Abstract
Bootstrap bandwidth selection in kernel density estimation from a contaminated sample
DELAIGLE, A. and I. GIJBELS
In this paper we consider kernel estimation of a density when the data are contaminated by random noise. More specifically we deal with the problem of how to choose the bandwidth parameter in practice. A theoretical optimal bandwidth is defined as the minimizer of the mean integrated squared error. We propose a bootstrap procedure to estimate this optimal bandwidth, and show its consitency. These results remain valid for the case of no measurement error, and hence also summarize part of the theory of bootstrap bandwidth selection in ordinary kernel density estimation. The finite sample performance of the proposed bootstrap selection procedure is demonstrated with a simulation study. An application to a real data example illustrates the use of the method.
Last update: June 18, 2004 - Contact : S. Malali