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Abstract

We propose a class of rank-based procedures for testing that the shape matrix V of
an elliptical distribution (with unspecified center of symmetry, scale, and radial density)
has some fixed value V0; this problem includes the problem of testing for sphericity as an
important particular case. The proposed tests are invariant under translations, monotone
radial transformations, rotations, and reflections with respect to the estimated center of
symmetry. They are valid without any moment assumption. For adequately chosen scores,
they are locally asymptotically maximin (in the Le Cam sense) at given densities. They
are strictly distribution-free when the center of symmetry is specified, and asymptotically
so, when it has to be estimated. The multivariate ranks used throughout are those of the
distances—in the metric associated with the null value V0 of the shape matrix—between the
observations and the (estimated) center of the distribution. Local powers and asymptotic
relative efficiencies are derived with respect to the adjusted Mauchly test (a modified version
proposed by Muirhead and Waternaux (1980) of the Gaussian likelihood ratio procedure)
or, equivalently, with respect to (an extension of) John (1971)’s classical test for sphericity.
Small sample performances are investigated via a Monte-Carlo study.

AMS 1980 subject classification : 62M15, 62G35.
Key words and phrases : Elliptical densities, Shape matrix, Multivariate ranks and signs,

Tests for sphericity, Local asymptotic normality, Locally asymptotically maximin tests, Mauchly’s
test.

1 Introduction.

1.1 The hypothesis of sphericity.

The distribution of a k-dimensional random vector X is called spherical, if, for some θθθ ∈ R
k,

the density of X− θθθ is invariant under orthogonal transformations. For multinormal variables,
sphericity is equivalent to the covariance matrix ΣΣΣ of X being proportional to the identity
matrix Ik; for elliptical variables, for which finite second-order moments need not exist, sphericity
is equivalent to the shape matrix V being equal to Ik; see Section 1.2 for precise definitions.

∗Research supported by a P.A.I. contract of the Belgian Federal Government and an Action de Recherche

Concertée of the Communauté française de Belgique.
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Sphericity plays a key role in a number of statistical problems. The classical analysis of
linear models crucially relies on the assumption that the observations have a covariance matrix
proportional to Ik. The analysis of repeated measures data also requires that some transforma-
tion of the observations enjoys a spherical structure. Efron (1969) in a seminal paper shows how
sphericity allows for performing similar tests for location based on Student’s t statistic—an idea
that straightforwardly extends to linear models. Adopting a Bayesian point of view, Hill (1969)
even argues that sphericity, rather than multinormality, is the adequate basis for least squares in
linear models. Besides this role in the technical assumptions underlying very general statistical
models, the null hypothesis of sphericity is also of direct interest in some specific domains of
applications, such as paleomagnetic studies in geology, animal navigation, astronomy, or wind
direction data: see Baringhaus (1991) or Mardia and Jupp (1999) for references.

Because of this importance for applications, the problem of testing the null hypothesis of
sphericity has a long history, and generated a considerable body of literature, which we only
very briefly summarize here. For normal populations, the asymptotic theory has been thor-
oughly investigated. The likelihood ratio test was derived by Mauchly (1940), the locally most
powerful invariant (under shift, orthogonal transformations, and multiplication by a scalar) test
by John (1971, 1972) and Sugiura (1972). In their original versions, these tests unfortunately
are valid under Gaussian assumptions only; but, after a slight modification, they remain valid
under elliptical populations with finite fourth-order moments: see Section 5.3 of Muirhead and
Waternaux (1980) for the Mauchly test, or Section 3.3 of the present paper for John’s. It has
been shown however (Huynh and Mandeville 1979) that all these tests behave rather badly un-
der heavy tails (a fact that is confirmed by the Monte-Carlo study in Section 5). More robust
behaviour can be expected from the test statistics proposed by Tyler (1982 and 1983), who
proposes—still under moment assumptions, though—replacing covariance matrices with more
robust estimators of scatter.

Non-Gaussian models have been investigated by Kariya and Eaton (1977), where elliptical
densities, possibly with infinite variances, are considered. Uniformly most powerful unbiased
tests are derived, basically against specified non-spherical shape alternatives, though. Such
tests thus are of limited practical value. Other non-Gaussian tests are based on various concepts
of multivariate skewness and kurtosis, under finite fourth order moment assumptions: see Mar-
dia (1970), Malkovich and Afifi (1973), or Baringhaus and Henze (1992). Their performances
very much depend on the particular skewness or kurtosis concepts adopted.

As a reaction to Gaussian assumptions, nonparametric tests of sphericity also have been con-
structed. Their main advantage is that, under very general conditions, they enjoy a “universal
consistency” property, that is, they are consistent against all possible nonspherical alternatives.
The drawback is that they are computationally heavy, and only achieve slow nonparametric
consistency rates. Butler (1969), Rothman and Woodroofe (1972), Beran (1979), and Baring-
haus (1991) belong to this vein; see Mardia (1972) for a discussion.

Another way of escaping Gaussian or fourth-order moment assumptions consists in basing
the tests on statistics that are measurable with respect to invariant or distribution-free quanti-
ties, such as the multivariate concepts of signs and ranks developed, mainly, in the robustness
literature—see Oja (1999) for a review. This approach has been adopted recently by Ghosh
and Sengupta (2001), who propose a test based on multivariate signs, i.e., on cosines of the
form ((Xi − θθθ)

T /‖Xi − θθθ‖)(Xj − θθθ)/‖Xj − θθθ‖, where Xi, i = 1, . . . , n denote the k-dimensional
observations. Their test however is of a purely heuristic nature: no optimality concerns, and no
asymptotic relative efficiency results. Moreover, as we shall see, using signs only (i.e., restricting
to directional information) leads, somewhat surprisingly, to a strict loss of efficiency.
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The approach we are adopting in the present paper is in the same spirit. However, we
throughout combine robustness (distribution-freeness under sphericity, without any moment
assumptions) and optimality concerns. Our tests are based on multivariate signs and the ranks
of the norms of the observations centered at θθθ or an estimate θ̂θθ, with test statistics that have
a structure similar to that of John’s. According as the center of symmetry θθθ is specified or
not, these statistics are strictly distribution-free under sphericity, or asymptotically so. With
adequate scores, they are asymptotically optimal (in the Le Cam sense) against non-spherical
elliptical distributions, at chosen radial densities. Asymptotic relative efficiencies (with respect
to John or Mauchly’s tests) are derived, and appear (particularly so for the van der Waerden
version of our tests) to be surprisingly high.

1.2 Elliptical densities: location, scale, shape, and radial density.

Denote by X(n) := (X
(n)′
1 , . . . ,X

(n)′
n )′, n ∈ N a triangular array of k-dimensional observations.

Throughout, X
(n)
1 , . . . ,X

(n)
n are assumed to be i.i.d., with elliptical density

f
θθθ,σ2,V;f1

(x) := ck,f1

1

σk|V|1/2
f1

(
1

σ

(
(x− θθθ)′V−1(x− θθθ)

)1/2
)
, x ∈ R

k, (1)

where θθθ ∈ R
k is a location parameter, σ2 ∈ R

+
0 a scale parameter, and V := (Vij), a symmetric

positive definite real k × k matrix with V11 = 1, a shape parameter. The infinite-dimensional
parameter f1 : R

+
0 −→ R

+ is an a.e. strictly positive function, the constant ck,f1 a normalization
factor depending on the dimension k and f1.

The function f1 conveniently but improperly (f1 is not a probability density) will be called a

radial density. Denote indeed by d
(n)
i = d

(n)
i (θθθ,V) := ‖Z

(n)
i (θθθ,V)‖ the modulus of the centered

and sphericized observations Z
(n)
i = Z

(n)
i (θθθ,V) := V−1/2(X

(n)
i − θθθ), i = 1, . . . , n. If the X

(n)
i ’s

have density (1), these moduli are i.i.d., with density and distribution function

r 7→
1

σ
f̃1k

(
r

σ

)
:=

1

σµk−1;f1

(
r

σ

)k−1

f1

(
r

σ

)
I[r>0] and r 7→ F̃1k(r/σ) :=

∫ r/σ

0
f̃1k(s) ds,

respectively—provided, however, that

µk−1;f1 :=

∫ ∞

0
rk−1f1(r)dr <∞, (2)

an assumption we henceforth always are making on f1. This function f̃1k is the actual radial
density, and (2) thus merely ensures that it be a probability density function; in particular, it

does not imply any moment restriction on f̃1k, the d
(n)
i ’s, nor the X

(n)
i ’s. Any square root V1/2

of V (satisfying V1/2V1/2′ = V) can be used in the above definitions—provided, of course, it
is used in a consistent way. For the sake of simplicity, the symmetric root is used throughout,
saving superfluous primes.

Now, if σ and f1 (or, more precisely σ and f1/ck,f1) are to be identifiable, a scale constraint

is required. Still in order to avoid moment restrictions, we chose to impose that the d
(n)
i ’s,

under (1), have common median σ, i.e., that

F̃1k(1) = 1/2, or, equivalently, (µk−1;f1)
−1
∫ 1

0
rk−1f1(r)dr = 1/2. (3)
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Special cases are the k-variate multinormal distribution, with radial density f1(r) = φ1(r) :=
exp(−akr

2/2), and the k-variate Student distributions, with radial densities (for ν degrees of
freedom) f1(r) = f1,ν(r) := (1 + ak,νr

2/ν)−(k+ν)/2; the constants ak and ak,ν > 0 are such
that (3) is satisfied (note that ak = limν→∞ ak,ν).

Writing vechM := (M11, (ve
◦
chM)′)′ for the k(k + 1)/2-dimensional vector obtained by

stacking the upper-triangular elements of a k × k symmetric matrix M = (Mij), we denote

by P
(n)
ϑϑϑ;f1

or P
(n)
θθθ,σ2,V;f1

the distribution of X(n) under given values of ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′

and f1 (f1 satisfying (2) and (3)).

The notation R
(n)
i = R

(n)
i (θθθ,V) will be used for the rank of d

(n)
i = d

(n)
i (θθθ,V) among

d
(n)
1 , . . . , d

(n)
n ; under P

(n)
ϑϑϑ;f1

, the vector (R
(n)
1 , . . . , R

(n)
n ) is uniformly distributed over the n! permu-

tations of (1, . . . , n). Let U
(n)
i = U

(n)
i (θθθ,V) := Z

(n)
i /d

(n)
i : the vectors U

(n)
i under P

(n)
ϑϑϑ;f1

are i.i.d.

and uniformly distributed over the unit sphere. They are independent of the ranks R
(n)
i , and

usually are considered as multivariate signs associated with the centered observations (Xi−θθθ)—
as they are totally insensitive to transformations of (Xi−θθθ) that preserve half lines through the
origin.

1.3 Outline of the paper.

The problem we are considering actually is that of testing that the shape V is equal to some
given value V0 (admissible for a shape parameter). The special case V0 = Ik, where Ik stands
for the k-dimensional identity matrix, yields the problem of testing for sphericity. The shape
matrix V in this problem is thus the parameter of interest, while θθθ, σ2, and f1 play the role of
nuisance parameters. Hence, it is highly desirable that the null distributions of the test statistics
to be used remain invariant under variations of θθθ, σ2, and f1.

When θθθ is specified, we achieve this objective by basing our tests on the signs U
(n)
i and

ranks R
(n)
i computed from Z

(n)
i (θθθ,V0), i = 1, . . . , n. These tests are invariant under mono-

tone radial transformations (including scale transformations), rotations, and reflections of the
observations (with respect to θθθ)—hence distribution-free with respect to such transformations.

When θθθ is unspecified, the ranks and signs are to be computed from Z
(n)
i (θ̂θθ,V0), i = 1, . . . , n,

where θ̂θθ = θ̂θθ
(n)

is an arbitrary root-n consistent estimator of the location parameter θθθ; we how-
ever recommend for θ̂θθ the (rotation-equivariant) spatial median of Möttönen and Oja (1995),
which is itself “sign-based”. This issue is treated in Section 4.4.

The tests based on these multivariate signed-rank statistics, whether they are computed
from θθθ or from θ̂θθ, are locally asymptotically optimal (namely, locally asymptotically maximin-
efficient, as the non-specification of the scale σ induces a strict loss of efficiency) in the Le Cam
sense, under adequately chosen score functions.

The rest of the paper is organized as follows. In Section 2, we establish the local and asymp-
totic normality (with respect to the location, scale, and shape parameters) result that provides
the main theoretical tool of the paper. This result allows for developing asymptotically optimal
parametric procedures for V under specified values of f1 and σ (with possibly unspecified θθθ),
and asymptotically efficient procedures, still for for V, under specified f1 and unspecified σ
and θθθ. This is explained in detail in Section 3, where we also derive the asymptotically optimal
(efficient, at given f1) “scale-free” tests for hypotheses of the form V = V0 (tests for sphericity
being a special case). The Gaussian version of this test is investigated further and its link with
some classical tests of sphericity is discussed. In Section 4, we propose non-parametric (signed-
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rank-based) versions of the optimal procedures defined in Section 3, and study their invariance
and asymptotic properties. Asymptotic relative efficiencies with respect to the parametric Gaus-
sian test are derived. All these results are obtained under specified θθθ first; then, in Section 4.4,
we show that, under minimal regularity assumptions on the actual underlying density (essen-

tially, those ensuring ULAN), θθθ safely can be replaced by any root-n consistent estimator θ̂θθ
(n)

.
Section 5 provides some simulation results indicating that finite sample performances reflect the
asymptotic performances derived in the previous sections. Finally, the appendix collects some
technical proofs.

2 Uniform local asymptotic normality (ULAN).

The main technical tool to be used in the sequel is the uniform local asymptotic normal-

ity (ULAN), with respect to ϑϑϑ = (θθθ′, σ2, (ve
◦
chV)′)′, of the families of distributions P

(n)
f1

:={
P

(n)
ϑϑϑ;f1

;ϑϑϑ ∈ΘΘΘ
}
, where ΘΘΘ denotes the open region of R

(k+k(k+1)/2) such that σ2 > 0 and V is

positive definite. This issue has not been touched so far in the literature—except for the very
particular case of bivariate distributions with finite second-order moments recently treated by
Falk (2002) in his investigation of the inefficiency of empirical correlation coefficients.

In order to describe the extremely mild assumptions under which the family P
(n)
f1

is uniformly
locally asymptotically normal (ULAN), we introduce the following definitions. Consider the
measure space (Ω,BΩ, λ), where λ is some measure on the open subset Ω ⊂ R equipped with its
Borel σ-field BΩ. Denote by L2(Ω, λ) the space of measurable functions h : Ω → R satisfying∫
Ω[h(x)]2 dλ(x) < ∞. In particular, consider the space L2(R+

0 , µ`) (resp. L2(R, ν`)) of square-
integrable functions w.r.t. the Lebesgue measure with weight x` on R

+
0 (resp. with weight e`x

on R), i.e. the space of measurable functions h : R
+
0 → R satisfying

∫∞
0 [h(x)]2x` dx < ∞

(resp. h : R → R satisfying
∫∞
−∞[h(x)]2e`x dx < ∞). Recall that g ∈ L2(Ω, λ) admits a

weak derivative T iff
∫
Ω g(x)ϕ

′(x) dx = −
∫
Ω T (x)ϕ(x) dx, for all infinitely differentiable (in

the classical sense) compactly supported functions ϕ over Ω. The mapping T is also called
the derivative of g in the sense of distributions in L2(Ω, λ). If, moreover, T itself is in L2(Ω, λ),
then g belongs to W 1,2(Ω, λ), the Sobolev space of order 1 on L2(Ω, λ). For the sake of simplicity,
we will write L2(Ω) and W 1,2(Ω), when λ is the Lebesgue measure on Ω.

The family P
(n)
f1

is ULAN under the following assumptions on the radial density f1.

Assumption (A1). The mapping x 7→ f
1/2
1 (x) is in W 1,2(R+

0 , µk−1).

Letting ϕf1(r) := −2(f
1/2
1 )′(r)/f

1/2
1 (r), where (f

1/2
1 )′ stands for the weak derivative of f

1/2
1

in L2(R+
0 , µk−1), Assumption (A1) ensures the finiteness of the radial Fisher information for

location

Ik(f1) := E[ϕ2
f1

(d
(n)
i (θθθ,V)/σ)] =

∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du

(expectation is taken under P
(n)
ϑϑϑ;f1

).

Assumption (A2). The mapping x 7→ f
1/2
1;exp(x) := f

1/2
1 (ex) is in W 1,2(R, νk).

Letting ψf1(r) := −2r−1(f
1/2
1;exp)′(ln r)/f

1/2
1;exp(ln r), where (f

1/2
1;exp)′ stands for the weak derivative

of f
1/2
1;exp in L2(R, νk), Assumption (A2) ensures the finiteness of the radial Fisher information
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for shape (and scale)

Jk(f1) := E[ψ2
f1

(d
(n)
i (θθθ,V)/σ)(d

(n)
i (θθθ,V)/σ)2] =

∫ 1

0
ψ2

f1
(F̃−1

1k (u))(F̃−1
1k (u))2 du

(expectation is still taken under P
(n)
ϑϑϑ;f1

).
The score functions ϕf1 for location and ψf1 for shape (and scale) in principle differ. However,

they do coincide (a.e.) under the following assumption (A1-2), which, though slightly more
stringent than (A1) and (A2), holds for most densities considered in practice.

Assumption (A1-2). The radial density f1 is absolutely continuous, with a.e.-derivative ḟ1,
and, letting ϕf1 = ψf1 := −ḟ1/f1, the integrals

Ik(f1) :=

∫ 1

0
ϕ2

f1
(F̃−1

1k (u)) du and Jk(f1) :=

∫ 1

0
ψ2

f1
(F̃−1

1k (u))(F̃−1
1k (u))2 du

are finite.

It should be insisted that none of these assumptions requires the existence of any moment
for the radial density f̃1k. They are satisfied, for instance, for all multivariate Student radial
densities, including the Cauchy ones. Denoting by f1,ν , as in Section 1.2, the radial density of
the k-variate t-distribution with ν degrees of freedom (ν ∈ (0,∞)), it can be checked that

Ik(f1,ν) = a2
k,ν

k(k + ν)

k + ν + 2
and Jk(f1,ν) =

k(k + 2)(k + ν)

k + ν + 2
. (4)

The corresponding values for the k-variate multinormal distribution can be obtained by taking
limits as ν →∞:

Ik(φ1) = a2
k k and Jk(φ1) = k(k + 2).

Note that limν→0 Jk(f1,ν) = k2, which is the lower bound of the radial information for
shape/scale, since, by Jensen inequality and integration by parts,

(Jk(f1))
1/2 ≥

∫ 1

0
ψf1(F̃

−1
1k (u))(F̃−1

1k (u)) du = k; (5)

similarly, assuming that the density in (1) has finite second-order moments, the radial informa-
tion for location Ik(f1) satisfies (using the Cauchy-Schwarz inequality)

Ik(f1) ≥ k2
(∫ 1

0
(F̃−1

1k (u))2 du

)−1

,

with equality in the multinormal case only.
The following notation is needed in the statement of ULAN. Write V⊗2 for the Kronecker

product V ⊗ V. Denoting by e` the `th vector of the canonical basis of R
k, let Kk :=∑k

i,j=1(eie
′
j)⊗ (eje

′
i) be the k2×k2 commutation matrix, and put Jk :=

∑k
i,j=1(eie

′
j)⊗ (eie

′
j) =

(vec Ik)(vec Ik)
′ (as usual, vec (A) stands for the vector resulting from stacking the columns of A

on top of each other). Finally, let Mk be such that M′
k(ve

◦
chv) = vec (v) for any symmetric k×k

matrix v = (vij) such that v11 = 0.
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Proposition 1 Under Assumptions (A1) and (A2), the family P
(n)
f1

:=
{

P
(n)
ϑϑϑ;f1

∣∣∣ϑϑϑ ∈ΘΘΘ
}

is ULAN,

with (writing di and Ui for d
(n)
i (θθθ,V) and U

(n)
i (θθθ,V), respectively) central sequence

∆∆∆
(n)
ϑϑϑ;f1

:=




∆∆∆
(n)
ϑϑϑ;f1;1

∆
(n)
ϑϑϑ;f1;2

∆∆∆
(n)
ϑϑϑ;f1;3


 :=




n−1/2 1

σ

n∑

i=1

ϕf1

(
di

σ

)
V−1/2Ui

1
2 n

−1/2

(
σ−2(vec Ik)

′

Mk

(
V⊗2

)−1/2

)
n∑

i=1

vec

(
ψf1

(
di

σ

)
di

σ
UiU

′
i − Ik

)




(6)

and full-rank information matrix

ΓΓΓϑϑϑ;f1
:=




ΓΓΓϑϑϑ;f1;11 0 0
0 Γϑϑϑ;f1;22 ΓΓΓ′ϑϑϑ;f1;32

0 ΓΓΓϑϑϑ;f1;32 ΓΓΓϑϑϑ;f1;33


 , (7)

where

ΓΓΓϑϑϑ;f1;11 :=
1

kσ2
Ik(f1)V

−1, Γϑϑϑ;f1;22 :=
1

4σ4
(Jk(f1)− k2),

ΓΓΓϑϑϑ;f1;32 :=
1

4kσ2
(Jk(f1)− k2)Mk vec (V−1),

and

ΓΓΓϑϑϑ;f1;33 :=
1

4
Mk

(
V⊗2

)−1/2
[
Jk(f1)

k(k + 2)
(Ik2 + Kk + Jk)− Jk

] (
V⊗2

)−1/2
M′

k. (8)

More precisely, for any ϑϑϑ(n) = (θθθ(n)′, σ2(n), (ve
◦
chV(n))′)′ = ϑϑϑ+O(n−1/2) and any uniformly

bounded sequence τττ (n) := (t(n)′, s(n), (ve
◦
chv(n))′)′ = (τττ

(n)′
1 , τ

(n)
2 , τττ

(n)′
3 )′ ∈ R

k+k(k+1)/2, we have

Λ
(n)

ϑϑϑ(n)+n−1/2τττ (n)/ϑϑϑ(n);f1
:= log

(
dP

(n)

ϑϑϑ(n)+n−1/2τττ (n);f1
/dP

(n)

ϑϑϑ(n);f1

)

= (τττ (n))′∆∆∆
(n)

ϑϑϑ(n);f1
−

1

2
(τττ (n))′ΓΓΓϑϑϑ;f1

τττ (n) + oP(1)

and
∆∆∆

(n)

ϑϑϑ(n);f1

L
−→ N

(
0,ΓΓΓϑϑϑ;f1

)

under P
(n)

ϑϑϑ(n);f1
, as n→∞.

Proof. See Appendix (Section 6.1). �

3 Parametrically efficient tests for shape.

3.1 An efficient central sequence for shape.

The block-diagonal structure of the information matrix (7) and ULAN imply that substituting
a (in principle, discretized: see, e.g., Le Cam and Yang 2000, page 125) root-n consistent

estimator θ̂θθ = θ̂θθ
(n)

for the unknown θθθ has no influence, asymptotically, on the (σ2,V)-part of

the central sequence ∆∆∆
(n)
ϑϑϑ;f1

: optimal inference about (σ2,V) thus can be based, without any

loss of (asymptotic) efficiency, on (∆
(n)

θ̂θθ,σ2,V;f1;2
,∆∆∆

(n)′

θ̂θθ,σ2,V;f1;3
)′ as if θ̂θθ were the actual location
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parameter: see Section 4.4 for details. Therefore, in this section, we throughout assume that θθθ
is known. Similarly, replacing σ2 and V with root-n consistent estimators σ̂2(n) and V̂(n) in

the θθθ-part of the central sequence ∆∆∆
(n)
ϑϑϑ;f1

has no impact, asymptotically, on inference about θθθ.
Unlike the asymptotic covariances between the location and scatter components of the central

sequence ∆∆∆
(n)
ϑϑϑ;f1

, the asymptotic covariances between the σ2-part ∆
(n)
θθθ,σ2,V;f1;2

and the V-part

∆∆∆
(n)
θθθ,σ2,V;f1;3

are not zero. This means that a local perturbation of scale has the same asymptotic

impact on ∆∆∆
(n)
θθθ,σ2,V;f1;3

as a local perturbation of V, hence the cost of not knowing the actual

value of σ2 is strictly positive when performing inference on V. Since we hardly can think of any
practical problem where the scale (but not the shape) is specified, we concentrate on optimality
under unspecified scale σ2, and explicitly compute the information loss due to the presence of
this nuisance.

LAN and the convergence of local experiments to the Gaussian shift experiment
(

∆2

∆∆∆3

)
∼ N

((
Γϑϑϑ;f1;22 ΓΓΓ′ϑϑϑ;f1;32

ΓΓΓϑϑϑ;f1;32 ΓΓΓϑϑϑ;f1;33

)(
τ2
τττ3

)
,

(
Γϑϑϑ;f1;22 ΓΓΓ′ϑϑϑ;f1;32

ΓΓΓϑϑϑ;f1;32 ΓΓΓϑϑϑ;f1;33

))
, (τ2, τττ

′
3)
′ ∈ R

k(k+1)/2

(9)
implies that locally optimal inference on shape, in the presence of an unspecified scale parameter,
should be based on the residual of the regression (in (9)), of ∆∆∆3 with respect to ∆2, computed

at ∆∆∆
(n)
ϑϑϑ;f1;3

(the shape part of the central sequence) and ∆
(n)
ϑϑϑ;f1;2

(the scale part of the same). This

residual takes the form ∆∆∆3 − ΓΓΓϑϑϑ;f1;32Γ
−1
ϑϑϑ;f1;22

∆2; the resulting f1-efficient central sequence for
shape is thus

∆∆∆
?(n)
ϑϑϑ;f1

= ∆∆∆
(n)
ϑϑϑ;f1;3

−ΓΓΓϑϑϑ;f1;32Γ
−1
ϑϑϑ;f1;22∆

(n)
ϑϑϑ;f1;2

,

which, after some elementary algebra, reduces to

∆∆∆
?(n)
ϑϑϑ;f1

=
1

2
n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1

k
Jk

] n∑

i=1

ψf1

(
di

σ

)
di

σ
vec

(
UiU

′
i

)
. (10)

This efficient central sequence under P
(n)
ϑϑϑ,f1

is asymptotically normal, with mean zero and
covariance (the efficient Fisher information for shape under radial density f1)

ΓΓΓ?
ϑϑϑ;f1

= ΓΓΓϑϑϑ;f1;33 −ΓΓΓϑϑϑ;f1;32Γ
−1
ϑϑϑ;f1;22ΓΓΓ

′
ϑϑϑ;f1;32.

After routine computation, this efficient information takes the form

ΓΓΓ?
ϑϑϑ;f1

=
1

4
Mk

(
V⊗2

)−1/2
[
Ik2 −

1

k
Jk

][
Jk(f1)

k(k + 2)
(Ik2 + Kk + Jk)− Jk

][
Ik2 −

1

k
Jk

](
V⊗2

)−1/2
M′

k

=
Jk(f1)

4k(k + 2)
Mk

(
V⊗2

)−1/2
[
Ik2 + Kk −

2

k
Jk

] (
V⊗2

)−1/2
M′

k =: Jk(f1)Gk(V), (11)

a form that is not unfamiliar in the area of robust estimation of covariance matrices: see, for
instance, the asymptotic covariances in Tyler (1982, 1983), Ollila, Oja, and Croux (2003), and
Ollila, Croux, and Oja (2004) for the covariances of scatter estimates (as in (7), (8)), Tyler (1987)
and Ollila, Hettmansperger, and Oja (2004) for covariances of shape estimates (as in (11)).

In the sequel, optimality (in the local and asymptotic sense, at radial density f1) is to be
understood in the context of the Gaussian shift experiment associated with efficient central

sequences ∆∆∆
?(n)
ϑϑϑ;f1

. In particular, a sequence of tests will be called locally and asymptotically
maximin-efficient (at asymptotic level α) if it is asymptotically maximin in the sequence of

experiments associated with ∆∆∆
?(n)
ϑϑϑ;f1

.
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3.2 Optimal parametric tests for shape.

Consider the problem of testing a null hypothesis of the form H0 : V = V0 in the parametric
model where f1 is known and the scale σ2 is unspecified. Optimality (in a local and asymptotic
sense; see Proposition 2 for a precise statement) is reached by tests based on quadratic forms in
the f1-efficient central sequence for shape. More precisely, the optimal test statistics take the
form

Qf1 = Q
(n)
f1

:=

(
∆∆∆

?(n)

ϑ̂ϑϑ0;f1

)′ (
ΓΓΓ?

ϑ̂ϑϑ0;f1

)−1
∆∆∆

?(n)

ϑ̂ϑϑ0;f1
,

where, denoting by σ̂ a root-n consistent estimator for σ, we let ϑ̂ϑϑ0 := (θθθ′, σ̂2, (ve
◦
chV0)

′)′. Note

that consistent estimation of σ under
⋃

f1

{
P

(n)
θθθ,σ2,V0;f1

}
is easily achieved, since σ then is the

common median of the distances di(θθθ,V0). As we will see in Section 3.3, the Gaussian version
of these optimal parametric tests allows for bypassing this estimation of the scale.

Lemma 1 below allows for the explicit form

Qf1 =
k(k + 2)

2nJk(f1)

n∑

i,j=1

didj

σ̂2
ψf1

(
di

σ̂

)
ψf1

(
dj

σ̂

)(
(U′

iUj)
2 −

1

k

)
,

with di := d
(n)
i (θθθ,V0) and Ui := U

(n)
i (θθθ,V0).

Lemma 1 Denote by ek2,1 the first vector of the canonical basis of R
k2

. Then, if V = (Vij) is
symmetric with V11 = 1, we have

M′
k

{
1

4
Mk

(
V⊗2

)−1/2
[
Ik2 + Kk −

2

k
Jk

] (
V⊗2

)−1/2
M′

k

}−1

Mk (12)

= [Ik2 + Kk] (V
⊗2)− 2(V⊗2) ek2,1 (vecV)′ − 2 (vecV) (ek2,1)

′(V⊗2) + 2 (vecV) (vecV)′ .

Proof. See Appendix (Section 6.2). �

Proposition 2 Let f1 satisfy Assumptions (A1) and (A2). Then, denoting by ‖A‖ := [tr(AA′)]1/2

the Frobenius norm of the array A,

(i) Q
(n)
f1

is asymptotically chi-square with k(k+1)/2−1 degrees of freedom under
⋃

σ2

{
P

(n)
θθθ,σ2,V0;f1

}
,

and asymptotically noncentral chi-square, still with k(k + 1)/2 − 1 degrees of freedom but
with noncentrality parameter

Jk(f1)

2k(k + 2)

[
tr
(
V−1

0 v
)2
−

1

k

(
tr V−1

0 v
)2
]

=
Jk(f1)

2k(k + 2)

(
tr V−1

0 v
)2
∥∥∥∥∥

(
V−1

0 v

trV−1
0 v

)
−

1

k
Ik

∥∥∥∥∥

2

under
⋃

σ2

{
P

(n)

θθθ,σ2,V0+n−1/2v;f1

}
;

(ii) the sequence of tests φ
(n)
f1

which consists in rejecting H0 : V = V0 as soon as Q
(n)
f1

exceeds
the α upper-quantile of a chi-square variable with k(k + 1)/2 − 1 degrees of freedom has

asymptotic level α under
⋃

σ2

{
P

(n)
θθθ,σ2,V0;f1

}
, and is locally and asymptotically maximin-

efficient, still at asymptotic level α, for
⋃

σ2

{
P

(n)
θθθ,σ2,V0;f1

}
against alternatives of the form

⋃
σ2

⋃
V 6=V0

{
P

(n)
θθθ,σ2,V;f1

}
.

9



Proof. See Appendix (Section 6.2). �

In contrast with this unspecified-σ2 test, the locally and asymptotically optimal procedure
for testing H0 : V = V0 under specified radial density f1, specified θθθ, and specified scale σ2

rejects H0 (at asymptotic level α) whenever

Qσ2,f1
= Q

(n)
σ2,f1

:=
(
∆∆∆

(n)
θθθ,σ2,V0;f1;3

)′ (
ΓΓΓθθθ,σ2,V0;f1;33

)−1
∆∆∆

(n)
θθθ,σ2,V0;f1;3

exceeds the α upper-quantile of a chi-square with k(k+1)/2−1 degrees of freedom. The efficiency
loss due to an unspecified σ2 thus can be measured by the difference between the non-centrality
parameters in the asymptotic chi-square distributions of Qσ2,f1

and Qf1 under local alternatives.
Along the same lines as in the proof of Proposition 2, one can show that this difference, under

P
(n)

θθθ,σ2,V0+n−1/2v;f1
, is

1

4k

(
Jk(f1)− k2

) (
tr V−1

0 v
)2
.

Inequality (5) confirms the non-surprising fact that this loss is nonnegative and an increasing
function of the information for shape (or scale) Jk(f1). Quite remarkably, it does not depend
on σ2.

3.3 Optimal Gaussian tests for shape.

The parametric tests φ
(n)
f1

described in Part (ii) of Proposition 2 achieve local and asymptotic
optimality at radial density f1, but in general are not valid when the underlying radial density is
g1 6= f1. If correctly formulated, the Gaussian version of these tests (obtained for f1 = φ1, where
φ1 was defined in Section 1.2) is an interesting exception to this rule, and can easily be written
under a form that remains valid under the class of all radial densities g1 with finite fourth-order
moments.

Denote by Dk(g1) := E[(G̃−1
1k (U))2] and Ek(g1) := E[(G̃−1

1k (U))4] <∞, where U stands for a
random variable with uniform distribution over ]0, 1[, the second and fourth order moments of
g̃1k, respectively, and assume that Ek(g1) <∞ (hence also Dk(g1) <∞). These two quantities
are closely related to the kurtosis of the elliptic distribution under consideration. To be pre-
cise, the kurtosis 3κk(g1) of an elliptically symmetric random k-vector X = (Xi) with location
center θθθ = (θ1, . . . , θk)

′, scale σ2, shape matrix V, and radial density g1 is defined (see, e.g.,
Muirhead and Waternaux (1980) or Tyler (1982)) by

3κk(g1) :=
E[(Xi − θi)

4]

E2[(Xi − θi)2]
− 3.

This quantity only depends on the dimension k and the radial density f1—and not on i, nor
on the other parameters characterizing the elliptical distribution (which of course justifies the
notation); it is related to Dk(g1) and Ek(g1) by the simple relation

κk(g1) =
k

k + 2

Ek(g1)

D2
k(g1)

− 1.

At the k-variate Gaussian distribution and t-distribution with ν degrees of freedom (ν > 4), this
kurtosis parameter takes values κk(φ1) = 0 and κk(f1,ν) = 2/(ν − 4), respectively.
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The Gaussian version of the efficient central sequence for shape ∆∆∆
?(n)
ϑϑϑ;f1

can be written as

∆∆∆
?(n)
ϑϑϑ;φ1

= akσ
−2Tθθθ,V, where

Tθθθ,V = T
(n)
θθθ,V :=

1

2
n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1

k
Jk

] (
V⊗2

)−1/2
n∑

i=1

vec
(
(Xi − θθθ)(Xi − θθθ)

′
)
.

Working with Tθθθ,V and an estimate Γ̂ΓΓ
(n)

of its asymptotic covariance rather than with ∆∆∆
?(n)
ϑϑϑ;φ1

and an estimate of the corresponding information matrix is convenient, since the scalar fac-

tor akσ
−2 in the quadratic form in ∆∆∆

?(n)
ϑϑϑ;φ1

cancels out. For optimality (at Gaussian radial densi-

ties), it is sufficient for Γ̂ΓΓ
(n)

to consistently estimate the asymptotic covariance of Tθθθ,V0
under

⋃
σ2

{
P

(n)
θθθ,σ2,V0;φ1

}
.

Letting

Γ̂ΓΓ
(n)

:=
1

4k(k + 2)

(
1

n

n∑

i=1

d4
i

)
Mk

(
V⊗2

0

)−1/2
[
Ik2 + Kk −

2

k
Jk

] (
V⊗2

0

)−1/2
M′

k,

with the same di = d
(n)
i (θθθ,V0)’s as in Section 3.2, it is easy to check that Γ̂ΓΓ

(n)
provides, for all θθθ,

a consistent estimate for the asymptotic variance of Tθθθ,V0
, not only under

⋃
σ2

{
P

(n)
θθθ,σ2,V0;φ1

}
,

but also under
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
, where union is taken over the set of all radial densi-

ties g1 such that Ek(g1) < ∞. The Gaussian test statistic then takes the form QN = Q
(n)
N :=

T
(n)′
θθθ,V0

(Γ̂ΓΓ
(n)

)−1T
(n)
θθθ,V0

. Lemma 1 and standard algebra yield

QN =
k(k + 2)

2(
∑n

i=1 d
4
i )

n∑

i,j=1

d2
i d

2
j

(
(U′

iUj)
2 −

1

k

)
, (13)

with the same Ui = U
(n)
i (θθθ,V0) as in Section 3.2. Now, defining

S = S(n) :=
1

n

n∑

i,j=1

[V
−1/2
0 (Xi − θθθ)][V

−1/2
0 (Xi − θθθ)]

′

and letting κ̂(n) := [k(n−1∑n
i=1 d

4
i )]/[(k + 2)(n−1∑n

i=1 d
2
i )

2]− 1 be a consistent estimate of the
kurtosis parameter κk(g1), (13) can be written under the form

QN =
n2k(k + 2)

2(
∑n

i=1 d
4
i )

(
trS2 −

1

k
tr2S

)
=

1

1 + κ̂(n)

nk2

2

∥∥∥∥
S

trS
−

1

k
Ik

∥∥∥∥
2

. (14)

It is straightforward to check that QN is invariant under rotations, scale transformations, and
reflections (with respect to θθθ, in the metric associated with V0), but that it is not (even asymptot-
ically) invariant under the group of monotone continuous radial transformations (see Section 4.1
below). The following proposition summarizes the asymptotic properties of the Gaussian pro-
cedure based on QN .

Proposition 3 Denote by φ
(n)
N the parametric Gaussian test which rejects the null hypothesis

H0 : V = V0 whenever Q
(n)
N exceeds the α upper-quantile of a chi-square with k(k + 1)/2 − 1

degrees of freedom. Then (unions over g1 are taken over all radial densities such that g̃1k has
finite fourth-order moments),

11



(i) Q
(n)
N is asymptotically chi-square with k(k + 1)/2 − 1 degrees of freedom under

⋃
σ2

⋃
g1{

P
(n)
θθθ,σ2,V0;g1

}
, and asymptotically noncentral chi-square, still with k(k + 1)/2 − 1 degrees

of freedom but with noncentrality parameter

1

2(1 + κk(g1))

[
tr
(
V−1

0 v
)2
−

1

k

(
tr V−1

0 v
)2
]

under
⋃

σ2

{
P

(n)

θθθ,σ2,V0+n−1/2v;g1

}
;

(ii) the sequence of tests φ
(n)
N has asymptotic level α under

⋃
σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
, and is locally

and asymptotically maximin-efficient, still at asymptotic level α, for
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}

against alternatives of the form
⋃

σ2

⋃
V 6=V0

{
P

(n)
θθθ,σ2,V;φ1

}
.

Proof. See Appendix (Section 6.3). �

For V0 = Ik, the test statistic QN in (14) and Proposition 3 actually appears as a modifica-
tion of the test statistic

QJohn :=
nk2

2

∥∥∥∥
S

trS
−

1

k
Ik

∥∥∥∥
2

=
nk2

2
tr

[(
S

trS
−

1

k
Ik

)2
]

(15)

proposed by John (1971, 1972). The only difference is that QJohn uses the Gaussian value κ = 0
of the kurtosis parameter, whereas QN rather involves an estimation κ̂(n) of the same, which
makes the asymptotic null distribution of QN agree, under any elliptical distribution with finite
fourth-order moments, with the limiting distribution of QJohn in the multinormal case.

This adjustment is very much in the spirit of Muirhead and Waternaux (1980)’s version
of Mauchly (1940)’s Gaussian likelihood ratio test—probably the most widely used test of
sphericity. Muirhead and Waternaux (1980) actually show that the limiting distribution of
(−2 log Λ(n))/(1 + κk(g1)), where −2 log Λ(n) is the Gaussian likelihood ratio test statistic, is

asymptotically chi-square, with k(k + 1)/2 − 1 degrees of freedom, under
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,Ik;g1

}

(union, again, is over all g1 such that g̃1k has finite fourth-order moments); the population kurto-
sis parameter κk(g1) of course can be replaced by its sample counterpart κ̂(n) without modifying
the asymptotic chi-square distribution. These results straightforwardly extend to the problem
of testing for a specified shape V0 rather than for sphericity. It also follows from Muirhead
and Waternaux (1980)’s treatment that the adjusted version of John’s test statistic, namely
our Gaussian test statistic QN , is asymptotically equivalent to their adjusted version of the
Mauchly test. In the sequel, the expression “optimal parametric Gaussian test” will refer to any
of these tests. Note however that optimality here follows from Proposition 3, and therefore is
of an asymptotic nature. Actually, only John (1971)’s original (non-adjusted) test enjoys some
finite-sample optimality properties (restricted to the Gaussian case), being locally most powerful
invariant at the multinormal distribution. Our adjusted tests inherit, under weaker asymptotic
form, this optimality property from John’s test; on the other hand, they remain valid under non
Gaussian densities, which is not the case of John’s.
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4 Rank-based tests for shape.

4.1 Rank-based versions of efficient central sequences for shape.

As already mentioned, the problem, with tests based on efficient central sequences, is that (with
the exception of the adjusted Gaussian tests described in Section 3.3) they are valid under
correctly specified radial densities only. A correct specification f1 of the actual radial density g1

in practice is rather unrealistic, and the problem thus has to be treated from a semiparametric
point of view, where g1 plays the role of a nuisance.

Within the family of distributions
⋃

σ2

⋃
V

⋃
g1

{
P

(n)
θθθ,σ2,V;g1

}
, where θθθ is fixed, consider the null

hypothesisH0(θθθ,V0) where V = V0. Throughout, thus, θθθ is fixed, and σ2 and the radial density
g1 remain unspecified (no moment assumptions here). As we have seen, the scalar nuisance σ2

can be taken care of by means of a simple projection, yielding the efficient central sequence.
In principle, the infinite-dimensional nuisance g1 can be treated similarly, by projecting central
sequences along adequate tangent spaces. This approach however is rather technical. Hallin
and Werker (2003) have showed that appropriate group invariance structures allow for the same
result by conditioning central sequences with respect to maximal invariants such as ranks or
signs. This is the approach we also adopt here.

Clearly, the null hypothesis H0(θθθ,V0) is invariant under the following two groups of trans-
formations, acting on the observations X1, . . . ,Xn:

(i) the group Gorth,◦ := Gθθθ,V0

orth ,◦ of V0-orthogonal transformations (centered at θθθ) consisting of
all transformations

X 7→ GO(X1, . . . ,Xn)

= GO(θθθ + d1(θθθ,V0)V
1/2
0 U1(θθθ,V0), . . . , θθθ + dn(θθθ,V0)V

1/2
0 Un(θθθ,V0))

:= (θθθ + d1(θθθ,V0)V
1/2
0 OU1(θθθ,V0), . . . , θθθ + dn(θθθ,V0)V

1/2
0 OUn(θθθ,V0)),

where O is an arbitrary k × k orthogonal matrix. This group contains in particular
“rotations” (in the metric associated with V0) around θθθ, as well as reflection (still with
respect to θθθ), i.e., the mapping (X1, . . . ,Xn) 7→ (θθθ − (X1 − θθθ), . . . , θθθ − (Xn − θθθ));

(ii) the group G,◦ := Gθθθ,V0 ,◦ of continuous monotone radial transformations, of the form

X 7→ Gg(X1, . . . ,Xn)

= Gg(θθθ + d1(θθθ,V0)V
1/2
0 U1(θθθ,V0), . . . , θθθ + dn(θθθ,V0)V

1/2
0 Un(θθθ,V0))

:= (θθθ + g(d1(θθθ,V0))V
1/2
0 U1(θθθ,V0), . . . , θθθ + g(dn(θθθ,V0))V

1/2
0 Un(θθθ,V0)),

where g : R
+→ R

+ is continuous, monotone increasing, and such that g(0) = 0 and
limr→∞ g(r)= ∞. This group includes in particular the subgroup of all scale transforma-
tions (X1, . . . ,Xn) 7→ (θθθ + a(X1 − θθθ), . . . , θθθ + a(Xn − θθθ)), a > 0.

Clearly, the group G,◦ of continuous monotone radial transformations is a generating group

for the family of distributions
⋃

σ2

⋃
f1

{
P

(n)
θθθ,σ2,V0;f1

}
, that is, a generating group for the null

hypothesis H0(θθθ,V0) under consideration. The invariance principle therefore leads to consider
test statistics that are measurable with respect to the corresponding maximal invariant, namely
the vector (R1(θθθ,V0), . . . , Rn(θθθ,V0),U1(θθθ,V0), . . . ,Un(θθθ,V0)), where Ri(θθθ,V0) denotes the
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rank of di(θθθ,V0) among d1(θθθ,V0), . . . , dn(θθθ,V0). The resulting signed rank test statistics are
(strictly) invariant under G,◦, hence distribution-free under H0(θθθ,V0).

Now, in the construction of the proposed tests for the null hypothesis H0(θθθ,V0), we intend
to combine invariance and optimality arguments by considering a (signed-)rank-based version of
the f1-efficient central sequences for shape (recall that central sequences are always defined up

to oP(1)—under P
(n)
ϑϑϑ;f1

, as n→∞—terms). The signed-rank version ∆∆∆
˜

?(n)
ϑϑϑ;f1

of the shape-efficient

central sequence ∆∆∆
?(n)
ϑϑϑ;f1

we plan to use in our non-parametric tests is the f1-score version (that

obtained with Kf1(u) := ψf1(F̃
−1
1 (u))F̃−1

1 (u)) of the statistic

∆∆∆
˜

?(n)
ϑϑϑ;K :=

1

2
n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1

k
Jk

] n∑

i=1

K

(
Ri

n+ 1

)
vec

(
UiU

′
i

)
(16)

=
1

2
n−1/2Mk

(
V⊗2

)−1/2
n∑

i=1

K

(
Ri

n+ 1

)
vec

(
UiU

′
i −

1

k
Ik

)

=
1

2
n−1/2Mk

(
V⊗2

)−1/2
n∑

i=1

(
K

(
Ri

n+ 1

)
vec

(
UiU

′
i

)
−
m

(n)
K

k
Ik

)
,

where Ri = R
(n)
i (θθθ,V0) denotes the rank of di = d

(n)
i (θθθ,V0) among d1, . . . , dn, Ui = U

(n)
i (θθθ,V0),

and m
(n)
K := n−1∑n

i=1K(i/(n+ 1)).
Beyond its role in the derivation of the asymptotic distribution of the rank-based random

vector (16), the following asymptotic representation result shows that ∆∆∆
˜

?(n)
ϑϑϑ;f1

is indeed another

version of the efficient central sequence ∆∆∆
?(n)
ϑϑϑ;f1

under radial density f1.

Lemma 2 Assume that the score function K : ]0, 1[→ R is continuous, square-integrable, and
that it can be expressed as the difference of two monotone increasing functions. Then, defining

∆∆∆
?(n)
ϑϑϑ;K;f1

:=
1

2
n−1/2Mk

(
V⊗2

)−1/2
[
Ik2 −

1

k
Jk

] n∑

i=1

K

(
F̃1k

(
di

σ

))
vec

(
UiU

′
i

)
, (17)

we have ∆∆∆
˜

?(n)
ϑϑϑ;K = ∆∆∆

?(n)
ϑϑϑ;K;f1

+ oL2(1), as n goes to infinity, under
{
P

(n)
ϑϑϑ;f1

}
.

Proof. See Appendix (Section 6.3). �

4.2 The proposed class of tests.

Let K : ]0, 1[→ R be some score function as in Lemma 2: the K-score version of the statistics
we propose for testing H0 : V = V0 is

Q
˜

K = Q
˜

(n)
K :=

k(k + 2)

2nE[K2(U)]

n∑

i,j=1

K

(
Ri

n+ 1

)
K

(
Rj

n+ 1

)(
(U′

iUj)
2 −

1

k

)
, (18)

where Ri = R
(n)
i (θθθ,V0) and Ui = U

(n)
i (θθθ,V0). Letting SK = S

(n)
K = 1

n

∑n
i,j=1K

(
Ri

n+1

)
UiU

′
i,

these test statistics can be rewritten as

Q
˜

K =
nk(k + 2)

2E[K2(U)]

(
trS2

K −
1

k
tr2SK

)
=
k(k + 2)E2[K(U)]

k2E[K2(U)]

nk2

2

∥∥∥∥
SK

trSK
−

1

k
Ik

∥∥∥∥
2

+ oP(1),

14



as n goes to infinity, under any elliptical distribution (compare with (14)). These test statistics
are strictly invariant under Gorth,◦ and G,◦.

The power functions Ka(u) = ua, a ≥ 0, provide some traditional score functions. The
corresponding test statistics are

Q
˜

Ka :=
(2a+ 1)k(k + 2)

2n(n+ 1)2a

n∑

i,j=1

Ra
iR

a
j

(
(U′

iUj)
2 −

1

k

)
. (19)

Important particular cases are the sign-, Wilcoxon-, and Spearman-type test statistics, defined
by Q

˜
S := Q

˜
K0 , Q˜

W := Q
˜

K1 , and Q
˜

SP := Q
˜

K2 , respectively. The resulting tests in general are

not optimal at any density (they sometimes are, though: for instance, the Wilcoxon test Q
˜

W is

optimal, in dimension k = 2, at Student densities with two degrees of freedom, see Section 4.3),
but they nevertheless yield good overall performances, and are simple to compute. The sign test
statistic Q

˜
S coincides with the test statistic proposed in Ghosh and Sengupta (2001).

Local asymptotic optimality under radial density f1 is achieved by Q
˜

f1 := Q
˜

Kf1
, with scores

Kf1(u) = ψf1(F̃
−1
1k (u)) F̃−1

1k (u). The test statistic then takes the form

Q
˜

f1 =
k(k + 2)

2nJk(f1)

n∑

i,j=1

ψf1◦F̃
−1
1

(
Ri

n+ 1

)
F̃−1

1

(
Ri

n+ 1

)
(20)

ψf1◦F̃
−1
1

(
Rj

n+ 1

)
F̃−1

1

(
Rj

n+ 1

)(
(U′

iUj)
2 −

1

k

)
,

which, letting Sf1 = S
(n)
f1

:= (1/n)
∑n

i,j=1 ψf1◦F̃
−1
1 (Ri/(n + 1))F̃−1

1 (Ri/(n + 1))UiU
′
i, simplifies

to

Q
˜

f1 =
nk(k + 2)

2Jk(f1)

(
trS2

f1
−

1

k
tr2Sf1

)
=
k(k + 2)

Jk(f1)

nk2

2

∥∥∥∥∥
Sf1

trSf1

−
1

k
Ik

∥∥∥∥∥

2

+ oP(1),

as n goes to infinity, still under any elliptical distribution. The van der Waerden (Gaussian
scores f1 = φ1) test, for instance, is based on the statistic

Q
˜

vdW :=
1

2n

n∑

i,j=1

Ψ−1
k

(
Ri

n+ 1

)
Ψ−1

k

(
Rj

n+ 1

)(
(U′

iUj)
2 −

1

k

)
, (21)

where Ψk stands for the chi-square distribution function with k degrees of freedom. See (22) for
the rank-based test statistics based on Student scores.

In order to describe the asymptotic behaviour of Q
˜

K and Q
˜

f1 , we will need the following
quantities:

Jk(K; g1) :=

∫ 1

0
K(u)ψg1(G̃

−1
1k (u)) G̃−1

1k (u) du, and

Jk(f1, g1) :=

∫ 1

0
ψf1(F̃

−1
1k (u)) F̃−1

1k (u)ψg1(G̃
−1
1k (u)) G̃−1

1k (u) du.

Denote by φ
˜

(n)
K (resp. by φ

˜
(n)
f1

) the rank-based test which consists in rejecting H0 : V = V0

as soon as Q
˜

(n)
K , defined in (18) (resp. Q

˜
(n)
f1

, defined in (20)) exceeds the α-upper-quantile of

a chi-square with k(k + 1)/2 − 1 degrees of freedom. We now can state the main result of this
paper. Note that the unions over g1 here extend over all possible radial densities: contrary to
the Gaussian tests described in Section 3.3, where finite fourth-order moments are required, the

tests φ
˜

(n)
K and φ

˜
(n)
f1

are valid without any moment restrictions.
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Proposition 4 Let K be a continuous square-integrable score function defined on ]0, 1[, that can
be expressed as the difference of two monotone increasing functions. Similarly, assume that f1

(satisfying (A1) and (A2)) is such that Kf1(u) = ψf1(F̃
−1
1k (u)) F̃−1

1k (u) is continuous and can be
expressed as the difference of two monotone increasing functions. Then,

(i) Q
˜

(n)
K and Q

˜
(n)
f1

are asymptotically chi-square with k(k+1)/2− 1 degrees of freedom under
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
, and asymptotically noncentral chi-square, still with k(k + 1)/2 − 1

degrees of freedom but with noncentrality parameters

J 2
k (K; g1)

2k(k + 2)E[K2(U)]

[
tr
(
V−1

0 v
)2
−

1

k

(
tr V−1

0 v
)2
]

and
J 2

k (f1, g1)

2k(k + 2)Jk(f1)

[
tr
(
V−1

0 v
)2
−

1

k

(
tr V−1

0 v
)2
]
,

respectively, under
⋃

σ2

{
P

(n)

θθθ,σ2,V0+n−1/2v;g1

}
;

(ii) the sequences of tests φ
˜

(n)
K and φ

˜
(n)
f1

have asymptotic level α under
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
, and

(iii) the sequence of tests φ
˜

(n)
f1

is locally and asymptotically maximin-efficient, still at asymptotic

level α, for
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
against alternatives of the form

⋃
σ2

⋃
V 6=V0

{
P

(n)
θθθ,σ2,V;f1

}
.

Proof. See Appendix (Section 6.3). �

4.3 Asymptotic relative efficiencies.

Propositions 3 and 4 allow for computing ARE values for φ
˜

(n)
K (hence, for φ

˜
(n)
f1

) with respect to

the adjusted John test φ
(n)
N (therefore, also with respect to the adjusted Mauchly test) as ratios

of the noncentrality parameters in the asymptotic distributions of their respective test statistics
under local alternatives, for various radial densities g1. These adjusted tests still are not valid
unless κk(g1) < ∞, and our ARE values therefore also require finite fourth-order moments.

Recall however that the signed rank tests φ
˜

(n)
K remain valid without such moment assumption,

so that, when g1 is such that κk(g1) = ∞, the asymptotic relative efficiency of any φ
˜

(n)
K with

respect to φ
(n)
N actually can be considered as being infinite.

Proposition 5 Let K satisfy the assumptions of Proposition 4. Then, the asymptotic rela-
tive efficiency of φ

˜
K with respect to the parametric Gaussian test φN , under radial density g1

satisfying (A1), (A2), and κk(g1) <∞, is

AREk,g1(φ˜
K/φN ) =

1

k(k + 2)
(1 + κk(g1))

J 2
k (K; g1)

E[K2(U)]
.

For K of the form Kf1 , this yields

AREk,g1(φ˜
f1/φN ) =

1

k(k + 2)
(1 + κk(g1))

J 2
k (f1, g1)

Jk(f1)
.
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In order to investigate the numerical values of these AREs, we consider the tests φf1,ν based on
tν-scores, i.e., the scores associated with the Student radial densities introduced in Section 1.2.
One can easily check that ψf1,ν (r) = (k + ν)ak,νr/(ν + ak,νr

2). Also, since a2
k,ν‖X1‖

2/k, under

P
(n)
0,1,Ik;f1,ν

, is Fisher-Snedecor with k and ν degrees of freedom, one can show that the test
statistic Q

˜
f1,ν is

Q
˜

f1,ν =
k2(k + ν)(k + ν + 2)

2n

n∑

i,j=1

T
(n)
i

ν + k T
(n)
i

T
(n)
j

ν + k T
(n)
j

(
(U′

iUj)
2 −

1

k

)
(22)

(see (4)), where, denoting by Gk,ν the Fisher-Snedecor distribution function with k and ν degrees

of freedom, we let T
(n)
i := G−1

k,ν(Ri/(n + 1)). Note that the sign test and the van der Waerden
test are obtained by letting ν → 0 and ν →∞, respectively. An easy calculation also shows that,
for ν = 2, Q

˜
tν and Q

˜
Ka coincide for a = 2/k, k = 2, 3, 4, . . . Hence, for k = 2, the Wilcoxon

test statistic Q
˜

W is optimal at Student densities with two degrees of freedom.
Numerical values of the AREs, under various tν and normal densities, of several of the

proposed rank-based tests with respect to the Gaussian test are given in Table 1. For the sign
test φ

˜
S, closed-form expressions are

AREk,f1,ν [φ
˜

S/φN ] =
k(ν − 2)

(k + 2)(ν − 4)
and AREk,φ1 [φ˜

S/φN ] =
k

k + 2
.

(recall that κk(f1,ν) < ∞ iff ν > 4, which is the condition for a Student radial density to
satisfy Ek(f1,ν) <∞). Also, the highest ARE with respect to the Gaussian test φN that can be
achieved is

AREk,f1,ν [φ
˜

f1,ν/φN ] =
(k + ν)(ν − 2)

(k + ν + 2)(ν − 4)
.

Note that these numerical AREs are all uniformly good, especially for the van der Waerden
test φ

˜
vdW , for which the ARE values are not only uniformly larger than 1, but even uniformly

larger than the AREs corresponding to the location problem (e.g., those obtained when testing
that the center of symmetry of an elliptical distribution is equal to some fixed k-vector, as
in Hallin and Paindaveine (2002)). This (Pitman) dominance of φ

˜
vdW over φN also holds

under elliptical distributions with ligther-than-Gaussian tails, as can be checked numerically by
considering radial densities of the form g1η(r) := exp(−bk,ηr

2η) (bk,η > 0 is a scalar determined
by Condition (3) again). For instance, in the problem of testing for trivariate sphericity, the
corresponding AREs are 1.166, 1.014, 1.000, 1.039, 1.108 and 1.183 for η = .5, .8, 1, 1.5, 2, and 2.5,
respectively.

4.4 Unspecified location θθθ.

In practice the center of symmetry θθθ is seldom specified, and has to be replaced, in test statistics,

with an estimator θ̂θθ
(n)

. Under very mild conditions, any root-n consistent estimator will be
adequate (in principle, after due discretization), but we recommend the (rotation-equivariant)
spatial median of Möttönen and Oja (1995), which is itself “sign-based”.

The asymptotic impact of this substitution on the validity of the signed-rank tests proposed in
Section 4.2 could be studied directly (see, e.g., Randles 1982), but is more conveniently handled

via Le Cam’s third Lemma, which allows for deriving the asymptotic distribution under P
(n)
θθθ,σ2,V;g1
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of the test statistic Q
˜

(n)
K =: Q

˜
(n)
K;θθθ considered in Section 4.2 but computed at θ̂θθ

(n)
instead of θθθ.

This lemma applies in the parametric location experiment E
(n)
g :=

{
P

(n)
θθθ,σ2,V;g1

∣∣∣θθθ ∈ R
k
}
, provided

that it is ULAN, which essentially requires that g1 satisfies Assumption (A1) (see Hallin and
Paindaveine 2002).

The asymptotic distribution, as n→∞, of Q
˜

(n)

K;θθθ+n−1/2τττ (n) under P
(n)
θθθ,σ2,V;g1

for any bounded

sequence τττ (n) is the same as under P
(n)

θθθ+n−1/2τττ (n),σ2,V;g1
(namely, in view of Part (i) of Propo-

sition 4, chi-square with k(k + 1)/2 − 1 degrees of freedom) provided that the asymptotic

joint distribution, under P
(n)
θθθ,σ2,V;g1

, of ∆∆∆
?(n)
ϑϑϑ;K;g1

(defined in (17)) and the central sequence for

location ∆∆∆
(n)
ϑϑϑ;g1;1

of E
(n)
g (defined in (6)) is normal with block-diagonal asymptotic covariance.

Now, this is automatically satisfied, under the assumptions made on K: indeed, both ∆∆∆
?(n)
ϑϑϑ;K;g1

and ∆∆∆
(n)
ϑϑϑ;g1;1

are sums of i.i.d. vectors with finite variances, and, in view of the independence

under P
(n)
θθθ,σ2,V;g1

between d
(n)
i (θθθ,V) and U

(n)
i (θθθ,V), have a cross-covariance matrix proportional

to E [vec(UiU
′
i)U

′
i] = 0. A classical reasoning then extends this to random sequences of the

form τττ (n) = n1/2(θ̂θθ
(n)
−θθθ), where n1/2(θ̂θθ

(n)
−θθθ) is OP(1) and θ̂θθ

(n)
is locally discrete, i.e., such that

the number, under P
(n)
θθθ,σ2,V;g1

, of its possible values in balls of the form {z ∈ R
k
∣∣∣ ‖z − θθθ‖2 ≤ b2}

remains bounded as n → ∞. It is well known that this latter assumption has no practical

consequences (see, e.g., Le Cam and Yang 2000). The null distribution of Q
˜

(n)

K;θ̂θθ
(n) is thus the

same, then, as that of Q
˜

(n)
K;θθθ.

Le Cam’s third Lemma however provides asymptotic equivalence in distribution results, not
asymptotic equivalence in probability. Asymptotic equivalence in probability (that is, a result of

the form Q
˜

(n)

K;θ̂θθ
(n) − Q

˜
(n)
K;θθθ = oP(1)) under P

(n)
θθθ,σ2,V;g1

requires slightly more stringent asymptotic

linearity results for ∆∆∆
?(n)
ϑϑϑ;K;g1

(the only exception being the case of Q
˜

(n)

g1;θ̂θθ
(n) under P

(n)
θθθ,σ2,V;g1

, which

readily follows from ULAN). Proving such results is long and tedious. In order not to overload
the paper, we do not elaborate a formal proof here, and either refer to similar proofs given, in a
similar context, by Hallin and Paindaveine (2003), or to more general methods such as the one

recently developed by Andreou and Werker (2003). The latter still requires E
(n)
g to be ULAN.

Note that Q
˜

(n)

K;θ̂θθ
(n) is no longer strictly invariant nor distribution-free, but remains asymp-

totically so, in the sense of being asymptotically equivalent to its genuinely invariant and

distribution-free counterpart Q
˜

(n)
K;θθθ. This asymptotic equivalence carries on to contiguous al-

ternatives, so that local optimality properties also are preserved. Incidentally, note that Q
˜

(n)

K;θ̂θθ
(n)

is translation-invariant as soon as θ̂θθ is translation-equivariant.

5 Simulation results.

The asymptotic relative efficiencies of the tests described in Sections 3.3 and 4.2 do not depend
on the null value V0 of the shape matrix. Therefore, in this section, we concentrate on the
particular case (V0 = Ik) of testing for sphericity. We generated N = 2, 500 independent
samples εεε1, . . . , εεε500 of size n = 500 from various bivariate spherical densities (the bivariate
normal and bivariate t-distributions with .2, 1, and 6 degrees of freedom, respectively), with
symmetry center θθθ = (0, 0)′. From each of these samples, we constructed four series of 500
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spherical (for m = 0) or elliptical (m = 1, 2, 3) observations X1, . . . ,X500 characterized by

Xi = (Ik +mv)εεεi, m = 0, 1, 2, 3, (23)

with ve
◦
chv = (0, .14)′.

Although designed against elliptical alternatives, our tests also perform quite well under
non-elliptical alternatives. In order to show this, we considered the following skew populations:
Population SN refers to samples of 500 observations X1, . . . ,X500 characterized by

Xi = (Sign Vm;i)Wm;i − E[(Sign Vm;i)Wm;i], m = 0, 1, 2, 3, (24)

where the i.i.d. vectors (Vm;i,W
′
m;i)

′ are drawn from the trivariate standard normal distribution
with mean 0 and covariance matrix

(
1 δ′

δ I2

)
, δ = (1 +m2v′v)−1/2mv,

with v = (.15, 0)′. The distribution of the resulting Xi’s is the so-called bivariate skew normal
distribution with parameters 0, I2, andmv (see, e.g., Azzalini and Capitanio 1999 or 2003). Pop-
ulation St2 is obtained in the same way, but with trivariate t2-distributed vectors (Vm;i,W

′
m;i)

′

with the same mean and covariance matrix as in the Gaussian case above, but with v = (.25, 0) ′

(see Azzalini and Capitanio 2003).
On each of these samples, we performed the following eleven tests for sphericity (all at

asymptotic probability level α = 5%): John’s test (based on (15)), the Gaussian test φN (based
on (13)), the sign, Wilcoxon, and Spearman tests (based on Q

˜
K0 , Q˜

K1 , and Q
˜

K2 in (19), re-

spectively), the van der Waerden test φ
˜

vdW (based on (21)), and several tν-score tests φ
˜

f1,ν

(ν = .2, .5, 1, 2, and 6) (based on (22)). Rejection frequencies are reported in Table 2. The cor-
responding individual confidence intervals (for N = 2, 500 replications), at confidence level .95,
have half-widths .0044, .0080, and .0100, for frequencies of the order of .05 (.95), .20 (.80),
and .50, respectively.

Inspection of Table 2 reveals that the Gaussian test φN collapses under the heavy-tailed
distributions t0.2 and t1 (which have infinite fourth-order moments), and confirms the fact that
John’s test is valid under normal distributions only. All rank-based tests apparently satisfy
the 5% probability level constraint. Power rankings are essentially consistent with the corre-
sponding ARE values, which we also report in Table 2. In particular, the asymptotic optimality
of φ
˜

f1,ν under the Student distribution with ν degrees of freedom is confirmed. The perfor-
mances under elliptical and non-elliptical alternatives of the various procedures seem to be quite
similar.

Finally, in order to investigate the performances of our tests in very small samples, we gen-
erated N = 2, 500 independent samples of size n = 25 based on (23) (but with ve

◦
chv = (0, .2)′).

Only Gaussian and t0.2 densities were considered. The corresponding rejection frequencies are
reported in Table 3. Similar conclusions as in the first Monte-Carlo study above hold in this
small sample simulation. However, note that, for such a small sample size, the asymptotic ap-
proximation seems to produce strictly conservative critical values for the van der Waerden- and
t6-score versions of our tests.
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6 Appendix.

6.1 Proof of Proposition 1.

Our proof relies on Swensen (1985)’s Lemma 1 (more precisely, on its extension by Garel and
Hallin (1995)). The sufficient conditions for LAN given in Swensen’s result follow from standard

arguments once it is shown that
(
θθθ, σ2,V

)
7→ f

1/2
θθθ,σ2,V;f1

(x), where f
θθθ,σ2,V;f1

is the density in (1),

is differentiable in quadratic mean, and we therefore focus on this. The main step in establishing
this quadratic mean differentiability is the following:

Lemma 3 Let Assumptions (A1) and (A2) hold. Define g
θθθ,ΣΣΣ;f1

(x) := ck,f1 |ΣΣΣ|
−1/2f1 (‖x− θθθ‖ΣΣΣ),

x ∈ R
k,

Dθθθg
1/2
θθθ,ΣΣΣ;f1

(x) :=
1

2
g
1/2
θθθ,ΣΣΣ;f1

(x) ϕf1 (‖x− θθθ‖ΣΣΣ) ΣΣΣ−1/2u(θθθ,ΣΣΣ),

and

DΣΣΣg
1/2
θθθ,ΣΣΣ;f1

(x) :=
1

4
g
1/2
θθθ,ΣΣΣ;f1

(x) Pk

(
ΣΣΣ⊗2

)−1/2
vec
(
ψf1 (‖x− θθθ‖ΣΣΣ) ‖x− θθθ‖ΣΣΣ u(θθθ,ΣΣΣ)u′(θθθ,ΣΣΣ)− Ik

)
,

where ‖z‖ΣΣΣ := (z′ΣΣΣ−1z)1/2, u(θθθ,ΣΣΣ) := ΣΣΣ−1/2(x−θθθ)/‖x−θθθ‖ΣΣΣ, and Pk is such that P′
k(vechH) =

vecH for any symmetric k × k matrix H = (Hij). Then

(i)

∫ {
g
1/2
θθθ+t,ΣΣΣ;f1

(x)− g
1/2
θθθ,ΣΣΣ;f1

(x)− t′ (Dθθθg
1/2
θθθ,ΣΣΣ;f1

(x))
}2

dx = o(‖t‖2),

(ii)

∫ {
g
1/2
θθθ,ΣΣΣ+H;f1

(x)− g
1/2
θθθ,ΣΣΣ;f1

(x)− (vech H)′ (DΣΣΣg
1/2
θθθ,ΣΣΣ;f1

(x))
}2

dx = o(‖H‖2), and

(iii)

∫ 
g

1/2
θθθ+t,ΣΣΣ+H;f1

(x)− g
1/2
θθθ,ΣΣΣ;f1

(x)−

(
t

vechH

)′
Dθθθg

1/2
θθθ,ΣΣΣ;f1

(x)

DΣΣΣg
1/2
θθθ,ΣΣΣ;f1

(x)







2

dx = o



∥∥∥∥∥

(
t

vech H

)∥∥∥∥∥

2

 .

To prove Lemma 3, we will need the following reformulation of Assumption (A2).

Lemma 4 Assumption (A2) holds iff (i) f
1/2
1;exp ∈ L2(R, νk) and (ii) there exists Df

1/2
1;exp ∈

L2(R, νk) such that

∫ [
f

1/2
1;exp(x+ h)− f

1/2
1;exp(x)− h (Df

1/2
1;exp)(x)

]2
ekh dh = o(h2).

In that case, Df
1/2
1;exp and (f

1/2
1;exp)

′ are equal in L2(R, νk).

The proof of this lemma relies on the following result by Schwartz (see Schwartz (1973),
pages 186-188).

Lemma 5 (Schwartz) The real function g is in W 1,2(R) (with weak derivative g′, say) iff
(i) g ∈ L2(R) and (ii) there exists Dg ∈ L2(R) such that x 7→ g(x + h) − g(x) − h (Dg(x)) is
o(h) in L2(R) (as h → 0), i.e.,

∫
[g(x+ h)− g(x)− h (Dg(x))]2 dx = o(h2) as h → 0. In that

case, Dg and g′ are equal in L2(R).
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Proof of Lemma 4. Throughout this proof, we write f instead of f
1/2
1;exp and all o(h)’s are

taken as h→ 0.

(Necessity) It is easy to show that the real function x 7→ g(x) := f(x) ekx/2 admits the
weak derivative x 7→ g′(x) = f ′(x) ekx/2 + (k/2) g(x), where f ′ denotes the weak derivative of
f . In view of the assumptions on f , both g and g ′ are in L2(R). Lemma 5 therefore yields that
x 7→Mh(x) := g(x + h)− g(x) − h g′(x) is o(h) in L2(R). But Mh = Ih + Jh +Kh + Lh, where

Ih(x) := (f(x+ h)− f(x)− h f ′(x)) ekx/2, Jh(x) := f(x+ h) ek(x+h)/2e−kh/2(ekh/2 − 1− hk/2),

Kh(x) := (f(x+h) ek(x+h)/2−f(x) ekx/2)hk/2, and Lh(x) := f(x+h) ek(x+h)/2(e−kh/2−1)hk/2.

Since Jh, Kh, and Lh also are o(h) in L2(R), so is Ih.

(Sufficiency) Assume now that f ∈ L2(R, νk) satisfies x 7→ Ih(x) := (f(x + h) − f(x) −
hDf(x)) ekx/2 is o(h) in L2(R) for someDf ∈ L2(R, νk), and define again x 7→ g(x) := f(x) ekx/2

(g ∈ L2(R)). With Dg(x) := Df(x) ekx/2 + (k/2) g(x) (Dg ∈ L2(R)), we have that

x 7→ M̃h(x) := g(x+h)−g(x)−hDg(x) = (f(x+h)−f(x)−hDf(x)) ekx/2+Jh(x)+Kh(x)+Lh(x)

is o(h) in L2(R). Lemma 5 thus yields that Dg is the weak derivative of g; this implies that, for
all infinitely differentiable compactly supported function ϕ,
∫

[ϕ(x) e−kx/2] [Df(x) ekx/2+(k/2)g(x)] dx = −
∫

[ϕ′(x) e−kx/2−(k/2)ϕ(x) e−kx/2] [f(x) ekx/2] dx,

i.e., that Df is the weak derivative of f . �

Proof of Lemma 3. (i) See Hallin and Paindaveine (2002).

(ii) Using (C
′
⊗A) vec B = vec (ABC) and letting y = ΣΣΣ−1/2(x− θθθ), the left-hand side of (ii)

takes the form

ck,f1

∫ {
1

|Ik + HΣΣΣ|1/4
f

1/2
1 (‖y‖Ik+HΣΣΣ

)− f
1/2
1 (‖y‖) −

1

4
f

1/2
1 (‖y‖)

×(vecHΣΣΣ)′vec
(
ψf1 (‖y‖)

yy′

‖y‖
− Ik

)}2

dy ≤ C(T1 + T2 + T3),

where HΣΣΣ := ΣΣΣ−1/2HΣΣΣ−1/2,

T1 :=

∫ {
1

|Ik + HΣΣΣ|1/4
− 1 +

1

4
(vec HΣΣΣ)′(vec Ik)

}2

f1 (‖y‖Ik+HΣΣΣ
) dy,

T2 :=

∫
1

16

[
(vec HΣΣΣ)′(vec Ik)

]2 {
f

1/2
1 (‖y‖Ik+HΣΣΣ

)− f
1/2
1 (‖y‖)

}2
dy, and

and

T3 :=

∫ {
f

1/2
1 (‖y‖Ik+HΣΣΣ

)− f
1/2
1 (‖y‖) −

1

4
f

1/2
1 (‖y‖) (vec HΣΣΣ)′vec

(
ψf1 (‖y‖)

yy′

‖y‖

)}2

dy.

Since (vec A)′(vecB) = tr (A′B) and |A+B|a = |A|a +a |A|a tr (A−1B)+o(‖B‖) for all a (see,
e.g., Magnus and Neudecker 1999, page 149),

T1 =
|Ik + HΣΣΣ|

1/2

ck,f1

{
|Ik + HΣΣΣ|

−1/4 − 1 +
1

4
(trHΣΣΣ)

}2

= o(‖H‖2).

21



Now, working in spherical coordinates (r,u) := (y,y/‖y‖), we obtain

T3 = C

∫∫ {
f

1/2
1 (r‖u‖Ik+HΣΣΣ

)− f
1/2
1 (r)−

1

4
f

1/2
1 (r)ψf1(r) r

[
u′HΣΣΣu

]}2

rk−1 dr dσ(u)

= C

∫∫ {
f

1/2
1;exp ((ln r) + (ln ‖u‖Ik+HΣΣΣ

))− f
1/2
1;exp(ln r) + (f

1/2
1;exp)′(ln r)

[
1

2
u′HΣΣΣu

]}2

rk−1 dr dσ(u)

= C

∫∫ {
f

1/2
1;exp (s+ (ln ‖u‖Ik+HΣΣΣ

))− f
1/2
1;exp(s) + (f

1/2
1;exp)

′(s)

[
1

2
u′HΣΣΣu

]}2

eks ds dσ(u)

≤ C (T3a + T3b),

where

T3a :=

∫∫ {
f

1/2
1;exp (s+ (ln ‖u‖Ik+HΣΣΣ

))− f
1/2
1;exp(s)− (f

1/2
1;exp)

′(s)
[
ln ‖u‖Ik+HΣΣΣ

]}2
eks ds dσ(u)

and

T3b :=

∫∫ {[
ln ‖u‖Ik+HΣΣΣ

]
+

[
1

2
u′HΣΣΣu

]}2 [
(f

1/2
1;exp)′(s)

]2
eks ds dσ(u).

By using Lemma 4 and the fact that ln ‖u‖Ik+HΣΣΣ
= O(‖H‖) for all u, we obtain that

∫ {
f

1/2
1;exp (s+ (ln ‖u‖Ik+HΣΣΣ

))− f
1/2
1;exp(s)− (f

1/2
1;exp)

′(s)
[
ln ‖u‖Ik+HΣΣΣ

]}2
eks ds = o(‖H‖2),

for all u. Therefore, Lebesgue’s dominated convergence theorem entails T3a = o(‖H‖2). As
for T3b, we have that

T3b ≤ sup
u∈Sk−1

{[
ln ‖u‖Ik+HΣΣΣ

]
+

[
1

2
u′HΣΣΣu

]}2

= o(‖H‖2),

since [ln ‖u‖Ik+HΣΣΣ
] + [12u

′HΣΣΣu] = o(‖H‖), uniformly for u ∈ Sk−1 (see, e.g., Magnus and
Neudecker 1999, page 151). Consequently, T3 = o(‖H‖2).

By using the fact that T3 = o(1) as ‖H‖ goes to zero, we obtain

T2 ≤ C ‖HΣΣΣ‖
2
∫ {

f
1/2
1 (‖y‖Ik+HΣΣΣ

)− f
1/2
1 (‖y‖)

}2
dy

≤ C ‖HΣΣΣ‖
2
∫ {

1

4
f

1/2
1 (‖y‖) (vecHΣΣΣ)′vec

(
ψf1 (‖y‖)

yy′

‖y‖

)}2

dy + o(‖H‖2),

which shows that T2 = o(‖H‖2). This proves (ii).

(iii) The left-hand side in (iii) is bounded by C(S1 + S2 + S3 + S4), where

S1 :=

∫ {
g
1/2
θθθ+t,ΣΣΣ;f1

(x)− g
1/2
θθθ,ΣΣΣ;f1

(x)− t′ (Dθθθg
1/2
θθθ,ΣΣΣ;f1

(x))
}2

dx,

S2 :=

∫ {
g
1/2
θθθ,ΣΣΣ+H;f1

(x)− g
1/2
θθθ,ΣΣΣ;f1

(x)− (vech H)′ (DΣΣΣg
1/2
θθθ,ΣΣΣ;f1

(x))
}2

dx,

and

S3 :=

∫ {
g
1/2
θθθ+t,ΣΣΣ+H;f1

(x)− g
1/2
θθθ+t,ΣΣΣ;f1

(x)
}2

dx, and S4 :=

∫ {
g
1/2
θθθ,ΣΣΣ+H;f1

(x)− g
1/2
θθθ,ΣΣΣ;f1

(x)
}2

dx.

Now, from (i) and (ii), respectively, S1 and S2 are o(‖(t′
... (vech H)′)′‖2). As for S3 = S4, it

follows from (ii) that it is also o(‖(t′
... (vech H)′)′‖2). The result follows. �
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Lemma 6 Let x 7→ Gηηη(x) be differentiable in quadratic mean at ηηη0, with gradient x 7→ DGηηη0
(x),

say. Let h be a diffeomorphism in a neigbourhood of ξξξ0 := h−1(ηηη0). Then x 7→ Gh(ξξξ)(x) is dif-
ferentiable in quadratic mean at ξξξ0, with gradient x 7→ (Dhξξξ0

)′(DGh(ξξξ0)(x)), where Dhξξξ0
:=

(∂hi
∂ξξξj

(ξξξ0)) denotes the Jacobian matrix of h at ξξξ0.

Proof of Lemma 6. Trivial. �

Applied to Lemma 3 (iii), this latter result implies that x 7→ f
1/2
ϑϑϑ;f1

(x) = f
1/2
θθθ,σ2,V;f1

(x) =

g
1/2
θθθ,σ2V;f1

(x) is differentiable in quadratic mean, with gradient

Df
1/2
ϑϑϑ;f1

(x) =




Dθθθg
1/2
θθθ,σ2V;f1

(x)

(
1 (ve

◦
chV)′

0 σ2I

)
DΣΣΣg

1/2
θθθ,σ2V;f1

(x)




=
1

2
f

1/2
ϑϑϑ;f1

(x)Wϑϑϑ;f1
(x),

where

Wϑϑϑ;f1
(x) :=




1

σ
ϕf1

(
‖x− θθθ‖V

σ

)
V−1/2u(θθθ,V)

1

2

(
σ−2(vec Ik)

′

Mk

(
V⊗2

)−1/2

)
vec

(
ψf1

(
‖x− θθθ‖V

σ

)
‖x− θθθ‖V

σ
u(θθθ,V)u′(θθθ,V)− Ik

)



.

Checking Swensen’s sufficient conditions for LAN is then a routine task. For example, letting

ν
(n)
i := (f

1/2

ϑϑϑ+n−1/2τττ (n);f1
(Xi)/f

1/2
ϑϑϑ;f1

(Xi))−1 and Z
(n)
i := (1/2) (τττττττττ (n))′n−1/2Wϑϑϑ;f1

(Xi), i = 1, . . . , n,

we have

E

[
n∑

i=1

(ν
(n)
i − Z

(n)
i )2

]
= n

∫ {
f

1/2

ϑϑϑ+n−1/2τττ (n);f1
(x)− f

1/2
ϑϑϑ;f1

(x)− (1/2) (τττττττττ (n))′n−1/2f
1/2
ϑϑϑ;f1

(x)Wϑϑϑ;f1
(x)
}2
dx

= n

∫ {
f

1/2

ϑϑϑ+n−1/2τττ (n);f1
(x)− f

1/2
ϑϑϑ;f1

(x)− (n−1/2τττττττττ (n))′(Df
1/2
ϑϑϑ;f1

(x))
}2

dx,

which is o(1). The other conditions follow easily. Now, the linear term in the LAQ decomposition

of the local log-likelihood ratio is 2
∑n

i=1 Z
(n)
i = (τττττττττ (n))′∆∆∆

(n)
ϑϑϑ;f1

, where ∆∆∆
(n)
ϑϑϑ;f1

is the central sequence
announced in Proposition 1. �

6.2 Proofs of Lemma 1 and Proposition 2.

Proof of Lemma 1. Denote by Qk(V) the matrix in the right hand side of (12), and charac-
terize Nk as the (k(k + 1)/2 − 1) × k2 real matrix such that Nk(vec v) = ve

◦
chv for any k × k

matrix v. Tedious but routine algebra then yields

NkQk(V)N′
k =

{
1

4
Mk

(
V⊗2

)−1/2
[
Ik2 + Kk −

2

k
Jk

] (
V⊗2

)−1/2
M′

k

}−1

.

It is therefore sufficient, in order to prove the lemma, to show that M′
kNkQk(V) = Qk(V).

Now, it is easily seen that

Qk(V) =
[
Ik2 − (vecV) (ek2,1)

′
]
[Ik2 + Kk] (V

⊗2)
[
Ik2 − (vecV) (ek2,1)

′
]′
.
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But, letting Eij := eie
′
j +eje

′
i (where (e1, . . . , ek) stands for the canonical basis of R

k), we have

[
Ik2 − (vecV) (ek2,1)

′
]
[Ik2 + Kk] = Ik2 + Kk − 2 (vecV) (ek2,1)

′

=
1

2

k∑

i,j=1
(i,j)6=(1,1)

(vec Eij) (vecEij)
′ + 2

(
vec (e1e

′
1 −V)

)
(ek2,1)

′.

The result follows, since M′
kNk (vecW) = (vecW) for all symmetric k × k matrix W = (Wij)

such that W11 = 0 (recall that it is assumed that V = (Vij) be symmetric with V11 = 1). �

Proof of Proposition 2. Under P
(n)
ϑϑϑ0;f1

, for any fixed ϑϑϑ′0 := (θθθ′, σ2, (ve
◦
chV0)

′), we have

Q
(n)
f1

=
(
∆∆∆

?(n)
ϑϑϑ0;f1

)′ (
ΓΓΓ?

ϑϑϑ0;f1

)−1
∆∆∆

?(n)
ϑϑϑ0;f1

+ oP(1),

as n → ∞. The proof of the first statement in part (i) of Proposition 2 follows, since ∆∆∆
?(n)
ϑϑϑ0;f1

is asymptotically Nk(k+1)/2−1(0,ΓΓΓ
?
ϑϑϑ0;f1

) under P
(n)
ϑϑϑ0;f1

. On the other hand, it is easy to see

that, still under P
(n)
ϑϑϑ0;f1

, ∆∆∆
?(n)
ϑϑϑ0;f1

and the local log-likelihood ratio Λ
(n)

ϑϑϑ0+n−1/2τττ/ϑϑϑ0;f1
, where τττ ′ :=

(t′, s, (ve
◦
chv)′), are jointly multinormal, with asymptotic covariance ΓΓΓ?

ϑϑϑ0;f1
(ve

◦
chv). Le Cam’s

third Lemma thus implies that ∆∆∆
?(n)
ϑϑϑ0;f1

is asymptotically Nk(k+1)/2−1(ΓΓΓ
?
ϑϑϑ0;f1

(ve
◦
chv),ΓΓΓ?

ϑϑϑ0;f1
) under

P
(n)

ϑϑϑ0+n−1/2τττ ;f1
, which establishes the second statement in part (i) of the lemma.

As for part (ii), the fact that φ
(n)
f1

has asymptotic level α directly follows from the asymptotic
null distribution given in part (i) and the classical Helly-Bray theorem, while local asymptotic
maximinity is a consequence of the weak convergence to Gaussian shifts of local shape experi-
ments (see, e.g., Section 11.9 of Le Cam 1986). �

6.3 Proofs of Propositions 3 and 4.

Proof of Proposition 3. Under P
(n)
ϑϑϑ0;φ1

, for any fixed ϑϑϑ′0 := (θθθ′, σ2, (ve
◦
chV0)

′), we have

Q
(n)
N =

(
∆∆∆

?(n)
ϑϑϑ0;φ1

)′ (
Ek(g1)Gk(V0)

)−1
∆∆∆

?(n)
ϑϑϑ0;φ1

+ oP(1),

as n→∞, where Gk(V0) was defined in (11). The result then follows—as in Proposition 2—by

proving that, under P
(n)

ϑϑϑ0+n−1/2τττ ;g1
(with τττ ′ := (t′, s, (ve

◦
chv)′)), we have

∆∆∆
?(n)
ϑϑϑ0;φ1

L
−→ N

(
E[ψg1(G̃

−1
1 (u))(G̃−1

1 (u))3]Gk(V0)(ve
◦
chv), Ek(g1)Gk(V0)

)

(also note that integration by parts yields E[ψg1(G̃
−1
1 (u))(G̃−1

1 (u))3] = (k + 2)Dk(g1)). As
for the optimality statement in part (ii) of the proposition, it is obtained as in the proof of
Proposition 2, and by noting that Ek(φ1)Gk(V0) = ΓΓΓ?

ϑϑϑ0;φ1
. �

Proof of Lemma 2. Let

T
˜

(n)
ϑϑϑ;K := n−1/2

[
Ik2 −

1

k
Jk

] n∑

i=1

K

(
Ri

n+ 1

)
vec

(
UiU

′
i

)
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and

T
(n)
ϑϑϑ;K;f1

:= n−1/2
[
Ik2 −

1

k
Jk

] n∑

i=1

K

(
F̃1k

(
di

σ

))
vec

(
UiU

′
i

)
.

Clearly, it is sufficient to prove that T
˜

(n)
ϑϑϑ;K−T

(n)
ϑϑϑ;K;f1

goes to zero in quadratic mean under
{
P

(n)
ϑϑϑ;f1

}
,

as n→∞. For all l = 1, 2, . . . , k2, we have

E

[(
T
˜

(n)
ϑϑϑ;K −T

(n)
ϑϑϑ;K;f1

)2

`

]
= C`,k n

−1
n∑

i=1

(
K

(
Ri

n+ 1

)
−K

(
F̃1k

(
di

σ

)))2

,

where, denoting by Ui,j the jth component of Ui, C`,k = Var[U 2
1,1] = 2(k − 1)/(k2(k + 2)) for

` ∈ Lk := {mk + m + 1, m = 0, 1, . . . , k − 1} and C`,k = Var [U1,1U1,2] = 1/k2 for ` /∈ Lk.
Hájek’s classical projection result for signed rank linear statistics (see, e.g., Puri and Sen 1985,
Chapter 3) thus yields the desired result. �

Proof of Proposition 4. From Lemma 2, we easily obtain (for any fixedϑϑϑ′0 := (θθθ′, σ2, (ve
◦
chV0)

′))

Q
˜

(n)
K =

(
∆∆∆

?(n)
ϑϑϑ0;K

)′ (
E[K2(U)]Gk(V0)

)−1
∆∆∆

?(n)
ϑϑϑ0;K + oP(1),

as n→∞, under
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
. Part (i) of Proposition 4 follows, since

∆∆∆
?(n)
ϑϑϑ0;K

L
−→ N

(
Jk(K; g1)Gk(V0)(ve

◦
chv),E[K2(U)]Gk(V0)

)
,

as n → ∞, under
⋃

σ2

⋃
g1

{
P

(n)
θθθ,σ2,V0;g1

}
, with τττ ′ := (t′, s, (ve

◦
chv)′). Again Part (ii) follows as

in the proof of Proposition 2 by noting that the asymptotic variance of ∆∆∆
?(n)
ϑϑϑ0;Kf1

= ∆∆∆
?(n)
ϑϑϑ0;f1

under
⋃

σ2

{
P

(n)
θθθ,σ2,V0;f1

}
is Jk(f1)Gk(V) = ΓΓΓ?

ϑϑϑ0;f1
. �
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degrees of freedom of the underlying t density
ν k 1 3 4 5 8 15 20 ∞

2 +∞ +∞ +∞ 2.331 1.248 1.045 1.013 0.957
(+∞) (2.067) (1.484) (1.294) (1.107) (1.009) (0.986) (0.927)

3 +∞ +∞ +∞ 2.398 1.267 1.052 1.018 0.957
(+∞) (2.174) (1.540) (1.331) (1.124) (1.014) (0.988) (0.919)

φ
˜

t6 4 +∞ +∞ +∞ 2.453 1.284 1.058 1.023 0.958

(+∞) (2.258) (1.584) (1.361) (1.139) (1.019) (0.990) (0.913)
6 +∞ +∞ +∞ 2.537 1.311 1.070 1.031 0.959

(+∞) (2.382) (1.652) (1.408) (1.163) (1.028) (0.995) (0.905)
10 +∞ +∞ +∞ 2.646 1.349 1.087 1.044 0.963

(+∞) (2.534) (1.736) (1.468) (1.196) (1.043) (1.005) (0.896)
2 +∞ +∞ +∞ 2.204 1.215 1.047 1.025 1.000

(+∞) (1.729) (1.301) (1.171) (1.060) (1.016) (1.009) (1.000)
3 +∞ +∞ +∞ 2.270 1.233 1.052 1.028 1.000

(+∞) (1.798) (1.336) (1.194) (1.069) (1.019) (1.011) (1.000)
φ
˜

vdW 4 +∞ +∞ +∞ 2.326 1.249 1.057 1.031 1.000

(+∞) (1.853) (1.364) (1.212) (1.077) (1.022) (1.012) (1.000)
6 +∞ +∞ +∞ 2.413 1.275 1.066 1.036 1.000

(+∞) (1.935) (1.408) (1.242) (1.092) (1.027) (1.016) (1.000)
10 +∞ +∞ +∞ 2.531 1.312 1.080 1.045 1.000

(+∞) (2.041) (1.467) (1.283) (1.112) (1.035) (1.021) (1.000)
2 +∞ +∞ +∞ 1.500 0.750 0.591 0.563 0.500

(+∞) (2.000) (1.388) (1.185) (0.984) (0.877) (0.851) (0.785)
3 +∞ +∞ +∞ 1.800 0.900 0.709 0.675 0.600

(+∞) (2.162) (1.500) (1.281) (1.063) (0.947) (0.920) (0.849)
φ
˜

S 4 +∞ +∞ +∞ 2.000 (1.000 0.788 0.750 0.667

(+∞) (2.250) (1.561) (1.333) (1.107) (0.986) (0.958) (0.884)
6 +∞ +∞ +∞ 2.250 (1.125 0.886 0.844 0.750

(+∞) (2.344) (1.626) (1.389) (1.153) (1.027) (0.997) (0.920)
10 +∞ +∞ +∞ 2.500 1.250 0.985 0.938 0.833

(+∞) (2.422) (1.681) (1.436) (1.192) (1.062) (1.031) (0.951)
2 +∞ +∞ +∞ 2.258 1.174 0.956 0.919 0.844

(+∞) (1.748) (1.317) (1.185) (1.066) (1.015) (1.005) (0.985)
3 +∞ +∞ +∞ 2.386 1.246 1.022 0.985 0.913

(+∞) (1.621) (1.233) (1.117) (1.019) (0.983) (0.978) (0.975)
φ
˜

W 4 +∞ +∞ +∞ 2.432 1.273 1.048 1.012 0.945

(+∞) (1.533) (1.171) (1.064) (0.979) (0.954) (0.952) (0.961)
6 +∞ +∞ +∞ 2.451 1.283 1.060 1.026 0.969

(+∞) (1.422) (1.090) (0.994) (0.921) (0.908) (0.911) (0.938)
10 +∞ +∞ +∞ 2.426 1.264 1.045 1.013 0.970

(+∞) (1.315) (1.007) (0.919) (0.855) (0.851) (0.857) (0.907)

Table 1: AREs of the t6-, van der Waerden-, sign-, and Wilcoxon-score rank-based tests for
specified shape and location (in parentheses), with respect to the corresponding parametric
Gaussian tests, under k-dimensional Student (1, 3, 4, 5, 8, 15, and 20 degrees of freedom) and
normal densities, respectively, for k = 2, 3, 4, 6, and 10.
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m m
test 0 1 2 3 ARE 0 1 2 3 ARE

φJohn .0504 .2380 .6856 .9492 1.000 .9868 .9872 .9848 .9840 ND
φN .0492 .2348 .6824 .9492 1.000 .0060 .0052 .0064 .0088 ND

φ
˜

vdW .0460 .2208 .6652 .9432 1.000 .0432 .1244 .3620 .6508 ND

φ
˜

f1,6
.0468 .2260 .6644 .9404 0.957 .0456 .1492 .4256 .7376 ND

φ
˜

f1,2
= φ
˜

W N .0544 .2052 .6036 0.9028 0.844 t1 .0480 .1636 .4668 .7936 ND

φ
˜

f1,1
.0544 .1900 .5532 .8600 0.741 .0468 .1632 .4724 .8028 ND

φ
˜

f1,0.5
.0560 .1732 .5000 .8024 0.648 .0460 .1636 .4700 .7964 ND

φ
˜

f1,0.2
.0560 .1628 .4536 .7476 0.568 .0428 .1548 .4404 .7644 ND

φ
˜

S .0568 .1484 .4016 .6908 0.500 .0452 .1408 .4020 .7064 ND

φ
˜

SP .0460 .2180 .6576 .9356 0.934 .0488 .1444 .4092 .7240 ND

φJohn .1928 .3712 .7016 .9092 ND .9468 .9460 .9460 .9500 ND
φN .0480 .1580 .4528 .7608 1.000 .0196 .0184 .0252 .0352 ND

φ
˜

vdW .0428 .1816 .5708 .8800 1.531 .0412 .0924 .2468 .4644 ND

φ
˜

f1,6
.0460 .1956 .5916 .8956 1.600 .0452 .1144 .2996 .5572 ND

φ
˜

f1,2
= φ
˜

W t6 .0520 .1904 .5832 .8860 1.531 t0.2 .0528 .1284 .3460 .6220 ND

φ
˜

f1,1
.0500 .1836 .5444 .8588 1.408 .0544 .1348 .3760 .6672 ND

φ
˜

f1,0.5
.0464 .1708 .4980 .8148 1.269 .0476 .1356 .3908 .6996 ND

φ
˜

f1,0.2
.0468 .1480 .4432 .7648 1.172 .0500 .1372 .3940 .7016 ND

φ
˜

S .0488 .1284 .3884 .7064 1.000 .0468 .1296 .3724 .6764 ND

φ
˜

SP .0480 .1980 .5956 .8888 1.579 .0468 .1056 .2752 .5100 ND

φJohn .0520 .0624 .2596 .8000 ? .8640 .8616 .9044 .9520 ?
φN .0528 .0664 .2600 .8000 ? .0196 .0188 .0640 .1896 ?

φ
˜

vdW .0472 .0608 .2488 .7828 ? .0536 .0740 .4144 .8504 ?

φ
˜

f1,6
.0508 .0620 .2456 .7808 ? .0536 .0724 .4184 .8276 ?

φ
˜

f1,2
= φ
˜

W SN .0492 .0620 .2304 .7336 ? St2 .0512 .0744 .3592 .6964 ?

φ
˜

f1,1
.0488 .0608 .2012 .6784 ? .0472 .0724 .2964 .5048 ?

φ
˜

f1,0.5
.0476 .0620 .1796 .6112 ? .0484 .0720 .2324 .3280 ?

φ
˜

f1,0.2
.0492 .0568 .1568 .5540 ? .0464 .0688 .1744 .2076 ?

φ
˜

S .0512 .0544 .1412 .4972 ? .0468 .0604 .1524 .1556 ?

φ
˜

SP .0528 .0652 .2504 .7752 ? .0552 .0756 .4592 .8820 ?

Table 2: Rejection frequencies (out of N = 2, 500 replications), under various null and non-null
distributions (see (23) and (24) for details), of John’s test (φJohn), the Gaussian parametric
test (φN ), and the signed-rank van der Waerden (φ

˜
vdW ), tν-score (φ

˜
f1,ν , ν = .2, .5, 1, 2, 6),

sign (φ
˜

S), Wilcoxon-type (φ
˜

W ), and Spearman-type (φ
˜

SP ) tests, respectively; the sample size

is 500 (“ND” means “not defined”, which occurs as soon as one out of the two tests involved is
not valid under the distribution under consideration; “?” means that no theoretical ARE values
are available under non elliptical alternatives).
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m m
test 0 1 2 3 ARE 0 1 2 3 ARE

φJohn .0412 .6032 .9252 .9860 1.000 .8652 .9076 .9360 .9484 ND
φN .0424 .5848 .8924 .9708 1.000 .0004 .0008 .0016 .0020 ND

φ
˜

vdW .0172 .4136 .8088 .9408 1.000 .0148 .1476 .3608 .5192 ND

φ
˜

f1,6
.0356 .5280 .8684 .9628 0.957 .0308 .2492 .5080 .6844 ND

φ
˜

f1,2
= φ
˜

W N .0416 .5400 .8612 .9584 0.844 t0.2 .0452 .3288 .6168 .7968 ND

φ
˜

f1,1
.0468 .5036 .8316 .9432 0.741 .0496 .3592 .6784 .8376 ND

φ
˜

f1,0.5
.0496 .4500 .7924 .9132 0.648 .0488 .3824 .7172 .8584 ND

φ
˜

f1,0.2
.0484 .4016 .7328 .8724 0.568 .0508 .3892 .7272 .8692 ND

φ
˜

S .0480 .3580 .6736 .8216 0.500 .0480 .3752 .7044 .8504 ND

φ
˜

SP .0396 .5600 .8856 .9696 0.934 .0348 .2320 .4620 .6352 ND

Table 3: Rejection frequencies (still out of N = 2, 500 replications), under spherical and elliptic
Gaussian and t0.2 distributions, of the same tests as in Table 2; the sample size is now 25.
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