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Abstract

We provide a simple proof that the Chernoff-Savage [1] result, establishing the uni-
form dominance of normal-score rank procedures over their Gaussian competitors,
also holds in a broad class of problems involving serial and/or multivariate ob-
servations. The non-admissibility of the corresponding everyday practice Gaussian
procedures (multivariate least-squares estimators, multivariate t-tests and F -tests,
correlogram-based methods, multivariate portmanteau and Durbin-Watson tests,
etc.) follows. The proof, which generalizes to the multivariate—possibly serial—set-
up the idea developed in Gastwirth and Wolff [2] in the context of univariate location
problems, allows for avoiding technical convexity and variational arguments.
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1 Introduction.

1.1 Uniform efficiency of classical rank-based procedures.

Since their introduction in the beginning of the 20th century, rank-based
methods have met much success, due to their many advantages over stan-
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Preprint submitted to Elsevier Science 21 September 2004



dard Gaussian methods. Unlike Gaussian procedures, the rank-based ones are
indeed purely nonparametric, and therefore allow for avoiding the somewhat
artificial and questionable specification of the distribution of the noise as-
sociated with the model under study (aiming at easier analytic derivations,
rather than addressing any real modelling issue). Rank procedures also are
distribution-free and are generally valid under broader conditions than the
parametric Gaussian ones (in the one-sample location case, for instance, rank
tests are valid without any moment assumption, whereas standard t-tests re-
quire finite second-order moments). Last but not least, rank-based methods
are intrinsically more robust than their parametric competitors.

While these advantages of rank-based methods are usually well recognized in
the statistical community, it is generally thought that, intuitively, too much
information is thrown away when using the observations through their ranks
(and/or signs) only, and that, consequently, the price to pay for the nice
properties above is a severe efficiency loss. In that respect, two striking results,
which show that intuition, in this case, is totally misleading, had quite an
impact on the success and subsequent development of rank-based inference.

The celebrated Hodges-Lehmann [3] “.864 result” states that the lower bound,
in the two-sample location model (but this extends to most location prob-
lems, such as one-sample, c-sample, ANOVA, regression problems, etc.), of the
Pitman asymptotic relative efficiency (ARE) of Wilcoxon (i.e., linear scores)
rank tests with respect to their normal-theory competitors (namely, standard
two-sample t-tests) is .864. In other words, Wilcoxon tests, asymptotically
never—that is, whatever the distribution of the underlying noise—need more
than 14.6% observations more than t-tests to achieve the same power (see,
e.g., Pratt and Gibbons [4] for a more formal definition of ARE).

No less celebrated is the result by Chernoff and Savage [1] proving that the
lower bound, in the same type of models, of the ARE of normal-score rank
tests, still with respect to the corresponding standard Gaussian tests, is 1, and
that this lower bound is reached at Gaussian distributions only. This means
that not only do (ad hoc versions of the) rank-based procedures perform equally
well as the Gaussian procedures in the normal case (where the latter are known
to be optimal), but they are strictly more efficient than Gaussian procedures as
soon as the underlying distribution is not normal. The inadmissibility—in the
Pitman sense—of the standard Gaussian procedures follows. Gastwirth and
Wolff [2] gave a simple proof of this result, mainly based on Jensen’s inequality,
which allows for avoiding the technicalities in Chernoff and Savage’s original
paper.

Moreover, the above results deal with “worst cases”; both for the Wilcoxon
and the normal-score rank tests, it is possible to show that there is no “best
case”, that is, it is possible to find sequences of underlying distributions along
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which the corresponding ARE’s (still with respect to standard Gaussian tests)
go to infinity. These considerations not only dispel the fears of poor efficiency
of rank-based methods, but also show that efficiency actually is another ad-
vantage of rank-based methods over the classical Gaussian ones.

Finally, it should be stressed that the rank-based procedures that beat uni-
formly the standard ones are not just theoretical refinements of the latter,
with marginal benefits (such as, e.g., shrinkage estimators) : they are prac-
tical, readily implementable solutions to actual problems, bringing sizeable
improvements over traditional methods.

1.2 Recent advances in rank-based inference and generalized Chernoff-Savage
results.

The original Chernoff-Savage [1] result is restricted to univariate location mod-
els. The reason for this is not that the uniform dominance of normal-score
rank procedures over parametric Gaussian ones is some kind of miracle that
is specific to univariate location models, but rather that rank-based methods
for a long time have been essentially limited to statistical models involving
univariate independent observations. Except for a few exceptions (such as
testing against bivariate dependence, tests based on runs, tests for scale, or
goodness-of-fit methods that do not address any specific alternative), classical
monographs (Hájek and Šidák [5] and Hájek, Šidák, and Sen [6]; Lehmann [7];
Randles and Wolfe [8]; Pratt and Gibbons [4]; Hettmansperger [9]; Puri and
Sen [10]—to quote only a few) mainly deal with single-response linear models
with independent errors: one- and two-sample location, analysis of variance,
regression, etc.

In particular, despite the fact that some of the earliest and most classical rank
tests—such as runs tests, turning point tests, etc.—are addressing problems of
serial dependence and thus are of a genuine serial nature, no systematic and
coherent theory of serial rank-based statistics was constructed until the mid-
eighties, where such statistics were considered in a series of papers (Hallin et
al. [11], Hallin and Puri [12–14]; see Hallin and Puri [15] for a review of rank-
based testing in a (univariate) ARMA context). Hallin [16] extended Chernoff
and Savage’s result to this serial context by showing that the normal-score ver-
sion of his serial rank tests also uniformly dominates the corresponding Gaus-
sian competitors (standard portmanteau tests, Durbin-Watson tests, etc.).

In the same spirit, although it has attracted much attention in the late fifties
and the sixties, leading to a fairly complete theory of hypothesis testing based
on componentwise ranks (a unified account of this line of research is given in
the monograph by Puri and Sen [17]), the extension of rank-based methods to
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problems involving multivariate observations was even slower than their ex-
tension to the serial context. The componentwise approach indeed suffers the
major weakness of being based on the choice of a particular coordinate system,
and it took about twenty years to see the emergence of a systematic develop-
ment of coordinate-free, affine-invariant competitors to these componentwise
sign and rank methods.

This development, initiated in the late eighties, essentially expanded along
two distinct lines of research. The first one, based on Oja signs and ranks, is
due to Oja, Hettmansperger, and their collaborators (Möttönen et al. [18–20];
Hettmansperger et al. [21,22]; see Oja [23] for a review). The second one is
associated with ranks of Mahalanobis distances and Randles’ concept of inter-
directions, and was developed by Randles and his coauthors (Randles [24,25];
Peters and Randles [26]; Jan and Randles [27]; Randles and Um [28]). Hallin
and Paindaveine [29–31] proposed fully coordinate-free testing procedures—
based on signs and ranks of this second type—for a broad class of problems
in the multivariate general linear model with (elliptically symmetric) vector
ARMA errors. As proved in Hallin and Paindaveine [29,30], the ARE’s of the
normal-score version of their procedures, still with respect to the parametric
Gaussian ones (Hotelling’s T 2 tests, multivariate portmanteau tests, etc.), are
uniformly larger than 1, which shows that Chernoff-Savage’s result extends to
the multivariate (possibly serial) set-up as well.

It is remarkable that Chernoff-Savage results still hold in those multivari-
ate location and multivariate serial problems, showing that the correspond-
ing everyday practice Gaussian procedures (multivariate least-squares, t-tests,
F -tests, correlogram-based methods, multivariate Portmanteau and Durbin-
Watson tests, etc.) are not admissible in the Pitman sense. Also, as in the
univariate case, the rank-based procedures defeating uniformly the standard
ones are not just theoretical refinements of the parametric Gaussian proce-
dures, but are easily implementable, theoretically and practically appealing,
solutions to actual problems.

1.3 Outline of the paper.

Our main goal in this paper is to provide an elementary and unified proof that
the Chernoff-Savage phenomenon indeed holds in a broad class of problems in-
volving serial and/or multivariate observations. The proof, which generalizes
to the multivariate—possibly serial—set-up the idea developed in Gastwirth
and Wolff [2], allows for avoiding the technical convexity and variational ar-
guments used in Hallin and Paindaveine [29,30]. For the sake of simplicity,
we mainly focus on two generic multivariate problems, in which we prove
Chernoff-Savage results; for reasons that are given in the final section, these
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particular Chernoff-Savage results automatically extend to a much broader
set-up.

The outline of the paper is as follows. In Section 2, we introduce the two generic
multivariate problems considered, namely the one-sample location problem
and the problem of testing for multivariate randomness against vector ARMA
dependence, both in their elliptically symmetric versions. In Section 3, we state
the corresponding Chernoff-Savage results and give our elementary proof. We
make some final comments in Section 4, which more explicitly describes the
non-admissibility consequences—which go far beyond the two particular cases
considered in Section 2—of the Chernoff-Savage results of which we give an
elementary proof.

2 Two generic problems.

We will consider Chernoff-Savage results both in a multivariate location and
in a multivariate serial set-up. In each case, we will restrict to an elliptically
symmetric problem. Recall that the distribution of a centered random k-vector
X is said to be elliptically symmetric with “parameters” ΣΣΣ and f if and only
if its pdf is given by

f
ΣΣΣ;f

(x) := ck,f (detΣΣΣ)−1/2f
(

(

xTΣΣΣ−1
x

)1/2
)

, x ∈ R
k, (1)

for some symmetric positive definite real k×k matrix ΣΣΣ = (Σij) with Σ11 = 1,
and some function f : R

+
0 −→ R

+ such that f > 0 a.e. and µk−1;f :=
∫

∞

0 rk−1f(r) dr < ∞ (ck,f is a normalization factor depending on the dimen-
sion k and f). We will denote this distribution by Ek(ΣΣΣ, f).

The shape parameter ΣΣΣ determines the orientation and shape of the asso-
ciated equidensity contours. Since all testing problems and tests considered
in the sequel are invariant under affine transformations, the ARE’s under
study will not depend on the value of ΣΣΣ, and we can restrict—without loss of
generality—to the class of spherical distributions, for which ΣΣΣ coincides with
the k-dimensional identity matrix Ik.

Under Ek(Ik, f), the radial density f determines the distribution of ‖X‖. More
precisely, the probability density function of ‖X‖ is f̃k(r) := (µk−1;f)

−1 rk−1

f(r) I[r>0] (IA stands for the indicator function of the set A); denote by F̃k the
corresponding distribution function.

To guarantee that (1) is a density, we need to assume that µk−1;f < ∞.
When discussing inadmissibility issues of the various parametric Gaussian
procedures (which require the underlying distribution to have a finite vari-
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ance), we will restrict to radial densities satisfying the stronger condition
µk+1;f :=

∫

∞

0 rk+1f(r) dr < ∞, under which the distribution Ek(Ik, f) has
finite second-order moments. One can associate with each radial density f the
density type of f defined as the class {fa, a > 0}, where fa(r) := f(ar), for all
r > 0. By affine-invariance, one could restrict to couples of parameters of the
form (ΣΣΣ, f) = (Ik, fa0

) for which the variance of the associated elliptical distri-
butions is equal to Ik. However, it will be convenient in the sequel to consider
all possible radial densities, so that we will only fix ΣΣΣ = Ik but let f range over
its density-type. Some extremely mild smoothness conditions on f—that we
throughout assume to be fulfilled—are required to derive ARE’s. See Hallin
and Paindaveine [29,30] for details.

The radial density f is said to be Gaussian if and only if f = φa for some
a > 0, where φ(r) := exp(−r2/2). Under Ek(Ik, φ), the pdf of ‖X‖ is φ̃k(r) :=
(2(k−2)/2Γ(k/2))−1rk−1φ(r) I[r>0] (where Γ(.) stands for the Euler gamma func-

tion), and we denote by Φ̃k the associated cdf. Under Ek(Ik, φ), the distribution

of ‖X‖2 D
= (Φ̃−1

k (U))2 (throughout, U stands for a random variable that is uni-
formly distributed over (0, 1)) is χ2

k, so Φ̃k(r) = Ψk(r
2) for all r > 0, where

Ψk denotes the distribution function of the χ2
k distribution.

The multivariate location problem we consider is the multivariate elliptically
symmetric one-sample location problem, for which, on the basis of the sample
Xi = θθθ+εεεi, i = 1, . . . , n, where the εεεi’s are i.i.d. elliptically symmetric centered
k-vectors, one wants to test θθθ = θθθ0 against θθθ 6= θθθ0, for some fixed k-vector θθθ0.
The classical parametric Gaussian test for this problem is Hotelling [32]’s T 2

test. Hallin and Paindaveine [29] developed a class of optimal signed-rank
competitors of Hotelling’s test. The ARE of the normal-score version of their
tests, with respect to Hotelling’s test, under radial density f , is given by

ARE
(loc)
k,f =

1

k3
Dk(f)

[

Ck(φ, f)
]2

, (2)

where, denoting by ϕf := −f ′/f the optimal location score function associated
with the radial density f , we let

Ck(φ, f) := E
[

Φ̃−1
k (U) ϕf(F̃

−1
k (U))

]

and Dk(f) := E
[(

F̃−1
k (U)

)2]

; (3)

see Hallin and Paindaveine [29].

The benchmark multivariate serial problem we consider is that of testing for
multivariate (elliptical) randomness against (elliptical) VARMA dependence.
More precisely, we want to test the null hypothesis that the k-variate sample
X1,X2, . . . ,Xn is the realization of an elliptically symmetric i.i.d. centered
process; under the alternative, the sample is generated by some non-trivial
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VARMA model of the form

Xt −
p

∑

i=1

AiXt−i = εεεt +
q

∑

i=1

Biεεεt−i,

where A1, . . . ,Ap,B1, . . . ,Bq are k × k real matrices and where the εεεt’s are
i.i.d. elliptically symmetric centered k-vectors. Hallin and Paindaveine [30]
proposed a class of multivariate signed-rank procedures for this problem, and
showed that the ARE, under radial density f , of the normal-score version of
their tests, with respect to the classical parametric Gaussian procedure (i.e.,
the standard multivariate portmanteau test), is given by

ARE
(ser)
k,f =

1

k4

[

Dk(φ, f)
]2 [

Ck(φ, f)
]2

, (4)

where

Dk(φ, f) := E
[

Φ̃−1
k (U) F̃−1

k (U)
]

;

see Hallin and Paindaveine [30].

3 An elementary proof of multivariate Chernoff-Savage results.

In this section, we give a unified and elementary proof that both families
of ARE’s in (2) and (4) above are uniformly—in f—larger than 1, which
establishes the Pitman-inadmissibility of the corresponding standard Gaussian
procedures (namely, Hotelling’s test and the multivariate portmanteau test,
respectively). We start with the inadmissibility result in the serial context :

Theorem 1 For all radial density f such that µk+1;f < ∞ and all positive

integer k, we have ARE
(ser)
k,f ≥ 1, where equality holds iff f is Gaussian.

Let us now give the elementary proof we propose for this result, which allows
for avoiding variational arguments, such as those used in Hallin and Paindav-
eine [30]. The proof, which is based on the method developed in Gastwirth and
Wolff [2], does only make use of Jensen’s inequality and—in the multivariate
case—of the arithmetic-harmonic mean inequality.

Proof of Theorem 1. First rewrite the functional f 7→ Ck(φ, f) defined
in (3) as
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Ck(φ, f)=
∫

∞

0
Φ̃−1

k (F̃k(r)) ϕf(r) f̃k(r) dr

=
1

µk−1;f

∫

∞

0
Φ̃−1

k (F̃k(r)) (−f
′

(r)) rk−1 dr

=
∫

∞

0

[

f̃k(r)

φ̃k(Φ̃
−1
k (F̃k(r)))

+ (k − 1)
Φ̃−1

k (F̃k(r))

r

]

f̃k(r) dr,

where the last equality follows from integrating by parts. Applying first Jensen’s
inequality (with respect to the measure f̃k(r) dr and with convex function
g(x) = 1/x), and then the arithmetic-harmonic mean inequality, we obtain

Ck(φ, f)≥







∫

∞

0

[

f̃k(r)

φ̃k(Φ̃
−1
k (F̃k(r)))

+ (k − 1)
Φ̃−1

k (F̃k(r))

r

]−1

f̃k(r) dr







−1

≥ k2







∫

∞

0

[

φ̃k(Φ̃
−1
k (F̃k(r)))

f̃k(r)
+ (k − 1)

r

Φ̃−1
k (F̃k(r))

]

f̃k(r) dr







−1

. (5)

Integrating by parts again yields

∫

∞

0
φ̃k(Φ̃

−1
k (F̃k(r))) dr =−

∫

∞

0
r

φ̃′

k(Φ̃
−1
k (F̃k(r)))

φ̃k(Φ̃
−1
k (F̃k(r)))

f̃k(r) dr

=
∫

∞

0
r

[

Φ̃−1
k (F̃k(r)) −

k − 1

Φ̃−1
k (F̃k(r))

]

f̃k(r) dr.

Substituting in (5), we obtain

Ck(φ, f) ≥ k2







∫

∞

0
r Φ̃−1

k (F̃k(r)) f̃k(r) dr







−1

= k2
[

Dk(φ, f)
]−1

,

which establishes the inequality in Theorem 1.

Now, for the equality to hold, both Jensen’s and arithmetic-harmonic mean
inequalities need to be degenerate, i.e., we need to have

f̃k(r)

φ̃k(Φ̃
−1
k (F̃k(r)))

+ (k − 1)
Φ̃−1

k (F̃k(r))

r
= c, ∀ r > 0, (6)

and
φ̃k(Φ̃

−1
k (F̃k(r)))

f̃k(r)
=

r

Φ̃−1
k (F̃k(r))

, ∀ r > 0. (7)
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Equation (6) then can be rewritten as

r1−k
[

rk−1 Φ̃−1
k (F̃k(r))

]′

= c, ∀ r > 0,

and holds iff rk−1 Φ̃−1
k (F̃k(r)) = ark+b, for all r > 0, for some real numbers a, b.

Since the limit of rk−1 Φ̃−1
k (F̃k(r)) as r goes to 0 is 0, we must have b = 0.

This implies that Φ̃−1
k (F̃k(r)) = ar, for all r > 0, that is, Φ̃−1

k (u) = aF̃−1
k (u)

for all u ∈ (0, 1), which means that f is Gaussian (with arbitrary scale).

Finally, (7) is successively equivalent to

f̃k(F̃
−1
k (u))F̃−1

k (u) = φ̃k(Φ̃
−1
k (u)) Φ̃−1

k (u), ∀u ∈ (0, 1),

⇔
[

F̃−1
k (u)

]′

/F̃−1
k (u) =

[

Φ̃−1
k (u)

]′

/Φ̃−1
k (u), ∀u ∈ (0, 1),

⇔ F̃−1
k (u) = aΦ̃−1

k (u), ∀u ∈ (0, 1),

so that (7) holds iff f is Gaussian (still with arbitrary scale). 2

The Pitman-inadmissibility of Hotelling’s T 2 test for the multivariate one-
sample location problem now follows as a simple corollary. More precisely, we
have the following :

Theorem 2 For all radial density f such that µk+1;f < ∞ and all positive

integer k, we have ARE
(loc)
k,f ≥ 1, where equality holds iff f is Gaussian.

Proof of Theorem 2. The Cauchy-Schwarz inequality yields

[

Dk(φ, f)
]2

≤ Dk(φ)Dk(f) = k Dk(f), (8)

so that ARE
(loc)
k,f ≥ ARE

(ser)
k,f for all radial density f . Consequently, the result

follows from Theorem 1. Note that equality holds in (8) iff F̃−1
k (u) = aΦ̃−1

k (u)
∀u ∈ (0, 1) for some a > 0, that is, iff f is Gaussian (with arbitrary scale). 2

In order to illustrate these Chernoff-Savage results, we consider two families of
multivariate distributions, namely the class of t-distributions and the class of
power-exponential distributions. Recall that the k-variate t-distribution with
ν > 0 degrees of freedom is obtained by choosing, in (1), the radial density
fν(r) := (1 + r2/ν)−(k+ν)/2, r > 0; the resulting elliptical distributions have
heavier tails than the k-variate Gaussian distributions (note that the latter
are obtained by letting ν go to infinity). In Figure 1, we present several plots,
corresponding to various values of the space dimension k, of the ARE’s in (2)
and (4) under a broad class of t-distributions. These plots clearly provide
an empirical verification (under heavy tails) of the Chernoff-Savage results in
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Theorems 1 and 2. Note that the ARE values in Figure 1 increase with the
space dimension k. However, this is not a general phenomenon, as we show
below by considering the class of power-exponential elliptical distributions.

The power-exponential elliptical distributions, which correspond to radial den-
sities of the form gν(r) := exp(−r2ν), allow for considering tail weights (in-
dexed by ν > 0) that are heavier (0 < ν < 1) or lighter (ν > 1) than in the
normal case (which is obtained for ν = 1). In Figure 2, we give several plots
of the ARE’s in (2) and (4) under such power-exponential distributions, for
various values of the space dimension k. Note that Figure 2 nicely illustrates
the Chernoff-Savage results in Theorems 1 and 2 under heavy tails as well as
under light tails, and that the ARE values are now decreasing with the space
dimension k (also note that the serial and location ARE curves in this case
can extremely hardly be distinguished from each other).
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Fig. 1. Plots of ARE
(loc)
k,fν

(thin curve) and ARE
(ser)
k,fν

(thick curve) under
t-distributions with ν degrees of freedom (4 < ν < 14), for various values of the
space dimension (k = 1, 3, 6, 9, 14, 20). The horizontal line corresponds to the per-
formance of the Gaussian parametric procedure.
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Fig. 2. Plots of ARE
(loc)
k,gν

(thin curve) and ARE
(ser)
k,gν

(thick curve) under
power-exponential elliptic distributions with parameter ν (0.2 < ν < 3), for various
values of the space dimension (k = 9, 14, 20). The horizontal line corresponds to the
performance of the Gaussian parametric procedure.

10



4 Final comments.

We would like to stress that the inadmissibility results in Theorems 1 and 2
are not confined to the problem of testing for multivariate randomness and to
the multivariate one-sample location problem, respectively. Hallin and Pain-
daveine [31,33] indeed extended their generalized signed-rank tests to more
complicated models culminating in the multivariate general linear model with
vector ARMA errors. The problems that can be dealt with are either asso-
ciated with simple null hypotheses or with null hypotheses that are linear
restrictions on the parameter of that very general model. Hallin and Paindav-
eine [31] showed that, in that context, the ARE’s of the normal-score version of
their tests, with respect to normal-theory competitors, are convex linear com-
binations of the ARE’s in (2) and (4), obtained in the multivariate one-sample
location case and in the problem of testing for multivariate randomness, re-
spectively. Consequently, the Pitman-inadmissibility of parametric Gaussian
procedures, as well as the simple proof provided above, extend to that very
broad class of problems, which contains many problems of high practical rele-
vance, such as multivariate Durbin Watson problems, ANOVA problems, the
problem of testing the orders of a vector ARMA series, etc.

The methodology adopted in this paper can also be used to derive elementary
proof of original Chernoff-Savage results. As an illustration, Paindaveine [34]
considers the problem of testing for multivariate independence between two
(elliptically symmetric) random vectors, and shows that the normal-score ver-
sion of the rank-based tests recently proposed by Taskinen et al. [35] uniformly
dominates—in the Pitman sense—the classical Wilks [36] test; the Pitman-
inadmissibility of Wilks’ test (hence, in the univariate case, of the classical
correlation test) follows. To the best of our knowledge, even in the univariate
case, whether the classical correlation test was admissible or not was so far an
open question.

Also, for the sake of clarity, we have focused on hypothesis testing. But rank-
based methods allow for dealing with point estimation as well. And it can
be shown that the ARE’s of the so-called R-estimators, with respect to the
standard Gaussian estimators, do coincide with the ARE’s obtained in the cor-
responding testing problems. So, e.g., in the multivariate one-sample case, the
ARE’s of the normal-score rank-based estimator of the location center, with re-
spect to the multivariate average X̄ (the normal-theory competitor), are given
in (2). Consequently, the generalized Chernoff-Savage results extend to this
estimation problem, and the Pitman-inadmissibility of X̄ follows. More gen-
erally, this allows for establishing inadmissibility of multivariate least-squares
and Yule-Walker estimators in the multivariate general linear model and in
vector autoregressive models, respectively.
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