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Summary. Maximum likelihood (ML) estimation of general finite mixtures is, due to the sin-
gularities in the likelihood, a common but very difficult problem. In particular, a classical ML
estimator does not exist. In this paper, standard methods dealing with the unbounded like-
lihood are reviewed. Important drawbacks of these methods are discussed. An alternative
method, rooted in the literature, and known as likelihood estimation, is proposed. This likeli-
hood estimation procedure is similar in many respects to maximum likelihood and has good
statistical properties for the problem at hand. Often, this estimate can be found as the largest
local maximum of the likelihood. It is shown how this approach can be of attraction in the finite
mixture problem. Further, the important problem of a so-called spurious maximum as likeli-
hood estimate is tackled. By means of key examples, spurious maxima are characterized. Our
perception of the underlying problem is given and guidelines are proposed to deal with these
spurious maxima in practice.
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1. Introduction

In today’s applied research, mixtures of distributions have become extremely popular. They
exist in a wide range of forms, are used in a wide class of applications, and although
the related literature is huge already, it is still growing. One of the main methods to
estimate these distributions is maximum likelihood (ML) estimation. Of interest here, are
(univariate) general finite mixtures where the ML method tends to break down. The density
of a general M-component mixture is denoted by:

M
fM($|0) = Z 71'mf(mwlm,Um)a (1)
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with Z%zl Tm = 1, f(2|ttm,om) the density of a 2-parameter distribution, u,, a scale and
om a shape parameter. In this paper, we will mostly consider the component densities
to be normal with mean u,, and standard deviation o,,, but other distributions such as
the Weibull or gamma can equally well be used. Note, however, that literature on finite
mixtures with other component distributions exists but is relatively limited.

It is well known that ML estimation of normal mixtures with unequal means and vari-
ances is problematic. This is due to the fact that the likelihood function corresponding to
such a mixture is unbounded at some points, also referred to as singularities, on the edge of
the parameter space. For example, take (y1,--+,¥yn), a sample from a 2-component normal
mixture with likelihood L(0,y) given by:

n 1 _l(yi*l“l)2 1 _l(yi7u2)2
L(8,y) = ) 1o e 3 (5
0,y) g [m '_27r016 b +( ) ,—27m2e

It is then easily seen that the likelihood goes to infinity whenever u; = y; and o1 approaches
zero, with the other parameters having arbitrary values. Clearly, these “maxima” are
pathological and do not correspond to useful mixtures. Moreover they are inconsistent
estimates and cannot be regarded as maximum likelihood estimates (MLEs), since due
to its unboundedness, the likelihood does not have a global maximum (Lehmann, 1980).
Nevertheless, some authors prefer to call these maxima inconsistent MLEs (Duda and Hart,
1973). We believe that calling it this name should be avoided.

Very often the variance parameter is taken to be equal for all components because the
singularities of the likelihood L(0,y) then disappear (if the sample has a size larger than 1
and not all values are equal). This restrictive assumption can be a satisfactory solution in
some applications but in general it obviously is not (Fisher et al., 2000; Joyce et al., 1976).
Although the common way to go was and still is not to use mixtures with unequal means and
variances, some methods are proposed in the literature to satisfactorily tackle the problem
of an unbounded likelihood. In some sense, these techniques try to regularize the problem
by removing the unboundedness. We believe they all suffer, however, from some important
drawbacks. The next section reviews and discusses some standard methods to deal with a
restricted ML estimation of such mixtures.

However, there exists a local maximum estimation method with good statistical proper-
ties. This theory is rooted in the literature, acknowledged by some authors, but still rarely
applied. By going back to Cramér, we will review in Section 3 that well-behaved estimates
as a solution of the likelihood equations (LEQs) do exist for mixtures with density (1),
despite the non-existence of the MLE. Moreover, they have similar behavior as MLEs in
the case of mixtures with an equal variance parameter. This does not solve the entire
problem, however, since the likelihood function has multiple roots and it is not specified
which local maximum of the likelihood is the proper one. It will be discussed that for finite
normal mixtures, the largest local maximum of the likelihood function corresponds to these
well-behaved estimates.

It ought to be mentioned that not everyone agrees on this: McLachlan and Peel (2000),
amongst others, argue that one should first skip some spurious or illogical maxima before
selecting the largest local one. Although, such maxima are indeed an issue in likelihood
estimation, the way they are handled so far, seems to be flawed. The result aimed at in
Section 4 is to clarify the situation. By means of some key examples, the problem is situated
and spurious maxima are characterized. It is discussed that an overall view of the surface
of the likelihood function is required in order to obtain an idea about the credibility of the
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likelihood estimate, found as the largest local maximum of the likelihood function. Based
on the surface of the likelihood function, samples are classified as being highly unstable,
unstable or stable. The latter is used to deal with spurious maxima in practice.

2. Removing the unboundedness

As explained in the introduction, ML estimation for a general M-component mixture turns
out to be problematic in a classical sense. More precisely, an MLE, defined as the global
maximum of the likelihood, does in many cases not exist. In the past, several authors have
tried to regularize the problem by removing the singularities of the likelihood in order to
still obtain a, perhaps modified, MLE. The most common approaches are based either on
adapting the likelihood (§2.1) or on restricting the parameter space (§2.2).

2.1. Adaptation of the likelihood function
Cox and Hinkley (1974) pointed out that the anomaly of an infinite likelihood function
would disappear if one would take into account the inherent grouped nature of the data. In
practice, all observations are discrete and therefore a continuous model is only a theoretical
concept. Similarly, Aitkin (2001) states that the unboundedness of the likelihood arises
from its approximation to the actual grouped data likelihood.

From their point of view, the infinity problem results from a misspecification of the like-
lihood. As such, the problem could then be solved through a more principled construction
of the likelihood function. It should be built as:

L(8,y) = |

2

n

[Far(yi +6/2) — Fr(yi — 6/2)], (3)
=1
with Fy(z) = Z%zl TmF (Z|ftm, 0m), the cumulative distribution function (cdf) of the
mixture, F(z) the cdf of the mixture component and § the grouping interval or the mea-
surement instrument’s precision with which y; is measured. As a consequence, this likelihood
is bounded between 0 and 1. Moreover, if a global maximum exists, it corresponds to a
consistent MLE.

Although this approach seems reasonable, it suffers from some important drawbacks.
Numerically, it can be demanding to manipulate a likelihood composed of differences of cu-
mulative distributions instead of densities. Secondly, some authors state that the argument
of discrete data does not necessarily get to the real issue. Whether or not it is possible in
practice, it is still legitimate to suppose that the observations are intrinsically continuously
distributed and that discreteness is the approximation (Cheng and Iles, 1987). Further, the
original likelihood (in the continuous case) was composed of density contributions f(z;6),
derived from probability elements P(z € dz) = f(z,0)dz (Cramér, 1946), obviating the
need to be bounded above by 1. Also, despite the fact that the infinite spikes of the likeli-
hood do not yield useful estimates, the infinity is not counter-intuitive. Indeed, if one of the
variances goes to zero, the corresponding component of the mixture becomes discrete with
a contribution to the joint distribution that will be “infinitely” greater then a continuous
one (e.g., you cannot better fit a point than by assigning the entire mass to it). Thirdly,
even if one considers (3) being the correct specification of the likelihood, how should one
then choose the precision §7 In rare cases, this value is known as being the precision of
the measurement system. But for most cases, the value of § is unknown and one would be
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unable to choose it without an unacceptably high amount of arbitrariness. In addition, the
global maximum of the likelihood function does not always exist. This leads to a problem
which is similar to the unbounded likelihood problem (Section 4).

Instead of concentrating on the MLE, Cheng and Amin (1983) and Ranneby (1984),
propose a new kind of estimator based on the likelihood that does not suffer from the infinity
problem. They introduce the maximum product of spacings (MPS) estimator, obtained by
maximizing the following product of spacings instead of densities:

n+1
H(0;y) = [[ [Fm W) — Fu(yi-1)] (4)
i=1
with y(;), the ordered observations and y() = —00, y(n41) = +oo. Titterington (1985),

however, discussed that this method is in essence a maximum likelihood method based on
grouped data, hence exhibiting the exact same drawbacks discussed earlier.

2.2. Restriction of the parameter space

Another way of bounding the likelihood is by restricting the parameter space. The sin-
gularities of the likelihood are situated on the edge of the parameter space. Hence, by
constraining the latter such that problematic points are excluded, a bounded likelihood
over the restricted space can be obtained. However, one still has to prove the existence of
a consistent MLE for this kind of restricted likelihood problems.

By interrelating the standard deviations of the different mixture components, one can
prevent them to become zero. In this way, a constrained parameter space without sin-
gularities is obtained. Moreover, Quandt and Ramsey (1978), amongst others, noted the
existence of a consistent MLE in case a relationship between the standard deviations of the
true mixture component densities was known and incorporated as constraints.

One of the most popular forms of constraints, although it is often not recognized as
such, is the imposition of equal standard deviations among the different components of the
mixture. For this kind of mixtures the existence of a consistent MLE is well known. But,
as noted earlier, although this assumption may be justified in some cases, for most cases it
is certainly not a satisfactory solution.

Constraints of the form o; = k;jo;, with k;; known constants, are another possibility.
Exact knowledge of the constants, however, is rare. Alternatively, inequality constraints
can be imposed as is done by Hathaway (1985). He introduced the following inequalities:

o; > coir1,i=1,...,(M — 1);00 > coq,withe €]0,1]. (5)

For this restricted likelihood problem, Hathaway proved the existence of a global maximum
of the likelihood regardless of the value of c. Further, he showed the consistency of such a
global maximum if the constrained parameter space contained the true parameter. In other
words, a consistent MLE exists if the true parameter is in the restricted parameter space.
Hathaway (1986) also adapted the EM-algorithm to incorporate restrictions.

Another way to restrict the parameter space and exclude singularities is to work directly
with compact subsets. For these likelihood problems, Redner and Walker (1984) proved the
existence of a consistent MLE for the normal mixture problem over any compact subspace
containing the true parameter.
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Although this kind of approach seems reasonable as well, it suffers from some important
drawbacks. First, numerically it is more demanding to optimize a function over a con-
strained parameter space. Second, restrictions are sometimes too limiting. For example,
imposing equality of the standard deviations is an easy way to proceed, but in a lot of cases
it is implausible. An important question is how to choose a constrained parameter space
such that it contains the real parameter, although the latter is unknown. Also the choice of
the value ¢ and the choice of the compact subset, without knowledge of the true parameter,
is problematic. Finally, like the other methods aimed at removing the unboundedness of
the likelihood, the real problem is essentially circumvented only.

3. An alternative: likelihood estimation

One of the main reasons for the popularity of the maximum likelihood method are the
good statistical properties of the corresponding estimators in the sense that they are consis-
tent, asymptotically efficient and normally distributed under suitable regularity conditions.
MLEs are defined as the global maxima of the likelihood function. The latter, however, do
not exist for the likelihood corresponding with the general M-component mixture. Never-
theless, the likelihood has local maxima. This provides a way to avoid the search for a global
maximum. First, empirical evidence was found, for example by Quandt (1972) and Duda
and Hart (1973), that a local maximum, more specifically the largest one, corresponds to
reasonable parameter estimates. Later, Sundberg (1974), for incomplete data from an ex-
ponential family and Kiefer (1978), for a switching regression model and Lehmann (1983),
for general situations, provided a solid basis for such an approach. They all proved the
existence of a consistent sequence of roots of the likelihood equations for their particular
problem. These likelihood equations (LEQs) are obtained by equating to 0 the partial
derivatives of the logarithm of the likelihood function with respect to its parameters.

In what follows a review of this theory is given (§3.1), together with our perception of
how it can be used to obtain parameter estimates with good statistical properties in case of
normal mixtures without any restriction on the relationship between the parameters (§3.2).

3.1. Review

Cramér (1946) discussed the method of maximum likelihood for one-parameter distribu-
tions. Although he first defines the MLE as the value which renders the likelihood as large
as possible, his final definition of an MLE is different from the classical one. Moreover, he
states: “Any solution of the likelihood equation will be called a mazimum likelihood esti-
mate of the unknown parameter”. With this definition in mind, he proves that under certain
general conditions the likelihood equation has a (but not any) solution that converges in
probability to the true parameter value as the sample size goes to infinity, hence is con-
sistent. Further, this solution is also asymptotically efficient and normally distributed. In
other words, Cramér proved the existence of a solution of the likelihood equation (LEQ)
with good statistical properties and called it an MLE.

In 1948, Huzurbazar showed, under the same conditions as Cramér, that with proba-
bility going to one as the sample size goes to infinity, such a consistent root is unique and
corresponds to a local maximum of the likelihood. Thus, if a density satisfies the conditions
of Cramér, a local maximum of the likelihood possesses the required statistical properties.
This result provides a useful alternative to the condition of global maxima only.
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Wald'’s conditions:
global maximum (MLE) =
consistent estimate

Cramér’s conditions:
aroot of LEQ =
consistent estimate

same estimate
e.g. normal mixture with
equal variances

unbounded likelihood
e.g. normal mixture with
unequal variances

no derivatives
e.g. support depends
on parameter

Fig. 1. Likelihood estimation

Wald (1949) gave a proof of consistency of the classical MLE, i.e., with the usual meaning
attached to the global maximum of the likelihood. His proof was based on totally different
and more demanding assumptions compared to Cramér’s conditions. In essence, Wald does
not use differentiability assumptions; even the LEQs do not have to exist. In addition Wald
notes that Cramér is only proving the consistency of a local maximum, in contrast to his
proof of the consistency of a global maximum.

Figure 1 gives an overview of these different approaches of likelihood estimation. On the
one hand, there are the conditions of Wald ensuring the consistency of a global maximum
(MLE). On the other hand, there are the conditions of Cramér guaranteeing the consistency
of a local maximum. Depending on the assumptions a parametric family fulfills, we have
the following three possibilities:

Both conditions hold. They lead to the same estimate. This is the case for a lot of
2-parameter distributions such as the normal, Weibull, gamma,..., but also for a
mixture with equal variances for the components.

Only Wald’s conditions hold. This is typical for distributions that do not have a deriva-
tive at some points in the parameter space. An example is when the support depends
on some parameter, like the uniform distribution.

Only Cramér’s conditions hold. Even if the global maximum exists, it does not have
good statistical properties, but at least one local maximum does. This is often the
case for distributions with singularities situated on the edge of the parameter space,
such as for a general M-component mixture.

Importantly, this figure shows that whether we either work with a mixture with equal
variances or with unequal variances, in essence the same kind of estimate is obtained from
the likelihood equations, in spite of the convention of terminology to only call the first an
MLE. The latter will be referred to as a likelihood estimate (LE).

Note that Cramér’s results were for the one-parameter case (in contrast to Wald). Aitchi-
son and Silvey (1958) generalize his results to the multi-parameter case, whereas Chanda
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(1954) (proven by Tarone and Gruenhage, 1975) extends the uniqueness theorem of Huzur-
bazar. The conditions are straightforward extensions of the one-parameter case.

3.2. Multiple roots

In spite of these results, problems are not entirely solved for the general mixture model.
As is known from regular ML estimation, the LEQs for a number of models suffer from a
multiple root problem. The same is true for a mixture model. These multiple roots lead to
an additional problem since Cramér’s theory only states the existence of a consistent root
of the LEQ. No results are available on which root to specify.

Basically, for mixtures, there are two types of roots. In the first place, there are multiple
roots caused by the non-identifiability of the parameters in the model. Indeed, although the
family of normal (finite) mixtures (equal or unequal variance case) is identifiable (Teicher,
1963), the parameters are not due to the arbitrariness of the numbering of components of
the mixture. Moreover each permutation of the component labels provides another root,
resulting in at least M! roots for the likelihood equations. This problem, however, is not of
great concern and can be avoided, for example, by ordering the sizes of the different means
or by introducing an equivalence relation in the sample space making the true parameter
identifiable relative to its equivalence class. On the other hand, a second class of roots is of
more concern. Day (1969) stated that any pair, triplet,. . . of distinct observations sufficiently
close together, would generate a local maximum of the likelihood, resulting in several roots
for the likelihood equations. But his comment that therefore ML estimation breaks down
is not warranted as observed previously. These roots are fundamentally different from each
other.

According to the theory, the LEQs contain a “unique consistent” root. Note that unique
here refers to a unique equivalence class. Also, there is a certain ambiguity in this uniqueness
statement (Perlman, 1983). In case the conditions of Wald are satisfied, the global maximum
or MLE is known to be consistent. So, there is a criterion based on the value of the
likelihood to discriminate between several roots. But, if only Cramér’s conditions hold,
which is the case for normal mixtures with unequal variances, this criterion cannot be
applied. Nevertheless, for these mixtures, the root corresponding to the largest (finite)
local maximum of the likelihood is consistent. This can be shown in several ways using
results described in §2.2. Indeed, both the propositions of Hathaway (1985) and Redner
and Walker (1984) on the consistency of the global maximum in a constrained parameter
space, imply the consistency of the largest local maximum. Consequently, also for normal
mixtures with unequal variances, there exists a criterion based on the likelihood value to
choose a consistent root. It is the same kind of criterion as for ML estimation. In the
following, the likelihood estimate (LE) will refer to this root. Note that this result can be
generalized to other types of mixtures satisfying both Cramér’s conditions over the entire
parameter space and Wald’s conditions over any compact subspace.

4. The problem of spurious maxima

So far we have discussed that under the conditions of Cramér the LEQs contain a consistent
root, which is unique, has exactly the same properties as an MLE, and called an LE,
perhaps at the expense of a slight efficiency loss. Further, for many general finite mixtures,
including finite normal mixtures, this solution corresponds to the largest local maximum
of the likelihood. Nevertheless, McLachlan and Peel (2000) argue, amongst others, that
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Table 1. Some local maxima of the likelihood function of the simulated sample from
McLachlan and Peel (2000), with maxima in bold obtained by them. The first 3
maxima are the largest local maxima. The last row gives the MLE obtained from
estimating a normal distribution.

maximum w1 o1 o o9 T Log Likelihood
1 (LE) -0.830 | 0.000400 | 1.062 1.329 0.0198 -163.886
2 2.517 0.000650 | 0.995 1.338 0.0196 -165.528
3 -2.161 | 0.00850 | 1.088 | 1.277 | 0.0196 -165.937
4 0.908 1.405 1.712 0.467 0.855 -170.248
5 0.961 1.393 1.622 0.281 0.904 -170.254
6 -0.701 0.948 1.383 | 1.114 | 0.172 -170.558
MLE 1.025 1.342 -171.294

this largest local likelihood criterion cannot be followed since a so-called spurious maximum
can be chosen as LE. In particular, it was noted, when estimating a general finite normal
mixture, that for some samples the largest local maximum of the likelihood could correspond
to a maximum with implausible values for the parameters. Note that the presence of
“implausible” maxima in the likelihood function for these mixtures was already observed
by Day (1969).

To make more clear what is meant with a spurious maximum, we look at an example
given by McLachlan and Peel (2000). They generated a sample of size 100 from a 2-
component normal mixture with parameter values 1 = 0, 0y = 0o = 1, u2 = 2 and
m = 0.5. A normal QQ-plot of this sample is shown in Figure 2a. Two maxima of the
likelihood function were located. In Table 1, which gives the parameter values of several
maxima of this likelihood, they are referred to as maximum 3 and 6, respectively. Clearly,
of these two, maximum 3 has the largest likelihood value. But, it also has a value for m;
which is about 2/100 and a very small value for the shape parameter o;. Moreover, the first
component of the mixture (corresponding to maximum 3) is related to a subgroup of only 2
successive data points of the ordered sample. As such, it is highly unlikely that one would
consider that maximum 3 reflects the “truth”. This maximum is related to a pure random
cluster of data points in the sample and therefore it is called spurious. Further, the other
maximum found (i.e., maximum 6 in Table 1) was considered to be the LE, due to the fact
that its parameter values are much more plausible. Also, when the sample was binned into
7 intervals of equal width, apparently the parameter values of the MLE then obtained are
close to the parameter values of maximum 6, confirming their conclusion that maximum 6
was the LE. Hereby, binning the sample was regarded as a procedure to remove spurious
maxima since the occurrence of these maxima in the likelihood function was attributed to
the continuous nature of the data.

We also scanned the whole parameter space for solutions of the LEQs. A lot more
maxima than indicated by McLachlan and Peel (2000), are found. Note that it is out of
the scope of this paper to show how these maxima can be obtained. We developed some
methods based on the specific nature of a finite mixture model to scan the parameter space
in a well-reasoned way for solutions of the LEQs. These are explained in Andries et al.
(2004), introducing a starting value method for the finite (log)normal mixture model. Some
of the maxima found are given in Table 1. The first 3 maxima are the largest local maxima
of the likelihood function, the last 3 are the only maxima which have “plausible” parameter
values. Between maximum 3 and 4 more than 20 other maxima are situated.

Clearly, the largest local maximum was not obtained by McLachlan and Peel (2000) and
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Table 2. Local maxima of the likelihood function for several binned samples from the simu-
lated sample of McLachlan and Peel (2000). The symbol — 0 indicates that the maximum
would be attained in o = 0. The second column refers to the label of the maxima in Table 1.

# classes | max 1 o1 2 o9 T Log Likelihood
3 -2.199 | 0.0609 1.116 1.245 0.0274 -418.529
1 -0.515 | 0.00273 1.086 1.333 0.0384 -419.108
80 5 0.996 1.362 1.736 0.00770 | 0.959 -420.683
4 0.959 1.398 1.614 0.272 0.898 -421.199
6 -0.790 0.933 1.339 1.138 0.147 -421.726
3 -2.198 —0 1.117 1.248 0.0276 -371.523
50 5 0.992 1.368 1.699 -0 0.953 -374.233
4 0.985 1.375 1.672 0.0974 0.941 -374.244
6 -0.827 0.894 1.345 1.136 0.146 -374.834
3 -2.161 —0 1.110 1.254 0.0270 -281.169
20 4-5 0.946 1.408 1.638 0.205 0.893 -282.770
6 -0.814 0.906 1.369 1.118 0.159 -283.671
3 -2.216 —0 1.145 1.224 0.0293 -177.786
7 4-5 0.875 1.369 2.0748120 | 0.0793 0.836 -177.787
6 -0.507 0.927 1.541 1.011 0.239 -178.105

the likelihood function contains many more maxima than two. However, maximum 1 and
3 are similar in nature: both are truly spurious. As such, there is still the problem that the
LE is not believable or reflecting the truth. But, as noted from Table 1, there is also no a
priori reason to take maximum 6 as the LE. Why not choosing maximum 4 or 57 Indeed,
both have a larger likelihood value and their parameter values also seem plausible. The
only motivation for choosing maximum 6 as LE, is that it is the maximum closest to the
true values, with closest defined by some distance measure. However in real examples, one
does not know the true values, which underscores that there are no good grounds to choose
maximum 6 as the LE.

The argument that spurious maxima are due to the continuous nature of data is not
warranted either. Indeed, binning the sample into a number m of intervals with equal width
or introducing a measurement error ¢ for the data (Section 2.1), will not solve the problem
of spurious and multiple maxima of the likelihood function. The appearance of multiple
maxima of the likelihood function is due to the specific nature of a general mixture model.
In particular, it models clusters within a sample, whether these clusters are real or random.
Of course, the number of maxima of the likelihood, and so also of spurious maxima, found
will decrease when m becomes smaller (or § becomes larger), since clusters of the sample
with a small within variation will be “smoothed out”. But, how far can we decrease m (or
increase §) without smoothing out the “real” subdivision of the sample?

As an example, we binned the sample shown in Figure 2a into 80, 50, 20 and 7 classes
of equal width. In Table 2, some maxima of the likelihood functions for each binned sample
are given. From this table it is not only clear that spurious maxima do not necessarily
disappear when binning, but also that for this kind of samples apparently there are some
problems with the MLE too. Namely, for the samples binned into 50, 20 or 7 classes, the
supremum of the likelihood function is never attained within the parameter space. The
largest value of the likelihood would be obtained for 0y = 0 or o2 = 0. This value for o,
however, does not belong to the parameter space. Consequently, a global maximum of the
likelihood function does not exist, and so also the MLE. Note that this is similar to the case
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of the unbounded likelihood for the unbinned sample (which also corresponded to a value of
0 for one of the o parameters). Also here another local maximum has the same statistical
properties as the MLE. Further, binning the sample does not solve the problem of which
maximum to choose as the LE. As noted from Table 2, more than 1 plausible maximum
is present in the likelihood of the binned sample. Again, there is no reason to choose the
maximum related to maximum 6 as MLE. Clearly, although binning can be useful in a
sensitivity analysis (with respect to the results of the unbinned sample), it cannot be used
to pick out the real cluster in a sample.

To summarize, estimation procedures that pick out a maximum of the likelihood function
with “plausible” parameter values or look for a maximum with parameter values that are
close to the parameter values of the MLE obtained from a binned sample, are subjective, will
not lead to a consistent sequence of estimators and make the inference results unreliable. As
such, we do not recommend them. Nevertheless we cannot neglect that there is sometimes
a problem with the LE, in the sense that it does not reflect the true parameter values. In
the following we will try to clarify the situation. By means of some examples, we will first
draw a picture of the global problem. This is followed by a discussion and an attempt to
charactize the problem. To end, some guidelines are given of how to deal with spurious
maxima in practice.

4.1. Examples

4.1.1. Highly unstable samples

Consider again the sample shown in Figure 2a and discussed in detail previously. As men-
tioned before, the problem for this sample was that the parameter values of the LE were
implausible or not reflecting the truth. The reason for this spurious LE is the lack of
information available within the sample in order to fit a 2-component mixture. In other
words, although this particular finite mixture model (i.e., the mixture with parameter val-
ues w1 = 0, puo = 2, 01 = o2 and m = 0.5) is theoretically identifiable (Teicher, 1963),
numerically for this sample it is not. This can be observed in several ways:

e A single normal distribution can be used to model the sample satisfactorily. A test of
normality does not reject the null hypothesis for & = 0.005. The correlation between
the sample quantiles z(;) and ®*[(i —0.375)/(n+0.25)] is 0.9957. Moreover, without
prior knowledge that this sample is simulated from a 2-component mixture, no one
would fit a 2-component mixture to this sample.

e In Figure 2b the fit of the MLE obtained from a single normal distribution and the
fits of the two spurious maxima 1 and 3 are shown. Apart from a small deviation
in a small number of data points, the fits can hardly be distinguished. While one of
the two components of the mixtures (corresponding to these spurious maxima) fits
exactly 2 or 3 data points, the other component, for which the parameter values of
the scale and shape parameter resembles the parameter values of the MLE, has to fit
the rest of the sample. Figure 2c shows also the fit of the MLE of a single normal
distribution, but now with the fits of the three plausible maxima given in Table 1.
Again, the distinction between all 4 fits is minimal, certainly within the range of the
data.

e Figure 2d depicts (on normal distribution probability scales) the cumulative distribu-
tion function (cdf) of the true 2-component normal mixture with the cdf of a normal
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Fig. 3. A simulated and a real unstable sample.

distribution with the same mean and standard deviation of the mixture. As can be
observed, except for the extreme tail ends, these two distributions can hardly be dis-
tinguished. As a result, to identify a sample as coming from this mixture distribution,
the sample size has to be huge (i.e., over the 1000).

Thus, unless the sample size is unduly large, a single normal distribution can equally well
be used to fit a sample generated from this particular 2-component normal mixture. As
a result, solutions of the LEQs for which one of the two components of the mixture, fits
exactly 2 or 3 data points, will correspond to maxima at the top of the likelihood function,
i.e., maxima with a large likelihood value.

This sample is a typical example of what we define as a highly unstable sample with
respect to the 2-component normal mixture. This means that the largest local maximum of
the likelihood function can be altered through some minor perturbations in the sample, that
there are several maxima of the likelihood function with about the same large likelihood
value (Table 1) and that there is no maximum which dominates the likelihood function.

4.1.2. Unstable samples

Figure 3a shows the normal QQ-plot of a sample of size 30, simulated from a 2-component
normal mixture with parameter values u; =0, 01 =1, us =2, 0o = 0.5 and m; = 0.2. The
5 largest maxima of the likelihood function are given in Table 3. At first sight, there seems
to be no problem. The parameter values of the LE are credible and its fit is acceptable
(Figure 3b). Nevertheless, the parameter values of the LE are not at all in the neighborhood
of the true values, while those of the 2"¢ largest maximum are closest to the true values.
This means that the LE is also spurious, i.e., its parameter values do not reflect the truth,
in spite of the fact that it is not possible to derive it from the parameter values itself.
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Table 3. The 5 largest local maxima of the likelihood of the simulated sample
of size 30 shown in Figure 3a. The last row shows the MLE obtained when

estimating a normal distribution.

maximum 1 o1 2 o2 T Log Likelihood
1 (LE) 1.219 1.394 2.088 | 0.224 0.428 -32.941
2 0.171 1.457 2.028 | 0.498 0.168 -34.574
3 1.615 | 1.078 | 2.284 | 0.0323 | 0.849 -38.791
4 1.976 | 0.00367 | 1.699 | 1.053 | 0.0615 -40.060
5 2.316 | 0.00484 | 1.677 | 1.043 | 0.0607 -40.308
MLE 1.716 1.022 -43.228

13

As aresult, the problem is the same as in Section 4.1.1, only less pronounced. The reason
why the LE is spurious, is also the same: the sample size n is too small to distinguish the
true distribution. Moreover, the true 2-component normal mixture can numerically not
be identified. But, while in the previous section, the mixture could not be distinguished
from a single normal distribution, here it is clear from the QQ-plot in Figure 3a that a
normal distribution would not be appropriate, i.e., a straight line will not fit the sample
satisfactorily. However, there are two different 2-component mixtures which can be hardly
distinguished within the range of data. Outside this range, differences become marked.
Consequently, conclusions drawn will depend highly on which of the mixtures (i.e., which
of the two maxima at the top of the likelihood) is chosen. For example, the null hypothesis
of equal shape parameters versus the alternative of unequal shape parameters would be
rejected with the likelihood ratio test (Irt) if the first maximum was taken (LRT-value =
6.461), but accepted if the second maximum was considered (LRT-value = 3.195) on a 95%
level. Also the difference in estimation of the low quantiles could influence the decision
whether a physical component is accepted as reliable or not.

This sample is an example of an unstable sample, i.e., a few maxima, mostly with
plausible parameter values, are at the top of the likelihood function (Table 3). Small
perturbations in the sample can alter the largest maximum of the likelihood into one of the
other maxima at the top of the likelihood.

To end this section, Figure 3c shows that the situation discussed here, does occur in real
terms. A lognormal QQ-plot of a failure time sample of size 29, obtained from an experiment
carried out at the Institute for Materials Research (IMO), is given. The LE-fit of a 2-
component lognormal mixture is shown, together with the fit of the 2"¢ largest maximum.
As noted, the difference, between the two mixtures, with respect to the estimation of low
quantiles, will be large.

4.1.3. Stable samples

Figure 4a depicts the normal QQ-plot of a simulated sample of size 50 from a 2-component
normal mixture with parameter values u; = 0, 04 = 0.1, uo = 0, 02 = 2 and m; = 0.5.
Table 4 gives the 4 largest local maxima of the likelihood function. The LE has plausible pa-
rameter values and does reflects the true values. It is also the maximum closest to these true
values. Most other maxima found have implausible values for the parameters. Apparently,
the sample is large enough to distinguish one specific 2-component mixture. Moreover,
this sample is an example of a stable sample, i.e., the likelihood function is dominated by
one maximum, other maxima are pushed into the background. Small perturbations in the
sample will not alter the largest local maximum of the likelihood function. Further, the



14 E. Andries et al.

09 09 09
_ 05 05 _ 05

0.1 0.1 0.1

o
o
0.01 0.01 \ 0.01

1e-3 1e-3 1e-3
1e-4 1e-d 1e-d

(a) Normal QQ-plot of a
simulated sample of size 50
with LE fit. The true pa-
rameter values are p; =0,
0’121,#2:2,0'220.5
and m = 0.2.

(b) Normal QQ-plot of a
simulated sample of size
80 with LE fit and fit of
the 2"¢ largest maximum.
True parameter values are
pr =000 =1, pp =2
o2 = 0.5 and m = 0.4.

(¢) Lognormal QQ-plot of
a real failure time sample
of size 16 with the LE-fit.

Fig. 4. Simulated and real stable samples.

Table 4. The 4 largest local maxima of the likelihood of the simulated sample of size

50 shown in Figure 4a.

maximum

1 o1 2 o9 T Log Likelihood
1 (LE) 0.0100 0.0982 -0.0353 1.793 0.338 -73.709
2 0.0379 | 0.000316 | -0.0224 1.490 0.0397 -82.350
3 2.147 0.00576 -0.154 1.398 0.0582 -82.426
4 0.0189 | 0.00170 | -0.0215 | 1.4887517 | 0.0382 -85.627

difference between the first and the second maximum is large.

Another example of a stable sample is shown in Figure 4b. It is a sample of size 80,
simulated from a 2-component normal mixture with parameter values 1 = 0, o1 = 1,
o = 2, 09 = 0.5 and m; = 0.4. The 4 largest local maxima of the likelihood function
are tabulated in Table 5. Here, the largest local maximum is not so dominant as for the
previous sample, but it is resistant to small perturbations. Further, the difference between
the 15 and 3*"* maximum is considerable and the 2"¢ maximum has implausible parameter
values with a fit that differs a lot from the LE fit (Figure 4b). No other maximum with
reasonable parameter values is found at the top of the likelihood function. Also here, the
LE is the maximum closest to the true values.

Obviously, for these two examples, the LE can be trusted. Although many more maxima
with mostly implausible parameter values are present in the likelihood function, none of
them bother. The samples contain enough information, i.e., the sample size is large enough,
to numerically distinguish the underlying distribution. To conclude, Figure 4c gives a
lognormal QQ-plot of a real failure time sample together with the LE fit of a 2-component
lognormal distribution. It is an example of stable sample encountered in practice.
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Table 5. The 4 largest local maxima of the likelihood of the simulated sample of
size 50 shown in Figure 4b.

maximum ni o1 2 o9 T Log Likelihood
1 (LE) 0.360 1.075 2.068 | 0.511 0.367 -111.619
2 1.681 | 3.328e-005 | 1.436 | 1.139 | 0.0250 -112.388
3 1.681 0.00267 1.431 | 1.151 | 0.0458 -116.285
4 1.680 0.00139 1.433 | 1.145 | 0.0356 -116.855

4.2. Discussion
Previous examples made clear the problem, touched upon already by some, but never
treated in detail. Namely, when estimating a general 2-component normal mixture to a
sample, for certain samples the LE does not reflect the true parameter values. In other
words, the LE is unreliable. Sometimes, this is clear from the parameter values of the LE
itself, but equally well it may not be. Mostly, for these samples, a 2-component mixture
was numerically not identifiable. Moreover, we characterized them as being unstable with
respect to a 2-component mixture. As mentioned yet, the reason for this non-identifiability
or unreliable LE, is a too small sample size (if the true model is a 2-component mixture).
The cause is twofold. First, there is the fact that the “consistency” property of the LE is an
asymptotic concept. This means that only for a sufficiently large sample size the estimators
looked at will approach the true parameter values. For small sample sizes, on the contrary,
nothing is known about the performance of a consistent estimator. Note that for small
sample sizes, Hosmer (1973) already indicated that the MLE could be unreliable in case
of normal mixtures. Second, there would be no problem if the LEQs had only one root.
However, due to the nature of the mixture model itself, the LEQs contain many roots.
Having said this, the problem of an unreliable LE is not related to the case of likelihood
estimation only or to the mixture model only. It is inherent to all consistent estimators
obtained as a solution of the LEQs derived for a certain distribution. As such, it can just
as well happen in case of classical ML estimation. A simple example to demonstrate this is
the case of the one-parameter Cauchy location distribution (Barnett, 1966; Reeds, 1985).
Its density function is given by:

1

1@ = i o

(—o0 < 2,0 < ), (6)
with 0 a location parameter. This parametric family fulfills both the conditions of Cramér
and Wald (Perlman, 1983). Therefore, the MLE exists, is consistent and can be found as
a root of the LEQ. This equation, however, has usually more than 1 root or the likelihood
function has more than 1 maximum. Here, the presence of multiple maxima is related to the
absence of finite moments for the Cauchy location distribution. In particular, Reeds (1985)
showed that anomalous local maxima are related to outlying values of the sample which
arrive frequently due to the heavy tails of the Cauchy distribution. Similar to the case of
the mixture model, it is not possible to distinguish an anomalous root (i.e., a spurious root)
from a proper one in case the sample size is too small. As an example, Figure 5a depicts
the logarithm of the likelihood function of a sample of size 5, generated from the Cauchy
location distribution with location parameter # = 0. As noted, the likelihood function
has 4 maxima. The MLE corresponds to an anomalous root, since its parameter value
is quite far from 0 and it is the maximum farthest from the true value. According to the
definition introduced in Section 4.1.1, this is an unstable sample (with respect to the Cauchy
location distribution). Indeed, leaving out only one data point, will easily switch the global
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Fig. 5. Logarithm of the likelihood function of simulated samples from the Cauchy location distribution
with true parameter value 6 = 0.

maximum of the likelihood function into one of the other 3 maxima. If the sample size of this
sample is increased to 9, however, the sample becomes stable as shown in Figure 5b. One
maximum, i.e., the one closest to the true value, dominates the likelihood function. Clearly,
the same behavior is observed as for the examples discussed in Section 4.1. Namely, for
small sample sizes, the MLE cannot be trusted, while for large samples the MLE is reliable.
Importantly, the value of “small” and “large” depends highly on the distribution used. For
the one-parameter Cauchy distribution, a small sample size means a value not larger than
about 6, while a large sample size is from about 10 onwards. As such, in practice for this
distribution there will be no problems with the MLE, since usually the sample size will be
larger than 10. For the finite general mixture model, on the contrary, for some mixtures
a size of 50 will be large enough, while for others 1000 or even 10000 will not be sufficient
(Section 4.3). Consequently, the credibility of the LE is an important issue there.

Further it is interesting to observe a similarity between the surfaces of the likelihood for
small and large sample sizes in case the LEQs have multiple roots and in case they only
have one root. On the one hand, for a small sample size, the likelihood function will have
a (very) flat curvature in case the LEQs have a unique root. The flatness of the surface of
the likelihood in case the LEQs have multiple roots, is expressed through several maxima
which are at the top of the likelihood. One could think of a bumpy surface (Figure 5a).
On the other hand, the likelihood function will have a sharp curvature for a large sample
size in the one root case, while for the multiple root case the sharpness of the likelihood is
expressed through one dominating maximum (Figure 5b). This means that, while in the
one root case, a small sample size can be noticed through the large value of the standard
errors (which are in relation to the curvature of the likelihood function), this is not entirely
true for the multiple root case. There, it is important, as will be discussed in the following
section, to not only focus on the largest maximum, but to obtain an overall view of the
surface of the likelihood function. This is the only way to obtain information about the
credibility of the LE.
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Fig. 6. Cumulative distribution functions on a normal probability scale for the three groups of param-
eter values.

4.3. Guidelines

Apparently, for small sample sizes, the property of consistency for a likelihood estimator
when multiple roots are present in the LEQs, is not enough to guarantee that the estimator
is meaningful. As suggested several times in previous sections, a spurious maximum can,
on a purely theoretical basis, be defined as any maximum not closest to the true values,
with closest defined by some distance measure. As such, for each sample, there is only one
proper maximum. Importantly, for some sample size n on, this maximum will be equal
to the LE or MLE due to their consistency property. However, the sample size required
such that this holds, depends highly on the mixture used. To demonstrate the dependency
between the specific mixture and the sample size needed and to obtain an idea about how
large this sample size has to be, we carried out a small simulation study.

Samples are generated from a 2-component normal mixture model with 12 different
sets of parameter values divided into 3 groups of 4. In each group, only one parameter is
varied in order to study one aspect of the identifiability of the mixture, i.e., how well its
two component distributions can be identified from the mixture or how much the plot of
its cdf, when placed on a normal probability scale, deviates from a straight line. This is
related to mainly three aspects of the mixture: the difference in scale parameter of the two
component distributions, the size of the ratio of the two shape parameters and to a lesser
degree the size of the proportion parameter. In the first group, the scale parameter of the
second component, ps, is varied. It takes the values 1,2,3, and 4. The values of the other
parameters are pu; = 0, 07 = 09 = 1 and m; = 0.5. As noted from Figure 6a, the larger the
value of ps is, the better the component distributions can be identified from the mixture
distribution (or the more the plot of the cdf of the mixture deviates from a straight line).
For the second group, all parameters, except the shape parameter of the first component,
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Table 6. The number of times out of 1000 (k) that
the largest local maximum of the likelihood is a
spurious maximum for the first group of parameter

values.
Sample k (first group)
sizen | p2=1|p2=2| =3 | uo=4
20 951 933 842 589
50 988 971 794 279
100 996 972 587 35
200 997 970 213 0
300 998 964 51 0
400 997 942 12 0
500 999 888 2 0
1000 1000 642 0 0

Table 7. The number of times out of 1000 (k) that the
largest local maximum of the likelihood is a spurious
maximum for the second group of parameter values.

Sample k (second group)
sizen |o1=1]01=05|01=02]|01=0.1
20 943 845 435 208
50 964 622 60 10
100 970 227 1 0
200 910 14 0 0
300 812 0 0 0
400 744 0 0 0
500 616 0 0 0
1000 151 0 0 0

are kept fixed. The values for the parameters here are pu; = p2 = 0, 02 = 2, 1y = 0.5 and
o1 = 0.1, 0.2, 0.5, 1. In spite of the equality of the component means, the components of
the mixture can still be clearly identified if the ratio of the two shape parameters deviates
sufficiently from 1. The more it deviates from 1, the better the mixture can be identified
(Figure 6b). In the last group, the proportion parameter is altered from a small value
(0.2) over two average values (0.4 and 0.6) to a large value (0.8). The values for the other
parameters are u; = 0, 0y = 1, uo = 2 and o9 = 0.5. It is clear form Figure 6¢ that also
the value of m; has an influence on the identifiability of the mixture. The latter improves
for smaller values of ;. The reverse would be true if o1 < o».

For each set of parameter values, sample sizes of 20,50, 100, 200, 300, 400, 500 and 1000
were used, with 1000 simulations in each case. Results are summarized in Tables 6, 7 and 8.
The possible spurious nature of the LE was assessed through a comparison with the maxi-
mum closest to the true values. Here, closest is defined by the Euclidean distance, but with
the shape and proportion parameters rescaled such that their domain is the same as for the
scale parameters. The tabulated value k is then the number of times out of 1000 that the
LE is spurious. The value of k£ should go to 0 when n increases.

Clearly, for all sets of parameter values, except for one set shown in the first column
of Table 6, the value of k shows finally a decreasing trend. The dependency between the
identifiability of the mixture and the sample size required such that the LE is the maximum
closest to the true values, is evident from the tables. Moreover, the value of k goes relatively
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Table 8. The number of times out of 1000 (k) that the
largest local maximum of the likelihood is a spurious max-
imum for the third group of parameter values.

Sample k (third group)
sizen |m =08 | m=06]|m=04]m =02
20 906 803 691 643
50 927 712 408 287
100 901 475 101 64
200 787 100 25 28
300 637 23 13 15
400 428 10 9 17
500 271 3 5 10
1000 9 0 3 4

fast to 0 for mixtures that can be clearly identified (i.e., the last one or two columns in each
table). For some sets of parameter values a sample size of 100 or lower would be sufficient,
while for others a sample size of 200 is required. But, for some poorly identifiable mixtures,
although k shows at last a decreasing trend, 0 is not reached for even a sample size of
1000. The worst case is the mixture with parameter values 3 = 0, us =1, 01 = 05 = 1
and m; = 0.5 (1% column in Table 6), where k does not show at all a decreasing trend
before a sample size of 1000. For the given sample sizes, it even gets worse as n increases.
For example, for n = 1000, in none of the generated samples, the LE was equal to the
maximum closest to the true values. The reason is clear: this specific mixture can be
hardly distinguished from a single normal distribution. As seen in Figure 6a, the cdf of
this mixture is practically a straight line. It is doubtful that any sample of this particular
mixture distribution will be ever identified as coming from a mixture.

In summary, from some sample size onwards, the LE will be a good estimator. But the
sample size required depends highly on how well the component distributions of the true
mixture can be identified. For some mixtures, a very small sample size will be sufficient,
but for others even a huge sample size will not do.

Although in theory the definition of a spurious maximum sounds nice, in practice there
is one big problem: the “truth” is not known. It is not possible to search for the maximum
closest to the true values. It is possible, however, to search for the LE. As shown, if
the sample size is large enough, the LE will be the maximum closest to the true values.
In other words, it will not be spurious. But, the sample size required is not known either.
Fortunately, the stability of a sample gives an excellent idea whether the sample size is large
enough, i.e., whether the LE can be trusted. We derived some easy to use but important
guidelines. They are based on the fact that not only the LE has to be looked at, but also
other maxima of the likelihood function.

e The sample is highly unstable, i.e., many maxima from which a lot have implausible
parameter values are at the top of the likelihood function (Section 4.1.1). If the true
distribution is a 2-component mixture distribution the sample size is far too small
to detect this mixture. One can select from several options, apart from proceeding
with the LE: look for prior information (for example, physical background), increase
sample size or use a simpler model. For example, for the sample used in Section 4.1.1,
a normal distribution would equally well fit this sample. Moreover, an increase of
sample size would not help in this case, unless it would be huge.
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Fig. 7. Simulated sample of size 40 from a 2-component normal mixture with parameter values
M1 = 0, o1 = 0.005, M2 = 2.5,02 =0.5 and w1 = 0.06

e The sample is unstable, i.e., a few maxima which have mostly credible parameter
values, are dominating the likelihood function (Section 4.1.2). Generally, if the true
distribution is a 2-component mixture distribution, the sample size is somewhat too
small to distinguish between several 2-component mixtures. Often, a worst-case sce-
nario can be used: based on the few maxima dominating the likelihood function,
several analyses are carried out. The one with worst results (with respect to what
is asked) is taken. Again prior information or an increase of the sample size could
help. For example, for the real sample shown in Section 4.1.2, information of other
experiments led to the 2"? maximum (and not the LE) as the proper one.

e The sample is stable, i.e., one maximum dominates the likelihood function or the
largest maximum is followed by maxima which have only implausible parameter values
(Section 4.1.3). There is nothing in such a case, suggesting that the LE cannot be
trusted.

The stability of a sample (with respect to any model) tells a lot about the credibility of the
LE or MLE. Obviously, the likelihood function will have to be scanned for local maxima
in a well-reasoned way. One way to deal with that in case of 2-component (log)normal,
Weibull or smallest extreme value mixtures, is explained in Andries et al. (2004), a paper
constructing starting values for these mixtures. Further, an extension of these guidelines to
mixtures with more than 2 components or other component distributions is evident.

To end this discussion, note that not all maxima with a very small value for the pro-
portion parameter are spurious. This occurs, for example, in case the sample has a small
group of outliers. In this situation, the guidelines represented above, do hold equally well.
As an example, consider the sample shown on a normal QQ-plot in Figure 7a. This sample
of size 40 is simulated from a 2-component normal mixture with parameter values p; = 0,
o1 = 0.005, py = 2.5, 05 = 0.5 and m; = 0.06. As observed, the sample has a subgroup of
two outlying data points. Table 9 gives the 3 largest local maxima, of the likelihood function.
Based on the difference in likelihood value between the first and the second maximum, this
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Table 9. The 3 largest local maxima of the likelihood of the simulated sample of
size 40 shown in Figure 7.

maximum ni o1 o o9 T Log Likelihood
LE -0.00257 | 0.00143 | 2.502 | 0.530 | 0.0450 -27.452
2 2.608 0.000151 | 2.365 | 0.769 | 0.0497 -37.104
3 2.606 0.00355 2.361 | 0.776 | 0.0677 -40.979

sample is stable. So, in spite of the small value of the proportion parameter, the LE can be
trusted, and indeed it reflects the true parameter values.
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