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Abstract 

Hierarchical classes (HICLAS) models constitute a distinct family of structural 

models for N-way N-mode data.  All members of the family include N 

simultaneous and linked classifications of the elements of the N modes implied 

by the data; those classifications are organized in terms of hierarchical, if-then 

type relations.  Moreover, the models go with comprehensive, insightful graphical 

representations.  Up to now the hierarchical classes family has been limited to 

dichotomous or dichotomized data.  In the present paper we propose a novel 

extension of it to two-way two-mode rating data (HICLAS-R).  The HICLAS-R 

model preserves the representation of simultaneous and linked classifications as 

well as of generalized if-then type relations, and keeps going with a 

comprehensive graphical representation.  It is shown to bear interesting 

relationships with classical real-valued two-way component analysis and with 

methods of optimal scaling. 
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 The family of hierarchical classes models (acronym: HICLAS) as introduced 

by De Boeck and Rosenberg (1988), and further extended by Van Mechelen, De 

Boeck, and Rosenberg (1995), Leenen, Van Mechelen, De Boeck, and Rosenberg 

(1999), and Ceulemans, Van Mechelen, and Leenen (2002), constitutes a 

distinct family of structural models for binary N-way N-mode data D.  

Hierarchical classes analysis of a binary I1 × I2 ... × IN data array D approximates 

D with a same-sized binary reconstructed data array M that is represented by a 

hierarchical classes model.  A hierarchical classes model implies N binary In × Pn 

matrices An (n=1, ..., N) and possibly one binary P1 × P2 × ... × PN array G.  The 

matrices An are called bundle matrices, the array G is called the core and (P1, P2, 

... , PN) is called the rank of the hierarchical classes model.  Three types of 

relations implied by M are represented by the bundle matrices and the core: 

equivalence, hierarchy and association. 

 Equivalence relations are defined on each of the modes of M as follows: 

Each element of the n-th mode corresponds with an I1 × ... × In-1 × In+1 × … × IN 

subarray of M; two elements of the n-th mode are equivalent iff they correspond 

with identical such subarrays.  By the representation of these equivalence 

relations and the resulting partitions into equivalence classes, a hierarchical 

classes model includes N simultaneous classifications of the elements of each of 

the modes of M. 

 Similarly, hierarchical relations are defined on each of the modes of M.  

The latter relations are of the if-then type and can be defined as quasi-orders on 

the elements of each mode, or as partial orders on the corresponding equivalence 

classes.   One element/class of the n-th mode is hierarchically below a second 
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element/class of that mode if the subarray corresponding to the first is less than 

or equal to the subarray corresponding to the second (in terms of the natural 

order defined on arrays: 
1 1

'
1 ... ...A A'  iff  ,..., : i i i ii i a a

ν νν≤ ∀ ≤ ).  By the 

representation of these hierarchical relations, the N simultaneous classifications 

included in a hierarchical classes model turn into N hierarchically organized 

partitions.  One may note that, although asymmetric, implicational relations are 

often of key substantive interest in psychological research, the formal models 

and methods of analysis that can properly deal with them are only few in 

number.  The representation of the N if-then type hierarchies may therefore be 

considered an important contribution of the hierarchical classes approach. 

 The association relation is the N-ary relation among the N modes of M as 

defined by the 1-entries in M.  Alternatively, this relation may be defined in terms 

of classes as an N-ary relation between the N partitions implied by M; the  

association relation may therefore be considered a linkage system between the N 

hierarchically organized partitions.  By the representation of the association 

relation, M may be fully reconstructed from a hierarchical classes model. 

 Various hierarchical classes models have been proposed, which differ in 

the way they represent the three types of relations as outlined above.  Each of 

the models goes with an insightful graphic representation that gives a 

comprehensive account of the three types of relations. 

 Up to now, the hierarchical classes family has been limited to binary (0/1) 

data.  To deal with polytomous data, and in particular with rating data with 

integer values ranging from 0 to V, up to now a dichotomization of the raw data 

was done prior to the actual hierarchical classes analysis.  In order to avoid the 
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resulting loss of information, one may consider to use simultaneous multiple 

dichotomizations that, for example, in the case of two-way two-mode object by 

attribute data, comes down to a replacement of each single attribute by a series 

of dummy variables; this strategy, however, as a side-effect results into an 

expansion of one of the modes of the data, which may typically hamper the 

transparency and interpretability of the corresponding hierarchical classes 

models. 

 In the present paper, we propose a novel extension of the hierarchical 

classes approach to two-way two-mode rating data (acronym: HICLAS-R).  The 

extended hierarchical classes model includes the representation of natural 

generalizations of the relations of equivalence, hierarchy, and association; 

moreover, it goes with a comprehensive graphical representation.   The extended 

model further can be shown to bear interesting links with the two-way real-

valued principal component analysis model as well as with methods of optimal 

scaling. 

 The remainder of this paper is organized as follows: Section 1 briefly 

recapitulates two major existing instances of hierarchical classes models for 

binary data as well as the associated data analysis.  Section 2 introduces the 

novel hierarchical classes model and associated data analysis for two-way two-

mode rating data.  The model is illustrated with an empirical application in 

Section 3.  Section 4 discusses the relation of the novel hierarchical classes 

model with other models both inside and outside the hierarchical classes family, 

as well as possible model extensions. 
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1. Hierarchical Classes Models and Associated Data Analysis for Binary Data 

1.1 Models 

 We recapitulate the essentials of the hierarchical classes modeling of 

binary data through two major representatives of the HICLAS family: the 

disjunctive HICLAS model for two-way two-mode data, as originally introduced 

by De Boeck and Rosenberg (1988), and the disjunctive Tucker3-HICLAS model 

for three-way three-mode binary data, as proposed by Ceulemans, Van 

Mechelen, and Leenen (2002).  As will further appear, especially the latter model 

for binary three-way data will turn out to play a key role in the modeling of two-

way rating data. 

 

 1.1.1 The disjunctive two-way HICLAS model.  A rank P disjunctive two-

way HICLAS model for an I × J reconstructed data matrix M implies a binary I × 

P bundle matrix A and a binary J × P bundle matrix B.  The relations of 

equivalence, hierarchy, and association are represented by these bundle matrices 

as follows: (a) Equivalent elements of Mode 1 (2) have identical rows in A (B).  

(b) Two elements/classes of Mode 1 (2) are hierarchically related iff for their row 

vectors in A (B) it holds that the vector of the first is less than or equal to the 

vector of the second. (c) For the association of the i-th element of Mode 1 with 

the j-th element of Mode 2, it holds that: 

 

  
1

P

ij ip jp
p

m a b
=

= ⊕                    (1) 

 



 

 7 

where ⊕  denotes a Boolean sum.  Rule (1) means that the disjunctive two-way 

HICLAS model may be considered to imply a one-to-one relationship between the 

Mode 1 and Mode 2 bundles, with elements of Mode 1 and Mode 2 being 

associated iff they belong to at least one pair of corresponding bundles.  Note 

further that from (1) one may immediately derive the association relation 

between the classes of the two modes. 

 To illustrate, we will make use of the leftmost matrix in Table 1 as a 

hypothetical reconstructed data matrix M.  Table 2 contains a rank 2 disjunctive 

HICLAS model for M.  A graphic representation of this model is presented in 

Figure 1.  The upper half of the figure represents the partition of the first mode, 

and the lower half that of the second mode.  The hierarchical relations are 

represented by the links between the boxes that denote the equivalence classes; 

note that the hierarchy of the second mode is represented upside down.  The 

association relation can be read from the figure as follows: An element/class of 

the first mode is associated with an element/class of the second iff it is linked to 

it via a downward path of links and a dashed line. 

  

 1.1.2 The disjunctive Tucker3-HICLAS model.  A rank (P,Q,R) disjunctive 

Tucker3-HICLAS model for an I × J × K  reconstructed data array M implies  

binary I × P , J × Q, and K × R  bundle matrices A, B and C and a binary P × Q × 

R core array G.  The relations of equivalence, hierarchy, and association are 

represented by the bundle matrices and the core as follows: (a) Equivalent 

elements of Mode 1 (2, 3) have identical rows in A (B, C). (b) Two 

elements/classes of Mode 1 (2, 3) are hierarchically related iff for their row 
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vectors in A (B, C) it holds that the vector of the first is less than or equal to the 

vector of the second.  (c) For the association of the i-th element of Mode 1, the 

j-th element of Mode 2 and the k-th element of Mode 3, it holds that: 

 

1 1 1

P Q R

ijk ip jq kr pqr
p q r

m a b c g
= = =

= ⊕⊕⊕                  (2) 

 

The latter means that, according to the Tucker3-HICLAS model, elements of the 

three modes are associated iff there is at least one triplet of bundles to which the 

three elements belong and that are associated in the core G. 

 To illustrate, we will make use of the two matrices in Table 1 as a 

hypothetical reconstructed data array M, with Mode 3 being equal to {α,β,γ}.  

Table 3 contains a disjunctive rank (3,2,2) Tucker3-HICLAS model for M.  A 

graphic representation of this model is presented in Figure 2.  The upper half of 

the figure represents the partition of the first mode and the lower half that of the 

second mode, whereas the partition of the third mode is represented separately 

at the right side of the figure.  The hierarchical relations are represented by the 

links between the boxes that denote the equivalence classes; note that the 

hierarchy of the second mode is represented upside down.  Regarding the 

association relation, the bottom classes of each pair of a Mode 1 bundle p and a 

Mode 2 bundle q that pertain to at least one nonzero core element gpqr are linked 

with a dashed line; the link is further labeled with a diamond that contains all 

Mode 3 elements belonging to some Mode 3 bundle r with gpqr=1.  The 

association relation then can be read from the figure as follows: An 
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element/class of Mode 1 is associated with an element/class of Mode 2 

according to some element/class of Mode 3, iff the first is linked to the second 

via a downward path of links and a diamond that contains the third. 

 

1.2 Data Analysis 

 The aim of a disjunctive two-way hierarchical classes analysis in rank P of 

a data matrix D is to approximate D as closely as possible with a reconstructed 

data matrix M that can be represented by a rank P disjunctive hierarchical classes 

model.  In particular, closeness is formalized in terms of the (least absolute 

deviation or, equivalently,  least squares) loss function L, 

 

  
,

ij ij
i j

L m d= −∑ .           (3) 

 

 The two-way HICLAS algorithm comprises two routines.  In the first 

routine, the two bundle matrices are alternatingly re-estimated, conditional on 

the other bundle matrix, and starting from an initial estimate for one of the 

bundle matrices; the estimation is done such that in each step the reconstructed 

data matrix M implied by the two matrices according to (1), yields a minimal 

value for (3).  In the second routine, the final bundle matrices resulting from the 

first routine are transformed such as to correctly represent the relations of 

equivalence and hierarchy in M; the latter can be done without affecting the 

value of the loss function L. 
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 Similarly, the aim of a disjunctive Tucker3-HICLAS analysis in rank (P,Q,R) 

of a data array D is to approximate D as closely as possible by a reconstructed 

data array M, in terms of the loss function L,  

 

  
, ,

ijk ijk
i j k

L m d= −∑ ,           (4) 

 

and such that M can be represented by a rank (P,Q,R) Tucker3 hierarchical 

classes model.  Again, the Tucker3-HICLAS algorithm comprises two routines.  

In the first routine, each of the bundle matrices and the core is re-estimated, 

conditional upon all the others, and starting from an initial estimate for all bundle 

matrices; the estimation is done such that in each step the value of L in (4) is 

minimal for the array M obtained through (2) from the bundle matrices and the 

core array.  In the second routine, the bundle matrices resulting from the first 

routine are once again transformed such as to correctly represent the relations of 

equivalence and hierarchy in M; the latter again can be done without affecting 

the value of the loss function L. 

 

2. A Hierarchical Classes Model and Associated Data Analysis for Two-Way 

Rating Data 

2.1 Model 

 We assume a two-way two-mode I × J data matrix D with integer values 

ranging from 0 to V.  Hierarchical classes analysis will approximate D by an I × J  

reconstructed data matrix M with integer values ranging from 0 to V that can be 

represented by a HICLAS-R model.  As a guiding example for the remainder of 
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this section, we consider the hypothetical reconstructed rating data matrix that is 

presented in Table 4. 

 We want the HICLAS-R model to represent three aspects of M that 

constitute straightforward generalizations of the three relations represented by 

HICLAS models of binary data: (a) equivalence, (b) hierarchy, and (c) association.  

In particular: (a) Two Mode 1 (2) elements are equivalent iff they correspond 

with identical rows (columns) in M.  (b) One element/class of Mode 1 (2) is 

hierarchically below another element/class of that mode iff the row (column) in M 

defined by the first is less than or equal to the row (column) defined by the 

second; the latter means that, if the first element/class is associated with an 

element/class e of the other mode at some level of association strength, then the 

second element/class is associated with e at a level of association strength that 

is at least as high.  (c) Association refers to the mapping defined by the entries in 

M, which maps each pair of row and column elements/classes onto the 

corresponding value in the value set {0, 1, ..., V}.  For example, from Table 4, it 

appears that b and c are equivalent, that c is hierarchically below d, and that the 

pair (c,β) is mapped onto 2. 

 In order to introduce the HICLAS-R model, we first define the following 

recoding function t that maps the set of all I × J matrices with entries in {0, 1, 

..., V} into the set of all binary I × J × V arrays: 

 

  
( ) ( ) { }

{0,1}

1 if
M t M , with  t M , 1,..., .

0 otherwise

I J I J V

ij
ijv

m v
v V

× × ×→
≥

= ∈


!

"
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The transformation t can be considered a standard dummy recoding according to 

an ordinal coding scheme, with, however, the arrangement of the recoded data 

into a three-way array as a special feature.  As an example, Table 5 contains the 

image t(M) of the rating data matrix of Table 4. 

Note that the recoded matrices satisfy the following property: 

 

  '' : t(M) t(M)ijv ijvv v∀ ≤ ≤ .          (5) 

 

Note further that the transformation t preserves the relations of equivalence in 

the two data modes, in that two elements of Mode 1 (2) are equivalent in M iff 

the corresponding elements of Mode 1 (2) in t(M) are equivalent; similarly, t also 

preserves the hierarchical relations in that one element of Mode 1 (2) is 

hierarchically below a second element of that mode iff the corresponding 

elements in t(M) are hierarchically related. 

 A rank (P,Q,R) HICLAS-R model for an I × J reconstructed rating data 

matrix M now can be defined as a rank (P,Q,R) disjunctive Tucker3-HICLAS 

model of the recoded binary I × J × V array t(M).  The latter implies binary I × P, 

J × Q  and V × R  bundle matrices A, B and C and a binary P × Q × R core array 

G.  The relations of equivalence and hierarchy in t(M) are represented by the 

bundle matrices A, B, and C.  Since t preserves equivalence and hierarchy, it 

immediately follows that the relations of equivalence and hierarchy in M are also 

represented by A and B.  Regarding association, it holds that: 
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1 1 1

t(M)
P Q R

ijv ip jq vr pqr
p q r

a b c g
= = =

= ⊕⊕⊕ ,                (6) 

 

and therefore: 

 

1 1 11

V P Q R

ij ip jq vr pqr
p q rv

m a b c g
= = ==

= ∑⊕⊕⊕ .                 (7) 

 

The latter can be rewritten as: 

 

1,..., 1,..., 1,...,1

Max Max Max
V

ij ip jq vr pqrp P q Q r Rv

m a b c g
= = ==

= ∑ .       (8) 

 

Given that all entries at the right-hand side of (8) are 0/1, and given that C 

represents the hierarchy of the value mode (which, in view of (5), implies that 

'' : vr v rv v c c∀ ≤ ≤ ), it follows that (8) can be further rewritten as: 

 

1,..., 1,..., 1,..., 1

Max Max Max
V

ij ip jq pqr vrp P q Q r R v

m a b g c
= = = =

= ∑    

        
1,..., 1,..., 1,...,

Max Max Max ip jq pqr rp P q Q r R
a b g c

= = =
= #  

        
1,..., 1,..., 1,...,

Max Max Maxip jq pqr rp P q Q r R
a b g c

= = =
= # , 

 

with 
1

V

r vr
v

c c
=

= ∑# .  Or, 
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1,..., 1,...,
Max Maxij ip jq pqp P q Q

m a b g
= =

= # ,      (9) 

 

with 
1,...,

Maxpq pqr rr R
g g c

=
=# # .  Note that, in (9), A and B are binary matrices whereas G#  

is a matrix with rating values.  Note also that from the above derivation follows 

that G# , in addition to the value of 0, takes exactly R different values.  As a 

matter of fact, it is easy to show that, provided the latter constraint, equations 

(8) and (9) are equivalent.  As a key equation of the HICLAS-R model, (9) implies  

that a Mode 1 element is associated with a Mode 2 element at the maximum 

level of association indicated in the core matrix for a pair of bundles to which the 

two elements belong. 

 Table  6 contains a disjunctive rank (3,3,3) HICLAS-R model for the 

reconstructed rating data matrix of Table 4.  More in particular, the table 

contains the bundle matrices, the binary core array G and the rating-valued core 

matrix G# . 

 The HICLAS-R model can be given a comprehensive graphic 

representation.  The latter comes down to the graphic representation of the 

corresponding Tucker3-HICLAS model, with the value mode being represented in 

the diamonds between the Mode 1 and Mode 2 hierarchies; note that the 

representation of the value mode may be simplified by entering in each diamond 

the maximum value of the corresponding value bundles only.  As an example, 

Figure 3 contains a graphic representation of the HICLAS-R model of Table 6.  

Note that a HICLAS-R graphic representation can be derived in a straightforward 

way from the bundle matrices A and B and the rating-valued core matrix G#  of 



 

 15 

the model: Hasse diagrams can be derived from the quasi-orders implied by A 

(B), with the addition of possibly empty bottom classes of both hierarchies;  

next, a dashed link is to be drawn between each pair of bundles/bottom classes 

of the Mode 1 and Mode 2 hierarchies corresponding with a nonzero value in G# ; 

the latter value is further entered as a label in the diamond on the link.  From the 

graphic representation, one may immediately read, in the usual way, the relations 

of equivalence and hierarchy in the two modes of the reconstructed rating data 

matrix.  Regarding association, it holds that two elements are associated at the 

level of the maximum of the values in the diamonds on all downward paths 

linking them with one another. 

 

2.2 Data Analysis 

 The aim of a disjunctive HICLAS-R analysis in rank (P,Q,R) of a rating-

valued data matrix D is to approximate D as closely as possible with a 

reconstructed rating-valued data matrix M that can be represented by a rank 

(P,Q,R) HICLAS-R model.  Again, closeness is formalized in terms of the loss 

function L, 

 

  
,

ij ij
i j

L m d= −∑ .         (10) 

 

L, however, now is a least absolute deviation but not a least squares loss 

function. 

 As a naive algorithmic strategy to achieve this goal, one may consider to 

apply the Tucker3-HICLAS algorithm to the recoded data t(D).  Application of 
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this strategy in 5 different ranks to each of 180 simulated data sets, however, 

resulted in a small amount of the cases (.55%) in reconstructed binary three-way 

arrays that did not satisfy property (5); the latter implies that the reconstructed 

arrays do not belong to the range of the transformation t, and, hence, that they 

cannot be backtransformed to reconstructed rating data matrices M.  One may 

wonder whether these failures are due to a weakness of the Tucker3-HICLAS 

algorithm (which might, e.g., sometimes end up in local minima, whereas, for the 

global minimum, property (5) might be conjectured to hold).  However, the 

counterintuitive proposition holds that there exist rating-valued data matrices D 

and ranks (P,Q,R), such that the optimal rank (P,Q,R) Tucker3-HICLAS model of 

t(D) does not satisfy property (5), whereas all Tucker3-HICLAS models of t(D) in 

the same rank that do satisfy (5) take a higher value on the loss function (10).  

To illustrate, the appendix contains an example of such a rating-valued data 

matrix D as well as the associated optimal Tucker3-HICLAS model of t(D) that 

does not satisfy (5). 

 As a way out for this problem, a modification of the Tucker3-HICLAS 

algorithm was developed.  In the first routine of the modified algorithm, each 

conditional re-estimation of the value bundle matrix C was constrained to 

solutions of the Guttman scale type that inversely reflect the order of the values 

(i.e., if 'v v≤  then '1,..., : v r vrr R c c∀ = ≥ ); the latter further implies that (5) is 

satisfied for the reconstructed binary data array.  The performance of this 

algorithm was evaluated in an extensive simulation study (Ceulemans & Van 

Mechelen, 2002a).   From the latter, it appeared that the modified Tucker3-

HICLAS algorithm has a good performance in terms of goodness of fit (i.e., in 
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terms of the algorithm’s primary objective, the minimization of the loss function 

(10)), and a satisfactory performance in terms of goodness of recovery (i.e., in 

terms of retrieval of the truth underlying the error-perturbed data); regarding the 

latter, it should be noted, however, that goodness of recovery appears to be 

somewhat less good for the combination of small-sized data sets with high error 

levels (20% or more). 

 

3. Illustrative Application 

 We fitted the HICLAS-R model to data from a study on helping behavior.  

A group of 102 students was presented an experimental list with 16 descriptions 

of everyday emergency situations with a victim that could possibly be helped by 

the subject.  The list was constructed on the basis of a facet-theoretic design, 

the facets being: extent of the victim’s distress (low vs. high) and the subject’s 

expectation to get something in return for possible help (no vs. yes).  The 

students were asked to rate each situation with respect to the extent they would 

be willing to help the victim in it.  For this purpose they had to use a rating scale 

from 0 (definitely not) through 6 (definitely yes). 

The resulting 102 by 16 rating data matrix was subjected to HICLAS-R 

analyses in ranks (1,1,1) through (6,6,6).  A generalized scree test on the 

resulting proportions of discrepancies (Ceulemans, Van Mechelen & Leenen, 

2002) suggested that either a (2,2,2) or a (2,3,3) solution was to be preferred.  

On the basis of interpretational considerations, we finally retained the (2,3,3) 

solution.  The latter had 13.9 % discrepancies and a Jaccard goodness-of-fit 

value of .83. 
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 Figure 4 contains a graphic representation of the (2,3,3) model.  Regarding 

the situation hierarchy, it immediately appears from the figure that the situations 

constitute a three-level Guttman scale, which means that they imply a 

quantitative dimension (Gati & Tversky, 1982).  In order to derive a substantive 

psychological interpretation for this dimension, the position on it (quantified as 1, 

2, 3) was correlated with external ratings of the situations as obtained from 

expert judges.  The two highest correlations were obtained for ratings of the 

extent to which the situation was frustrating (r=-.74) and of the extent to which 

it was emotionally threatening for the potential helper (r=-.73).  These 

correlations are remarkably high, especially given the fact that the situation 

Guttman scale comprised three different levels only.  Apparently, overall extent 

of willingness to help in an emergency situation, unlike what one might expect, 

does not primarily depend on straightforward situation characteristics such as 

extent of the victim’s distress (for which r=.29 only).  Rather, willingness to 

help appears to be especially low in emergency situations that are frustrating or 

unpleasant for the potential helper. 

 Regarding the value hierarchy, in line with the rank of the value mode, the 

HICLAS-R model contains, in addition to zero, three values only from the original 

seven point rating scale (0-6).   These values are: 3 (the scale midpoint), 4 (the 

value just above the scale midpoint), and 6 (the maximum value).  We may 

conclude that our analysis sheds light on how the rating scale was used by our 

subjects, the major distinctions being: refusal to help (0), doubt (3), weakly 

positive answer (4) and clear willingness to help (6). 
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 Regarding the person hierarchy, we observe that three person types can be 

distinguished.  Unlike the situation classes, they do not constitute a Guttman 

scale.  The characteristic reponse profiles of each of the person types may be 

read from the graphic representation in Figure 4.  The profiles can also be given 

an alternative graphic representation, as shown in Figure 5; the construction and 

interpretation of this alternative representation is facilitated by the quantitative 

dimension underlying the situation hierarchy.  One may first note that all 

response profiles in Figure 5 are nondecreasing; the latter necessarily follows 

from the Guttman scale structure of the situation classes.  Furthermore, the 

response profile of Person Type I reflects a rather clear-cut, categorical nature; 

the persons of this type are willing to admit clearly that they do not intend to 

help in highly unpleasant situations, whereas, at the same time, they are also 

willing to express a definite intention to help in lowly unpleasant situations; 

moreover, they do not leave room for doubt (3: midpoint score) in their response 

profile.  Persons of Person Type II display a large amount of doubt and avoid 

extreme responses of any kind; as a result, they do not differentiate considerably 

between situations at distinct levels of unpleasantness.  Finally, persons of 

Person Type III do not want to give clearly negative answers, whereas they do 

express a definite intention to help in lowly unpleasant situations. 

 

4. Discussion 

In this section we first discuss the novel HICLAS-R model in relation with 

other models, both within and outside the hierarchical classes family (4.1).  Next 

we discuss possible model extensions (4.2). 
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4.1 Relation with Other Models 

4.1.1 Relation with other HICLAS models.  In line with the other HICLAS 

models, the novel HICLAS-R model preserves the representation of simultaneous 

and linked classifications as well as of generalized if-then type relations.  

Moreover, the HICLAS-R model keeps going with a comprehensive graphical 

representation. 

 It should further be clear that the HICLAS-R model naturally extends the 

disjunctive two-way HICLAS model for binary data as developed by De Boeck 

and Rosenberg (1988).  In this respect, one may note that, in case of binary 

reconstructed data M, the core matrix G#  in (9) is binary; furthermore, in the 

same case, the Max-operators in (9) come down to Boolean sums.  Hence, (9) 

can then be rewritten as follows: 

 

1,..., 1,...,
Max Maxij ip jq pqp P q Q

m a b g
= =

= #  

        
1 1

P Q

ip jq pqp q
a b g

= =
= ⊕ ⊕ #  

        
1 1

P Q

ip jq pqp q
a b g

= =
= ⊕ ⊕ #  

       
1

P

ip jpp
a b

=
= ⊕ # , 

 

with 
1

Q

jp jq pqq
b b g

=
= ⊕# # .  The latter makes clear that (9) is equivalent to the 

association rule (1) of the disjunctive two-way HICLAS model. 
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 In spite of the striking similarities between the HICLAS and HICLAS-R 

models, one should take care not to erroneously transfer features of the original 

HICLAS model to its HICLAS-R counterpart.  For example, if in a regular HICLAS 

model the hierarchy of one mode constitutes a Guttman scale, then the same 

necessarily also holds for the other mode; this, however, is not the case for the 

HICLAS-R model, as illustrated by the model of the helping data of Section 3.  

Moreover, whereas in the regular two-way HICLAS model the hierarchies of both 

modes necessarily have the same complexity (i.e., the same number of bottom 

classes or underlying bundles), and whereas there is a one-to-one relationship 

between the bundles/bottom classes of both modes, this does not have to be the 

case in the HICLAS-R model.  As a matter of fact, the HICLAS-R model may be 

considered to inherit both features of the regular two-way HICLAS model (viz., 

the inclusion of two bundle matrices) and of the Tucker3-HICLAS model (viz., 

the possibility of different numbers of bundles for different modes, and the 

inclusion of a core). 

One may note that the HICLAS-R model can be constrained such as to re-

install a one-to-one relationship between the Mode 1 and Mode 2 bundles.  The 

latter can be achieved by constraining the core matrix G#  in (9) to a diagonal 

matrix.  A sufficient (though not necessary) condition for this is to assume that 

the three-way core array G in (6) is a so-called “superidentity” array, which 

means that t(M) is represented by an INDCLAS model (i.e., the 

CANDECOMP/PARAFAC counterpart of the Tucker3-HICLAS model: see Leenen, 

Van Mechelen, De Boeck, & Rosenberg, 1999). 

 



 

 22 

4.1.2 Relation with classical real-valued principal component analysis.  The 

regular disjunctive two-way HICLAS model bears a natural relationship to the 

model of real-valued principal component analysis.  Indeed, apart from the 

distinction between Boolean and non-Boolean sums, and apart from the fact that 

the bundle matrices of the HICLAS model are constrained to be binary, 

association rule (1) is identical to the model of principal component analysis.  For 

the HICLAS-R model, at first sight, the link with principal component analysis 

may seem less obvious, especially given the presence of a core matrix in 

association rule (9).  Interestingly, however, the model of real-valued two-way 

component analysis may be reformulated such as to include a core matrix as well 

(Levin, 1966).  The model then reads as follows: 

 

  
1 1

P P

ij ip jq pq
p q

m a b g
= =

= ∑∑ # .        (11) 

 

The latter comes very close to association rule (9), especially if one takes into 

account that the Max-operators in (9) can be considered generalized (Boolean) 

sum-operators.  Apart from the constraint, implied by the HICLAS-R model, for 

the matrices A en B in (9) to be binary, the only remaining key difference 

between association rule (9) and the principal component model, is that, in the 

principal component model, the number of Mode 1 components necessarily 

equals the number of Mode 2 components (which further implies that the core is 

a square matrix).  Indeed, if the two numbers of components in (11) would be 

unequal, then it is easy to show that the model equation can be rewritten with 
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identical numbers of components; this, however, is not the case for association 

rule (9). 

 

4.1.3 Relation with methods of optimal scaling.  A reconstructed rating 

data matrix of a rank (P,Q,R) HICLAS-R model contains, in addition to zero,  

exactly R different rating values.  --Note that from the general Tucker3-HICLAS 

theory it follows that R P Q≤ ×  (Ceulemans, Van Mechelen, & Leenen, 2002).--  

In practice, the number R will often be smaller than V (i.e., the number of 

nonzero values in the value set).  Hence, the HICLAS-R model may be considered 

to imply a reduction of the value set to a more coarse subset of values.  The 

latter reduction may highlight the most important distinctions on the rating scale 

that is being used.  As such, this may reveal useful information on, for example, 

how the rating scale has been dealt with psychologically by the subjects under 

study.  This is nicely illustrated by the analysis of the helping data. 

One may observe a striking parallel between the latter type of substantive 

inferences implied by the HICLAS-R modeling and similar inferences derived from 

methods of optimal scaling (GIFI, 1990; Van de Geer, 1993).  Interestingly, 

however, the HICLAS-R and optimal scaling strategies seem to arrive at those 

similar inferences, starting from almost opposite strategies: In optimal scaling 

methods, inferences on the most important scale distinctions and on scale use 

are typically based on real-valued (and, hence, more refined) quantifications of 

the original categorical variables, whereas in HICLAS-R the same type of 

inferences are based on a reduction of the rating value set; one may note that 

the latter reduction strategy links up in a more straightforward way with the type 
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of final conclusions on psychologically important scale distinctions that are 

derived. 

 

4.2 Possible Extensions of the HICLAS-R Model 

 Various possible extensions of the HICLAS-R model could be considered, 

both from the point of view of the data and from that of the model. 

 Regarding the data, in the present paper, HICLAS-R has been advanced as 

a model for two-way rating-valued data with integer values ranging from zero to 

some maximum value V.  The proposed approach, however, can be extended to 

real-valued data, ranging from zero to some maximum integer value V.  Such 

real-valued data may be approximated by reconstructed data that take values 

from an equally-spaced grid of W+1 values ranging from 0 through V, 

0, 1, ...,|wV
w W

W
 = 
 

; as to the latter, the value of W, which indexes the 

resolution of the grid, is to be specified by the user.  For the extended HICLAS-R 

model, association rule (9) can again be used (with G#  now taking values from 

the grid).  For the associated data analysis, the loss function (10) again applies.  

One may note that, unless the data do not contain but values from the grid, too, 

now only approximate HICLAS-R models can be obtained --unlike for the two-

valued rating data discussed in Section 2, for which there always exists a perfect 

HICLAS-R model in some rank (P,Q,R)--.  As a second possible data-related 

model extension, one may wish to represent integer-valued data with a minimum 

data value υ different from zero.  The most straightforward HICLAS-R model 
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extension one may consider to capture this type of data is to extend model 

equation (9) with an offset term υ: 

 

  
1,..., 1,...,

Max Maxij ip jq pqp P q Q
m a b gυ

= =
= + # . 

 

 From a modeling viewpoint, similar to the case of the regular two-way 

HICLAS model for binary data (Van Mechelen, De Boeck, & Rosenberg, 1995), 

one may formulate a conjunctive variant of the disjunctive HICLAS-R model as 

described in the present paper.  Yet, for such a conjunctive HICLAS-R model (like 

for the conjunctive Tucker3-HICLAS model), a comprehensive graphic 

representation as in Figure 4 is not yet available (although alternative graphic 

representations as the one in Figure 5 still apply).  Finally, one might wish to 

consider various types of constrained HICLAS-R models, for instance, in a 

confirmatory approach to test a priori hypotheses stemming from substantive 

theories or from previous empirical research (for an extensive discussion of this 

topic, see Ceulemans & Van Mechelen, 2002b).  As an example, rather than 

deriving “by accident” a Guttman scale structure for one of the data modes (as 

was the case in the analysis of the helping data in Section 3), one may wish to 

impose such a structure in an a priori way.  Otherwise, as a side effect, a 

Guttman scale constraint may also facilitate the construction of alternative 

graphic representations of the resulting HICLAS-R models as shown in Figure 5. 
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TABLE 1 
 

Hypothetical Reconstructed Binary Data Array 
α  β,γ 

 Mode 2   Mode 2 
Mode 1 a b c d  Mode 1 a b c d 

1 1 1 1 1  1 1 1 1 1 
2 1 1 1 1  2 1 1 1 1 
3 1 0 0 1  3 1 0 0 1 
4 0 1 1 1  4 0 1 1 1 
5 0 0 0 0  5 0 1 1 1 
6 0 0 0 0  6 0 1 1 1 
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TABLE 2 

 
Disjunctive Rank 2 Hierarchical 

Classes Model for Leftmost 
Reconstructed Binary Data Matrix in 

Table 1 
A  B 

1 1 1  a 1 0 
2 1 1  b 0 1 
3 1 0  c 0 1 
4 0 1  d 1 1 
5 0 0     
6 0 0     
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TABLE 3 

 
Disjunctive Rank (3,2,2) Tucker3 

Hierarchical Classes Model for 
Reconstructed Data Array in Table 1 

A  B  C 
1 1 1 0  a 1 0  α 1 0 
2 1 1 0  b 0 1  β 1 1 
3 1 0 0  c 0 1  γ 1 1 
4 0 1 0  d 1 1     
5 0 0 1         
6 0 0 1         

 
 G..1  G..2  
 1 0  1 0  
 0 1  0 1  
 0 0  0 1  
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TABLE 4 

 
Hypothetical 

Reconstructed Rating 
Data Matrix 

 Mode 2 
Mode 1 α β γ 

a 1 0 1 
b 0 2 1 
c 0 2 1 
d 0 3 1 
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TABLE 5 

 
Recoding t(M) of Rating Data Matrix M of Table 4 

           
t(M)..1  t(M)..2  t(M)..3 

1 0 1  0 0 0  0 0 0 
0 1 1  0 1 0  0 0 0 
0 1 1  0 1 0  0 0 0 
0 1 1  0 1 0  0 1 0 
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TABLE 6 

 
Disjunctive Rank (3,3,3) HICLAS-R Model for 
Reconstructed Rating Data Matrix of Table 4 
     

A  B  C 
a 1 0 0  α 1 0 0  1 1 1 1 
b 0 1 0  β 0 0 1  2 0 1 1 
c 0 1 0  γ 1 1 0  3 0 0 1 
d 0 1 1           
              
 G..1  G..2  G..3   
 1 0 0  0 0 0  0 0 0   
 0 1 0  0 0 1  0 0 0   
 0 0 0  0 0 0  0 0 1   
              
     G#        
     1 0 0       
     0 1 2       
     0 0 3       
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TABLE 7 

 
Rating Data Matrix D 

 Mode 2 
Mode 1 α β γ 

a 3 3 3 
b 0 0 2 
c 3 3 4 
d 3 3 4 
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TABLE 8 
 

Disjunctive Rank (2,2,2) Tucker3-HICLAS 
Model of Binary Three-Way Recoding t(D) of 

Rating Data Matrix of Table 7 
     

A  B  C 
a 1 0  α 1 0  1 1 1 
b 0 1  β 1 0  2 1 1 
c 1 1  γ 1 1  3 1 0 
d 1 1      4 0 1 
           
   G..1  G..2    
   1 0  0 0    
   0 0  0 1    
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Figure Captions 

Figure 1.  Graphic representation of disjunctive two-way HICLAS model of Table 

2. 

 

Figure 2.  Graphic representation of disjunctive Tucker3-HICLAS model of Table 

3. 

 

Figure 3.  Graphic representation of HICLAS-R model of Table 6. 

 

Figure 4.  Graphic representation of rank (2,3,3) HICLAS-R model of helping 

data. 

 

Figure 5.  Alternative graphic representation of  helping behavior profiles of three 

person types from rank (2,3,3) HICLAS-R model of helping data. 
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Appendix 

Consider the following 4 x 3 rating valued data matrix in Table 7.  Table 8 

contains an optimal rank (2,2,2) Tucker3-HICLAS model of t(D).  The model has 

1 discrepancy with respect to the recoded data t(D).  It does not satisfy property 

(5), as also can be derived from bundle matrix C.  By enumerating all rank (2,2,2) 

Tucker3-HICLAS models of size 4 x 3 x 4 it can easily be checked that there is 

no model of t(D) with one discrepancy or less that satisfies (5). 
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