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Abstract: This paper proposes new iterative algorithms for solving linear inverse problems when the solution
can be written as the sum of a smooth part and of a part which is sparse in pixel space or in terms of the
coefficients of its expansion on an arbitrary orthonormal basis.

SPARSITY VERSUS SMOOTHNESS CONSTRAINTS

Many linear or linearized inverse imaging or scattering problems can be cast in the following form:
solve for the array f (which contains M values representing the unknown object, e.g. pixel values or
characteristics of the probed sample) the following linear equation

Af—g (1)

where g is the image or measurement vector containing N data values and A is the N x M matrix
modeling the imaging process (A is assumed to be known). For simplicity, we have used a single
index for labeling the object and data arrays, but the formulation obviously applies to 2D or 3D
imaging. The usual approach to deal with noisy data is to minimize the least-squares discrepancy
(data misfit) or, in the case of ill-conditioned matrices (typical for inverse problems), to solve the
following penalized least-squares problem

f* = arg ming ®(f) with ®(f) = || Af — g||> + pl/f]? (2)

where ||f]|> = SSM_ | fu|? denotes the squared [>-norm of f and y is a small positive regularization
parameter controlling the balance between stability and fidelity to the data. The corresponding
minimizer f* = (A*A + puI)"'A*g is usually referred to as the Tikhonov regularized solution of (1)
(I is the identity matrix and A* the adjoint of A). An alternative to matrix inversion is provided by
iterative schemes, such as the so-called damped Landweber iteration

f(o)arbitrary : D =T £ for k=0,1,... (3)

where the iteration mapping T is given by T = (1 + ) 'L with Lf = f + A*(g — Af). Let us assume
that the imaging matrix is renormalized so that ||A| < 1. Then Vf, h, |[Lf — Lh|| < ||f — h|| (L
is non-expansive); hence, for strictly positive u, the mapping T is a contraction. This ensures the
convergence of the iteration (3) to the unique fixed point of T, which is the unique minimizer of (2).

Linear estimates of this sort, however, may not be optimal whenever the object to be restored is
known a priori to be sparse, i.e. to have many zero entries. Indeed, even if the original object is
sparse, the Tikhonov solution restored from a noisy image will not in general be so. Therefore, it has
been advocated [1,2] that the [2-penalty in (2) could be advantageously replaced by a penalty on the
I'-norm of f: ||f|| = Z%Zl | fm|- This modification increases the penalty on components |f,| < 1 and
simultaneously decreases the penalty on larger components, thus favouring the restoration of objects
with few but large components (as we shall see, the components below some threshold value are even
set to zero, a fact which promotes sparsity in the reconstructed object). This strategy leads to the
following penalized least-squares problem

f* = arg ming ®(F) with ®(F) = |Af —g|>+27[f] (r>0). (4)

Notice that as for (2) this functional is convex. For A =1 (and N = M), the minimizer f* is easily
seen to be equal to the soft-thresholded data vector

o gn — T Sign(gn) if |gn| >T
(Srg)n = { 0 it gn| <T. (5)

(Note that, when implemented on wavelet coefficients, (5) is a simple denoising scheme as proposed
in [3]). When A # I, the operator couples all object components and therefore problem (4) becomes



a complicated quadratic programming optimization problem. As an alternative, we have proposed
in [4] to use an optimization transfer method [5] and to define the surrogate functional <I>SUR(f ;a) =
|Af — g||> — ||Af — Aa||? + ||f — a||? + 27||f|| (since ||A|| < 1, this functional is strictly convex for
any choice of a, and we have ® " (f;a) > ®(f) while ®° " (f;f) = ®(f) ), the minimizer of (4) being
approached through the following iterative scheme:

fOarbitrary ; £+ = arg ming @SUR(f; 5 for k=0,1,... (6)

At each iteration, the minimization problem is decoupled for each pixel value and can be solved
explicitly, yielding an iterative algorithm similar to (3) with T given now by T = S;L, namely a
Landweber scheme with a soft-thresholding performed at each iteration. When the null-space of A
is reduced to zero (i.e. when Af = 0 implies f = 0), the convergence of this scheme can be easily
established since L is then a contraction whereas the nonlinear thresholding operator S; is easily seen
to be non-expansive. The product of a contractive by a nonexpansive mapping being contractive,
T is a contraction. This ensures convergence of the iteration to the fixed point of T, which can be
shown to coincide with the minimizer of (4) — unique in this case. The convergence of this iterative
scheme to a solution of the minimization problem (4) has been proved in [6] to hold under much
more general assumptions. Even when A has a non-zero null-space, strong convergence can be estab-
lished in an infinite-dimensional setting where ||g|| is the Hilbert L?-norm of g and ||f|| is a [P-norm,
with 1 < p < 2, on the sequence of coefficients of f on any orthogonal basis in L?, such as e.g. a
wavelet basis or a Fourier basis. Moreover, it has been shown in [6] that problem (4) yields a properly
regularized solution which coincides in the limit case p = 2 with Tikhonov’s solution (2) (with u = 27).

A MIXED-PENALTY APPROACH

In the present paper, we extend the previous framework to cope with the case where the object is
known a priori to be the sum f = u+ v of a sparse part u and of a smooth part or diffuse background
v, a situation met in several applications e.g. in astronomy, spectroscopy, medical imaging, etc. Hence
we consider the mixed-penalty (convex) functional

D (u,v) = [A(u+v) - gl + 2rfull + pllv? (7)
and the following surrogate
" (u,v;a) = @ (u,v) + [lu+v—a|’ - |A(u+v) — Aa|? . (8)
We minimize (7) iteratively as follows (k =0, 1,... and f*) = u® 4 v(*)) .
u(O),v(O)arbitrary; a1 = arg min, @SUR(u,V(k);f(k)); v — arg min,, @SUR(u(k),v;f(k)) (9)
getting explicit expressions for the minimizers
ulk+) = g (u(k) +A*(g— Af(k))) v = (14 ) <v(k) +A*(g— Af(k))> . (10)
The convergence of this scheme to a minimizer of (7) can be established using an extension of the proofs

in [6] (paper in preparation). Let us note that a potentially faster converging variant of this algorithm
is obtained by replacing the update for v by v*+1) = (1 4 p)~! (v(k) + A*(g — Aulbt) — Av(k’))).

A more substantial variation on the same theme is derived by viewing the functionals (7) and (8) as
depending on the unknowns u and f instead of u and v, namely by considering

@ (u,f) = ||Af —g|* +27[lu] + pIf — u? (11)
with the surrogate
@ (u,fia) = @ (u,f) + f — al” — | Af — Aal]”. (12)
The iterative minimization of (11) can then be done as follows (k =0,1,...) :
fOarbitrary; u® = arg min,, " (u,f(k); f(k)); £ = arg ming "
with the following explicit expressions for the minimizers
u® =s_, (f(k)) o fERD = g ®) (1 4 )t (f(k) +A*(g — AfR) - u(k)> . (14)

u® £ £0))  (13)



Noticing that the above algorithm can be rewritten in terms of f alone as
£k — (1 4 ) (f(k) T A* (g — AE®) — ST/M(f(k’))) =T £® (15)

we can give a simple proof of convergence for the scheme (13-14) by showing that T is a contraction
in the case where A has a zero null-space. Indeed, we have for arbitrary f and h

1
[+ 15 I Sepu®) = Sepu(ll < p[If — Rl (16)

is non-expansive.

1
Tf-Th|<—— [(I-A*A)(f—h
I =377 I )(f = h))

with p < 1 since |[I - A*A[| <1and S./,
An interesting insight into the previous algorithm is gained by remarking that we can minimize the
functional (11) for u, given f, by solving a simple denoising problem, getting as solution u = S_,,(f),
and by reinserting this solution into the functional. This amounts to solving

f* = arg ming ®(f) with &(F) = |Af — g + 1> 1(fm) (17)
B fnl? it | fl < 7/
and H(fm)_{(%/u)lfml—(T/u)Q i [fon] > 7/ (18)

We recognize in (18) the Huber function used for robust estimation from data containing outliers.
The rationale behind this Huber prior is to penalize small values of f, likely due to noise, with a
I>-type penalty and to penalize to a lesser extent, with a ['-type penalty, larger values of f which are
expected to reflect some true structure. The minimization of (17) can again be done iteratively, using
the same surrogate as above for the data misfit.

CONCLUDING REMARKS

We have devised several iterative algorithms for the restoration of objects which are a sum of a sparse
and a smooth part. Although we used for simplicity a finite-dimensional setting, the schemes can
easily be generalized to an infinite-dimensional framework, similar to the one used in [6]. Also, the
I2-norm penalty ||v]|? used for the smooth part can be replaced by other quadratic norms, e.g. of the
type ||[Ww||2, where W is a linear operator with bounded inverse, involving a few derivatives. More-
over, as said, the I!-penalty [|u[| can be replaced by a I'- or [P-norm (with 1 < p < 2) on the coefficients
of the expansion of u on a given arbitrary orthonormal basis in L?. This can be exploited to enforce
sparsity in the wavelet or in the Fourier domain rather than in pixel space, the thresholding being
applied on the wavelet or Fourier coefficients of each iterate. Moreover, if positive reconstructions are
needed, positivity can be enforced at each iteration, and since the projector on the cone of positive
objects is a non-expansive operator, this does not impair the non-expansivity or contractivity of the
iteration mapping. Extensions of the present algorithms to deal with nonlinear imaging operators A
may also be desirable, although convergence results are probably hard to get in such a case.
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