the event, the 25% quantile can

be interpreted as the time at which one fourth of the patients have experienced the event.

Formula (7) can be easily adapted to derive the density function of the 25% quantile time

to event:

fT0.5,z(t) =

 ln(4/3)

θλ0 exp(βz)

1θ 1

Γ(1θ )

w
1

t

W1+1θ
exp

− ln(4/3)

θλ0t exp(βz)

 (8)

By considering this density function and its tails, for example the 5% (q5) and 95%

(q95) quantiles of this density function, we get an immediate idea of the heterogeneity in

outcome that can be expected between institutions. Indeed we can deduce that with a

particular value of θ, and under the assumption made about the constant baseline hazard

and the hazards ratio and assuming a gamma distribution of the random effect, 90% of the

centers would have their median or 25% quantiles of the disease free survival distribution

(depending on the formula used) between q5 and q95.

Physicians are more used, in such a setting, to consider fixed time point disease free
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survival estimates (e.g. 5 years DFS) rather than the 25% quantile of the disease free sur-

vival distribution. Similarly the density function fS5,z(s) of the 5 year DFS over centers

can be derived assuming a proportional hazards model:

fS5,z(s) =
s

1
5λ0θ exp(βz)

−1

(5λ0θ exp(βz))
1
θΓ
p
1
θ

Qw ln 1
s

W1
θ−1

. (9)

A case study: EORTC Trial 10854

Heterogeneity in outcome between institutions

The estimated heterogeneity parameter θ for disease free survival with treatment as a fixed

effect equals 0.0665 (Table 4) and the predicted random institution effects are plotted in

Figure 3. To ensure that such a value of θ contradicts the null hypothesis of no hetero-

geneity between institutions, we ran large scale simulations using the same simulations

parameters and the same distribution of patients among centers as the values observed

from the data [3]. From these simulations we observed that in case the true value of θ is 0

(no heterogeneity), 95% of the estimated values would be below 0.006. Therefore a value

above the 0.006 contradicts the hypothesis of no heterogeneity between institutions.

To get a better understanding of what a value of 0.0665 for the estimated heterogeneity

parameter means, we plotted the density function of the 25% quantile of the disease free

survival time over institutions (Figure 4a) and the density function of the 5 year disease

free survival over institutions (Figure 4b) in the control arm and in the experimental arm,

assuming a constant yearly baseline hazard of 0.034, as observed in our data. With these

assumptions, 90% of the institutions would have a 25% quantile of disease free survival

time between 5.8 and 13.6 years in the experimental arm and between 4.9 and 11.6 years
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in the control arm. This corresponds to 90% of the institutions having a 5 year disease

free survival between 78.0% and 90.0% in the experimental arm and between 74.8% and

88.4% in the control arm.

We can therefore conclude that substantial heterogeneity in disease free survival exists

in this trial. Considering the secondary endpoints, we observed even larger heterogeneity

for overall survival but a smaller heterogeneity for time to first loco-regional recurrence

(LRR) (Table 4). As surgery was the primary treatment of these patients, the fact that

time to LRR exhibits the lowest heterogeneity among institutions may look surprising.

However, time to LRR was censored at the time of distant metastases and we can suspect

a ”dilution” effect due to problem of under-reporting of LRR. In the remainder we will

concentrate on disease free survival.

Explaining heterogeneity by institution specific information

We previously observed a relationship between the geographical area and the disease free

survival in each institution and the plot of the predicted random institution effects for

disease free survival seems to confirm this relationship (Figure 3). All the institutions from

Southern Europe (institutions 10 to 13) and South Africa (institution 14) show a positive

random effect for institution, corresponding to a higher event risk. On the other hand,

all the institutions located in France (institutions 6 to 9) show a negative random effect

for institution, corresponding to a lower event risk. For the Netherlands (institutions 1 to

3), one institution has a positive random institution effect and seems therefore to behave

differently than the two other ones. In Poland (institutions 4, 5), one institution has a
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positive random institution effect, an opposite result from the other Polish institution.

When adding a fixed effect for geographical area to the frailty model, the estimate of the

heterogeneity parameter decreases dramatically to 0.0078 (Table 4) and the geographical

area has a significant effect (p < 0.001). This model confirms that patients treated in

France and to a lesser extent in Poland have a better outcome while patients treated in

Southern Europe and South Africa seem to have a higher risk of event. Figure 5 shows

the predicted random institution effects for the model with and without fixed effects for

geographical area with predictions in the model with geographical area getting closer to

0 for all the institutions. This shows that geographical area largely explains the hetero-

geneity in disease free survival among institutions.

Explaining heterogeneity by patient specific information

As expected, fitting a gamma frailty model on disease free survival with a random effect

for institution, with or without treatment as a fixed effect, leads to estimates of θ of

respectively 0.0665 and 0.0657, very similar to each other. Figure 3 clearly shows that

treatment does not reduce the heterogeneity in outcome among institutions.

Our previous results suggested that type of surgery might explain heterogeneity in out-

come as this factor has a strong prognostic impact and shows a large variability in distri-

bution over institutions. When the predicted probability of mastectomy is compared with

the value of the random institution effect shown in Figure 3, it seems that institutions

with a positive value of the random effect and therefore a higher risk of event also have a

higher proportion of patients treated by modified radical mastectomy while institutions
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with a negative value of the random effect show a lower proportion of patients treated

with mastectomy. This seems especially true for patients treated in France and South

Europe but does not really hold for the other institutions.

However, when introducing type of surgery as fixed effect in our frailty model we ob-

serve that, although this factor has strong prognostic impact, the value of the estimated

heterogeneity parameters does not decrease (0.0695). Figure 5 confirms that in fact this

factor does not help to explain heterogeneity among institutions in this trial.

Considering axillary nodal status, tumor size and presence of other concomitant diseases,

the use of the frailty model confirms that none of these important prognostic factors

explain heterogeneity in outcome between institution in our data.

6 Discussion

As clinical trial protocols are written with the objective of suppressing as much variability

as possible, investigating heterogeneity in outcome between institutions within large phase

III cancer clinical trials has rarely been done. However, in case heterogeneity is found be-

tween institutions, availability of all important patient information and standardization of

the treatment, the data collection and the follow up of the patients are major advantages

when trying to explain the observed heterogeneity.

Using frailty models, we find substantial heterogeneity in disease free survival between

institutions within a large early breast cancer clinical trial (EORTC 10854). We also show
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that geographical area largely explains this heterogeneity in outcome. Institutions from

South Africa and Southern Europe seems to have worse outcomes than the average while

institutions from France and the Netherlands, with the exception of one institution, seem

to have a better outcome. Contrary to what the descriptive approach suggests, it seems

that none of the baseline patient characteristics considered can explain the heterogeneity.

Interpreting the geographical area effect is a further challenge. Further steps consist of

confirming these results and trying to explain this heterogeneity using data from other

clinical trials in the same disease type, and eventually in other disease types.

In the context of breast cancer, we could not find any studies in the literature based

on clinical trial data which investigated differences in outcome between institutions or

geographical area. On the other hand, several cancer registry-based treatment outcome

studies show differences in outcome of breast cancer according to geographical area in

different parts of the world (within Nordic countries [13, 14], within the UK [15], and

within the US [16,17, 18, 19], . . . ). The Eurocare II project [Quinn 1998], also based on

cancer registry data, shows wide differences in relative survival among 17 European coun-

tries: survival was above the European average in Iceland, Finland, Sweden, Switzerland,

France and Italy; about average in Denmark, The Netherlands, Germany and Spain; below

average in Scotland, England and Slovenia; and well below average in Slovakia, Poland

and Estonia. In most of these studies differences in timing of the diagnosis (and therefore

in stage distribution) or in the treatment procedure are suggested as a possible explana-

tions. By using clinical trial data, these two factors are controlled in the type of analysis

we performed.
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Based on these results, we advocate the use of the frailty model with an institution

random effect as an efficient tool to assess heterogeneity in outcome and the impact of

institution and patient level factors on this heterogeneity. However, we have to keep in

mind that such treatment outcome research remains retrospective and mainly data-driven.

Conclusions from such results should be drawn with caution and any link to quality of

care without any additional information is dangerous. Comparison of our results with

results obtained using other clinical trial data, eventually with registry based information

available from the literature and with the opinion of medical experts, is the best way to

bring these important conclusions into practice in order to improve the quality of cancer

care.
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Tables

Table 1. Distribution of patients per institutions

Geographical area Institution Total accrual Randomization 5 yrs DFS (%)

(N=2793) exp./standard (95% CI)

The Netherlands Institution 1 53 49.1%/50.9% 71.7 (59.6-83.8)

Institution 2 25 48.0%/52.0% 80.0 (64.3-95.7)

Institution 3 184 50.0%/50.0% 65.7 (58.8-72.6)

Poland Institution 4 40 47.5%/52.5% 69.4 (55.0-83.9)

Institution 5 78 51.3%/48.7% 76.9 (67.6-86.3)

France Institution 6 311 49.5%/50.5% 80.7 (76.3-82.8)

Institution 7 622 49.8%/50.2% 75.2 (71.8-78.6)

Institution 8 185 49.2%/50.8% 78.9 (73.0-84.8)

Institution 9 902 50.4%/49.6% 81.5 (79.0-84.1)

South Europe Institution 10 54 51.9%/48.1% 60.6 (47.4-73.7)

Institution 11 60 51.7%/48.3% 68.3 (56.6-80.1)

Institution 12 25 56.0%/44.0% 68.6 (49.0-82.2)

Institution 13 48 50.0%/50.0% 70.2 (56.6-83.9)

South Africa Institution 14 206 49.5%/50.5% 57.8 (51.0-64.5)
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Table 2. Univariate analysis of baseline prognostic characteristics

Variable Events/Patients 5 yrs DFS HR* (95%CI) P-value

(%) (95%CI)

Type of surgery <0.0001

Mastectomy 505/1231 (41%) 69.8 (67.2-72.4) 1

Breast conserving therapy 486/1542 (32%) 80.2 (78.2-82.2) 0.69 (0.61-0.78)

Axillary nodal status <0.0001

Negative 417/1467 (28%) 82.9 (81.0-84.9) 1

Positive 573/1303 (44%) 67.4 (64.8-69.9) 1.80 (1.58-2.04)

Tumor size <0.0001

Not palpable/less than 2cm 218/823 (27%) 84.5 (82.0-87.0) 1

≥ 2cm/advanced disease 759/1915 (40%) 72.0 (70.0-74.0) 1.69 (1.46-1.97)

Other concomittant disease 0.0064

No 887/2542 (35%) 76.2 (74.5-77.8) 1

Yes 101/232 (44%) 70.5 (64.6-76.4) 1.33 (1.08-1.64)

*Cox PH model including factor of interest as fixed effect - Patients with missing values

for the factor of interest are excluded.
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Table 3. Distribution of baseline characteristics over institutions - Generalized linear model

Baseline characteristics N β̂0 (se) σ̂20 (se) Average probability

(inter-quantile range)

Type of surgery 2773 0.9847 (0.4281) 2.3299 (1.072) 72.8% (11.9%-98.2%)

(mastectomy)

Axillary nodal status 2770 0.0504 (0.1186) 0.1427 (0.081) 51.3% (33.4%-69.0%)

(positive status)

Tumor size 2738 0.9981 (0.1167) 1.1268 (0.069) 69.6% (57.5%-84.5%)

(≥ 2cm/advanced disease)

Other concomittant disease 2774 -2.3458 (0.2731) 0.7896 (0.380) 8.7% (1.7%-35.3%)

(yes)
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Table 4. Results frailty models

Endpoint Model θ̂ β̂ (se) HR P

DFS Random institution effect 0.0665

Fixed treatment effect

Experimental vs. standard -0.158 (0.063) 0.855 0.013

OS Random institution effect 0.1090

Fixed treatment effect

Experimental vs. standard -0.100 (0.072) 0.900 0.160

LRR Random institution effect 0.0586

Fixed treatment effect

Experimental vs. standard -0.445 (0.122) 0.640 0.0003

DFS Random institution effect 0.0078

Fixed treatment effect

Experimental vs. standard -0.157 (0.063) 0.855 0.013

Geographical area*

The Netherlands 0.025 (0.102) 1.025 0.810

Poland -0.183 (0.142) 0.833 0.200

France -0.342 (0.073) 0.710 < 0.0001

South Europe 0.157 (0.109) 1.170 0.150

South Africa 0.344 (-) 1.410 -

*Sum contrast
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Figures

Figure 1. Disease free survival by institution

Figure 2a. Distribution of allocated treatment arm over institutions. Predicted proba-

bility of control arm

Figure 2b. Distribution of type of surgery over institutions. Predicted probability of mas-

tectomy

Figure 3. Predicted random effects wi in a model with (◦) / without (×) treatment

included as fixed effect

Figure 4a. Density function of 25 % quantile time to event (DFS) over institutions

Figure 4b. Density function of 5 year DFS over institutions

Figure 5. Predicted random effect in a model with treatment as fixed effect (◦) , with

treatment and geographical area as fixed effects (×) , and with treatment and type of

surgery as fixed effects (+).
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Appendix

In the case of a gamma distributed frailty and constant baseline hazard, the density of

the median time to event is given by

fT0.5,z(t) =

 ln(2)

θλ0 exp(βz)

1θ 1

Γ(1θ )

w
1

t

W1+1θ
exp

− ln(2)

θλ0t exp(βz)

 (10)

Indeed, for a constant baseline hazard the conditional survival curve is given by

S(t | u, z) = exp(−λ0u exp(βz)t) (11)

and T0.5,z , the median time to event, satisfies S(T0.5,z | u, z) = 0.5 or (dropping the z

dependence)

T0.5,z = h(u) =
ln 2

λ0u exp(βz)
. (12)

Since T0.5,z is a monotone transformation of u, we have for t ≥ 0,

fT0.5,z(t) = fu
p
h−1(t)

Qeeee ddth−1(t)
eeee (13)

with fu(.) the gamma density, now (10) is immediate from (13).

In the same way, we obtain the density for T0.25,z, the 25% quantile,

fT0.5,z(t) =

 ln(4/3)

θλ0 exp(βz)

1θ 1

Γ(1θ )

w
1

t

W1+1θ
exp

− ln(4/3)

θλ0t exp(βz)

 (14)

Similarly we have from (11) that S5,z , the 5 year event free survival time, satisfies (drop-

ping the z dependence) S5,z = exp(−5λ0u exp(βz)). Using thefact that S5,z can be seen

as a monotone transformation of the random variable u, we find that

fS5,z(s) =
s

1
5λ0θ exp(βz)

−1

(5λ0θ exp(βz))
1
θΓ
p
1
θ

Qw ln 1
s

W1
θ−1

. (15)
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