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Abstract

In this paper we present a new model for binary two-way two-mode clustering, called

K-centroids hierarchical classes model (KC-HICLAS). KC-HICLAS is a new member of the

family of hierarchical classes models (HICLAS) (De Boeck and Rosenberg, 1988). Like any

HICLAS model, the KC-HICLAS model includes a hierarchical classification of the elements

of each mode and a linking structure between the two hierarchies. Unlike other HICLAS mod-

els, KC-HICLAS explicitly limits the classification of the elements of one mode to maximum

K (not necessarily distinct) classes. An algorithm to fit the KC-HICLAS model is described

and evaluated in a simulation study. The model is then illustrated with two applications (one

exploratory and one confirmatory) to psychiatric data sets. Finally, the relationships between

KC-HICLAS and other clustering techniques, especially, K-means (MacQueen, 1967) and fac-

torial K-means (Vichi and Kiers, 2001) are discussed.

Keywords: Binary data; Two-way Two-mode clustering; HICLAS models.
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1 Introduction

Various techniques for two simultaneous and linked classifications have been developed within the

context of two-mode clustering (for overviews, see, e.g., Eckes, 1991; Eckes and Orlik, 1993; Van

Mechelen, Bock and De Boeck, 2003). These techniques are often of substantive interest for both

biological and social sciences and several applications in biometrics, psychometrics and sociometrics

have been documented in the literature (Baier et al., 1997; Gaul and Schader, 1996; Getz et al.,

2000). Within the two-mode clustering family, several methods seek for a partition of each of the

modes involved in the data. In the latter case, for example, in a patient by psychiatric symptom

data matrix each patient is assigned to a particular diagnostic category, whereas each symptom is

assigned to a specific symptom family.

Most standard two-mode partitioning methods do not provide any structural organization of

the sought partitions. Yet, researchers frequently need to recover (1) structural information within

the mode–partitions and (2) linking relations between the partitions of the different modes. As

such, in the above example, for diagnostic purposes, one may wish to order the diagnostic categories

with respect to their linked symptom clusters; in that case, a diagnostic category would show up

as more severe than another whenever the set of symptoms associated with the first is a superset

of the set of symptoms associated with the latter.

HICLAS models (De Boeck and Rosenberg, 1988; Van Mechelen, De Boeck, and Rosenberg,

1995; Leenen, Van Mechelen, De Boeck, and Rosenberg, 1999; Ceulemans, Van Mechelen, and

Leenen, in press; Ceulemans and Van Mechelen, in press) are structural models for N–way N–

mode data that imply linked partitions (as well as linked overlapping clusterings) of the N modes

under study. Unlike in many other methods, the partition classes of a given mode as implied

by HICLAS are structurally organized in terms of if–then type partial orders. Up to now, the

hierarchical classes family has been limited to models that imply only an implicit upper bound

on the cardinalities of the partitions of the distinct modes in terms of a function of the so–called
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mode–ranks of the models. Yet, researchers sometimes may wish to limit explicitly the classification

of the elements of one of the modes to at most K partition classes (whereas the partitioning of

the other modes is left unconstrained). Two substantive reasons may call for the latter scenario:

Firstly, for descriptive purposes, a researcher may wish to limit the size of the partition of one mode

in order to obtain a simpler hierarchical structure for that mode. Alternatively, in a confirmatory

approach, a researcher may have an a priori model of the partitioning schema of the selected mode

in terms of the number of classes in the partition; in this second case, the main goal is to test the

goodness of fit of the constrained model with respect to the data.

In this paper we present a new model for clustering of two-way two-mode binary data. The

model, which we call KC-HICLAS (K-Centroids Hierarchical Classes Model), is a novel extension

of the hierarchical classes model family. Similar to all the members of this family it includes linked

structurally organized classifications of the two modes. However, unlike the existing HICLAS

models, KC-HICLAS explicitly limits the partition of the elements of one mode to maximum K

(not necessarily distinct) classes.

In order to provide a self–contained exposition, the next section (Section 2) briefly recapitulates

the main aspects of the standard hierarchical classes model. In Section 3 and Section 4 we present

the new model and the associated algorithm, respectively. In Section 5, the results of a simulation

study to evaluate the algorithm’s performance are reported. Section 6 presents two applications to

real data sets. Finally, Section 7 discusses the relation of the new model with extant partitioning

models and introduces some possible useful extensions.

2 Standard HICLAS Model

In this section we take the original disjunctive hierarchical classes (HICLAS) model as defined by

De Boeck and Rosenberg (1988) as a starting point.



5

A HICLAS analysis approximates an I (object) ×J (attribute) binary data matrix D by an I×J

binary reconstructed data or model matrix M that can be decomposed into an I×R binary matrix

A and an J × R binary matrix B, where R denotes the rank of the model. A includes R binary

column vectors, called object bundles, and hence is called the object bundle matrix. Similarly,

B includes R binary attribute vectors, called attribute bundles, and hence is called the attribute

bundle matrix. Three types of relations among the rows (objects) and columns (attributes) of M

are represented by the bundle matrices A and B: association, equivalence, and hierarchy. As a

guiding example we use the hypothetical matrices shown in Table 1-3.

2.1 Association relation

The association relation in M is the binary relation between the object mode and the attribute

mode of M as defined by the 1-entries of M. By the representation of this relation, M may be fully

reconstructed from the hierarchical classes model. More precisely, in the case of the disjunctive

model we have that

M = A⊗B
′

(1)

where
′

and ⊗ denote transpose and the Boolean matrix product (Kim, 1982), respectively. This

association rule means that for an arbitrary entry mij of M,

mij = 1 ⇔ ∃r, 1 ≤ r ≤ R : air = 1 and bjr = 1. (2)

For example, from the model in Table 3, it can be derived that Object 3 is associated with

Attribute e, because both elements belong to Bundle III.

2.2 Equivalence relations

Equivalence relations are defined among the elements of each mode. Objects are equivalent iff

they are associated with the same set of attributes. Likewise, attributes are equivalent iff they are
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associated with the same set of objects. Sets of equivalent objects (attributes) are called object

(attribute) classes. In the disjunctive HICLAS model, equivalent elements have identical bundle

patterns. In the example in Table 2, Object 3 and 4 are associated with the same set of attributes,

and, hence, those objects are equivalent and have identical bundle patterns in the HICLAS model

of Table 3. At the attribute side, c and d are equivalent elements. Clearly, the object (attribute)

classes constitute a partitioning of the object (attribute) mode. As a consequence, because of the

representation of the equivalence relations, HICLAS may be considered a two-mode partitioning

technique. Note in this regard that the HICLAS model rank R implies an upper–bound to the

number of object (resp. attribute) partition classes. More precisely, the number of classes within

the object (resp. attribute) partition of an HICLAS model (#C) cannot exceed the cardinality of

the hypercube {0, 1}R, that is,

#C ≤ 2R. (3)

2.3 Hierarchical relations

Hierarchical relations are defined among the elements (or classes) of each mode. An object is

hierarchically below another, iff the respective sets of associated attributes are in a subset/superset

relation. Similarly, an attribute is hierarchically below another, iff the respective sets of associated

objects are in a subset/superset relation. In the disjunctive HICLAS model, hierarchical relations

are represented directly in the corresponding bundle matrix in that an object is hierarchically

below another iff the bundle pattern of the first is a subset of the bundle pattern of the latter.

The same reasoning can be applied at the attribute side. For example, in Table 2, Attribute b is

hierarchically below Attribute c; as a consequence, the bundle patterns of attributes b and c are in

a subset-superset relation in the HICLAS model of Table 3.
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2.4 Graphic representation

De Boeck and Rosenberg (1988) describe a graphic representation of the disjunctive model that

gives a comprehensive account of the model. Figure 1 presents a graphic representation of the

disjunctive model of Table 3. The upper half of the figure represents the hierarchy of the row

(object) classes and the lower half the hierarchy of the column (attribute) classes, the latter being

represented upside down. The zigzags denote the bundles, all rows (columns) above (below) a zigzag

constituting a row (column) bundle. The association relation can be read from the representation

as follows: An object (attribute) is associated with all attributes (objects) to which it is linked via

a downward (upward) path of links and zigzags.

3 The new KC-HICLAS model

Assume that we have an I×J binary data matrix D, and let K be the number of partition classes

being sought for the I elements of the first mode. Then a KC-HICLAS analysis approximates D

by an I×J binary model matrix M that can be decomposed into an I×K binary matrix P and a

K × J binary matrix M∗. In particular, P is an indicator matrix for membership of the I objects

in K mutually exclusive, non–overlapping clusters (so that each row of P has exactly one element

equal to one, the remaining elements being equal to zero), and M∗ is a matrix composed of K

partition class centroids. Note in this regard that the centroid of a set of Boolean vectors is to be

understood here as the Boolean vector that is as close as possible to the set in question in the least

absolute deviations (or, equivalently, in the least squares) sense. Moreover, we also assume that

M∗ can be further decomposed into a K × R binary matrix A∗ and a J × R binary matrix B∗,

where (R, K) denotes the rank of the model. The latter means that the partition class centroids as

included in M∗ are constrained to be located in the Boolean vector space spanned by the columns

of B∗. It should be noted that only the data matrix D is known, whereas P, A∗, and B∗ must be
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estimated. As a guiding example we use the hypothetical matrices shown in Table 4–6.

The matrices P, A∗ and B∗ of a KC-HICLAS model represent three types of structural relations.

3.1 Association relation

The association relation in KC-HICLAS is represented as follows:

M = P(A∗ ⊗B∗′). (4)

This association rule means that for an arbitrary entry mij of M,

mij =
K∑

k=1

pik

R⊕
r=1

a∗krb
∗
jr, (5)

where ⊕ denotes the Boolean sum (Kim, 1982). Equation (5) implies that for an arbitrary entry

mij of M,

mij = 1 ⇔ ∃k, 1 ≤ k ≤ K; ∃r, 1 ≤ r ≤ R :

pik = 1 and a∗kr = 1 and b∗jr = 1 (6)

For example, from the decomposition model in Table 5, it can be derived that Centroid α is

associated with Attribute c, and therefore that all objects in Class {1, 2, 3} are also associated

with Attribute c.

3.2 Equivalence relations

In KC-HICLAS we consider equivalence relations among the centroids and among the attributes.

As in standard HICLAS, equivalent centroids (resp. attributes) should have identical bundle

patterns. More precisely, a centroid k (resp. an attribute j) is equivalent to another centroid k′

(resp. another attribute j′) if and only if A∗
k: = A∗

k′: (resp. B∗
j: = B∗

j′:). For example, centroids α,

β and γ are associated with different sets of attributes; hence, those centroids are not equivalent

and have different bundle patterns in the KC-HICLAS model of Table 6.
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Note that if two centroids k and k′ are equivalent, then all objects belonging to the correspond-

ing partition classes are equivalent as well. The latter type of equivalence may be read from the

matrix A = PA∗ in that if A∗
k: = A∗

k′: then Ai1: = Ai2:(= A∗
k: = A∗

k′:) for all i with pik = 1 or

pik′ = 1.

3.3 Hierarchical relations

We further consider hierarchical relations among the centroids and among the attributes. In

particular, a centroid k (resp. an attribute j) is hierarchically below another centroid k′ (resp.

another attribute j′) if and only if A∗
k: ≤ A∗

k′: (resp. B∗
j: ≤ B∗

j′:). For example, as appears

from Table 5, Centroid β is hierarchically below Centroid α; consequently, the bundle patterns

of Centroids β and α in the KC-HICLAS model of Table 6 are in a subset/superset relation.

Moreover, like for the equivalence relations, if a centroid k is hierarchically below another centroid

k′ then all objects belonging to the cluster associated with the first are hierarchically below all

objects belonging to the cluster associated with the latter.

4 KC-HICLAS data analysis and algorithm

Given rank R and number of partition classes K, the aim of a KC-HICLAS analysis of a binary

data matrix D is to approximate D as closely as possible by a binary model matrix M, in terms

of the loss function

L =
I∑

i=1

J∑

j=1

|dij −mij | =
I∑

i=1

J∑

j=1

(dij −mij)2, (7)

and such that M can be represented by a (R,K) KC-HICLAS model.

The algorithm we propose successively executes two main routines. In the first routine, it

looks by means of a modified version of the alternating branch-and-bound procedure for standard

HICLAS analysis (Leenen and Van Mechelen, 2001) for arrays {P,A∗,B∗}, that are such that (7) is
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minimal. This routine starts from an initial configuration, {P(0),B∗(0)} for P and B∗ respectively.

The initial partition matrix P(0) is obtained by applying a K-means clustering to D, starting from a

random initialization. The initial configuration for B∗ is obtained rationally by a built-in heuristic

in the algorithm (for more details, see Leenen and Van Mechelen (2001)).

In the first routine, alternatingly three steps are further taken: (a) Conditionally upon P(h)

and B∗(h), the optimal matrix A∗(h+1) that minimizes (7) is obtained. In particular, the kth

row A∗(h+1)
k: of A∗(h+1) (∀k = 1, . . . , K) is optimized by means of a generalized form of Boolean

regression that minimizes

Lk =
∑

i:pik=1

J∑

j=1

|dij −mij | (8)

More precisely, in this regression the values of each predictor variable are Nk =
∑I

i pik concatenated

copies of each column of B∗(h), whereas the values of the criterion vector are the data entries dij

(∀i : pik = 1; ∀j = 1, . . . , J). In the next step (b), conditionally upon A∗(h+1) and B∗(h), the

optimal partition matrix P∗(h+1) that minimizes (7) is obtained. This is done by estimating

successively each row of P∗(h+1) by means of an exhaustive searching procedure that looks for the

best assignment vector x = (0, . . . , 1, . . . , 0) of length K that minimizes

Li =
J∑

j=1

|dij −
K∑

k=1

xkm∗
kj | (9)

In the last step (c), B∗(h+1) is re-estimated conditionally upon A∗(h+1) and P∗(h+1). In particular,

the jth row B∗(h+1)
j: of B∗(h+1) (∀j = 1, . . . , J) is optimized by means of a standard Boolean

regression that minimizes

Lj =
I∑

i=1

|dij −mij | (10)

This procedure is repeated with (h = 0, 1, 2, . . .) until no further improvement in the loss function

(7) is observed.

In the second main routine, the matrices A∗ and B∗ as obtained at the end of the first routine

are modified such as to make them consistent with the equivalence and hierachical relations in
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the model matrix M∗ that A∗ and B∗ yield by (4). For this, a closure operation (Barbut and

Monjardet, 1970) is successively applied to each of the two matrices A∗ and B∗. This operation

implies that zero–entries in the two matrices are turned into one if this change does not alter M∗

(and, hence, neither the value of the loss function (7)).

5 Simulation study

In this section, we present a simulation study in which the KC-HICLAS algorithm is evaluated with

respect to sensitivity to local minima, goodness of fit (Subsection 5.2) and goodness of recovery

(Subsection 5.3). In the following subsection (Subsection 5.1) the design of the simulation study

is outlined.

5.1 Design and procedure

Three different types of binary I × J arrays must be distinguished in this simulation study: a true

matrix T, which is constructed by the simulation researcher and which can be perfectly represented

by a KC-HICLAS model of a specific rank; a data matrix D, which is T perturbed with error; and

the model array M yielded by the KC-HICLAS algorithm.

Four aspects were systematically varied in a complete factorial design:

(a) the Size, I × J , of T, D and M, at 6 levels: 25× 15, 20× 20, 80× 20, 40× 40, 500× 50 and

150× 150;

(b) the True rank, (R,K), of the KC-HICLAS model for T, at 9 levels: (2,2), (2,3), (2,4), (3,3),

(3,6), (3,8), (4,4), (4,10), (4,16);

(c) the Ratio l : s of large-to-small partition class sizes, at 3 levels: .50:.50, .60:.40, .70:.30.

(d) the Error level, ε, which is the proportion of cells dij differing from tij , at 5 levels: .00, .05,

.10, .20, .30.
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All aspects will be considered random effects.

For each combination of Size I × J , True rank (R,K), Ratio l : s and Error level ε, 20 true

matrices T were constructed as follows: First, a partition matrix P was generated by randomly

assigning each of the I objects to one of the K partition classes, subject to the constraint that

half of the partition classes consists of lI/.5K objects and half of the classes of sI/.5K objects.

Subsequently, bundle matrices A∗ and B∗ were generated with entries that were independent

realizations of a Bernoulli variable with a probability parameter chosen such that the expected

proportion of ones in T equals 0.5, under the restiction that A∗ and B∗ were of Schein rank R.

Finally, combining P, A∗ and B∗ by the KC-HICLAS association rule yielded T.

Next, a data matrix D was constructed from each true matrix T by altering the values of

the entries chosen randomly with a probability per entry of ε. Finally, all data matrices D were

analyzed with 100 runs of the KC-HICLAS algorithm in the True rank (R,K).

5.2 Local minima and goodness of fit

In this subsection, the KC-HICLAS algorithm is evaluated with respect to how well it succeeds in

minimizing the loss function, that is, with respect to goodness of fit. To this end, the following

badness-of-fit (BOF ) statistic was used:

BOF =

I∑
i=1

J∑
j=1

(dij −mij)2

I × J
. (11)

Of the 16200 analyses (5 Error levels × 3240 analyses per Error level), 6316 or 39% ended up in a

solution with a BOF value larger than ε. As the Error level ε constitutes an upper bound for the

BOF of the global minimum, the latter implies that the algorithm ended in a local minimum in a

considerable number of cases. To investigate further the issue of local minima, we examined how

many out of the 100 runs for each analysis ended in the retained solution: On average, this was

the case for 37 of the 100 runs. The latter results imply that it is not unusual for the algorithm
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to end in a local minimum; however, all subsequent simulation results will show that the obtained

solutions are reasonably close to the underlying truth.

An analysis of variance with BOF − ε as the dependent variable yielded intraclass correlations

ρ̂I (Haggard, 1958; Kirk, 1982) of .21 and .40 for the main effects of Size and Error Level. As the

mean BOF − ε across the 720 observations within each Error level are .018, .006, .001, -.010 and

-.034 for ε equal to .00, .05, .10, .20, and .30, respectively (see Table 7), the main effect of error

level implies that the higher ε, the easier it is for the algorithm to find a model that is as close or

closer to the data as the truth is. With respect to the main effect of Size: BOF − ε increases with

size. Finally, the Size × Error level interaction (ρ̂I=.15) should be taken into account: The effect

of Error level decreases with size. The other effects are not discussed: In this and the following

analyses of variance only effects accounting for at least 10% of the variance of the dependent

variable will be considered (i.e., ρ̂I ≥ .10).

5.3 Goodness of recovery

In this subsection, we will evaluate how well the KC-HICLAS algorithm succeeds in recovering (1)

the association relation, (2) the equivalence relations and (3) the hierarchical relations.

(1) The badness of recovery of the association relation (BOR) was assessed by the proportion

of discrepancies between T and M:

BOR =

I∑
i=1

J∑
j=1

(tij −mij)2

I × J
.

The mean BOR across the 16200 observations equals .046, which means that the model yielded

by the algorithm differs on average 4.6% from the underlying truth. An analysis of variance with

BOR as the dependent variable yields a main effect of Error level (ρ̂I = .47): except for errorfree

data, badness of recovery clearly increases with higher Error levels (see Table 8). Furthermore, the

Size × Error level interaction (ρ̂I = .37) has to be taken into account, indicating that recovery of
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the truth is especially worse at combinations of high error levels and small data sizes. The latter

is not too much of a surprise given that a small quantity of noisy information can be expected

indeed to provide a small basis for recovering the truth.

Goodness of recovery of the association relation was also measured by the relative-recovery-gain

(RRG) statistic, defined as:

RRG =
ε−BOR

ε
,

RRG being undefined for ε = 0. This statistic equals 1 in case of perfect recovery and 0 if the

model is as far from the truth as the data are. More in general, it expresses the extent to which

the reconstructed data are closer to the truth than the observed data are. The mean RRG across

the 12960 observations for which ε > 0 amounts to .738. The latter means that M contains, on

average, 73.8% less erroneous entries than D.

(2) With respect to the recovery of the equivalence relations, the corrected Rand index (CRI,

ref) is used to compare the partition of the set of objects (resp. attributes) in the KC-HICLAS

model for T with the partition of the set of objects (resp. attributes) in M. This index equals 1 if

the two partitions are identical and 0 if the two partitions do not correspond more than expected by

chance. The mean CRI across the 16200 observations equals .764 and .811 for the objects and the

attributes respectively, implying a reasonable correspondence between the true and reconstructed

equivalence relations. An analysis of variance with CRI as the dependent variable yields a main

effect of Error level (ρ̂I amounts to .42 and .37 respectively): except for errorfree data, it holds

that the higher the Error level, the lower the CRI. The main effect of Error level is qualified by a

Size × Error level interaction (ρ̂I=.35 and .39, respectively), the latter resulting once again from

the Error level effect being more important for smaller Sizes (see Table 9).

(3) To assess the recovery of the hierarchical relations, we first define the object hierarchy matrix

associated with M as the I × I binary matrix U(M) , with u(M)

ii′ = 1 iff object i is hierarchically

below object i′ in M. Similarly, we define an object hierarchy matrix U(T) associated with T.
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Subsequently, the proportion of discrepancies between U(T) and U(M) was calculated yielding a

badness-of-hierarchy-recovery (BOHR) statistic for the objects:

BOHR =

I∑
i=1

I∑
i′=1

(
u(T)

ii′ − u(M)

ii′
)2

I2
.

Similarly, a BOHR statistic for the attributes was defined.

The mean value of BOHR across the 16200 observations equals .099 and .058 for the objects

and the attributes respectively, implying that, on average, 90.1 and 94.2% of the true object and

attribute hierarchies are recovered. Analyses of variance with BOHR as the dependent variable

show a main effect of Error level (ρ̂I=.49 and .37, respectively): apart from errorfree data, recov-

ery deteriorates with increasing Error level (see Table 10). Additionally, the Size × Error level

interaction (ρ̂I =.33 and .40) has to be considered: the larger the data set, the smaller the effect

of Error level.

A simulation study was conducted to evaluate the KC-HICLAS algorithm. The new algorithm

turned out to succeed quite well in minimizing the least-square loss function (7), as it seldom

yields a model that fits the data worse than the underlying truth fits the data. Regarding the

recovery of the underlying truth, we found that the models yielded by the KC-HICLAS algorithm

are considerably closer to the underlying truth than the data are. This result holds for each of the

three structural relations represented by the model. Moreover we found that with increasing size

of the data matrix, goodness-of-fit decreased, whereas goodness-of-recovery increased. Finally, the

algorithm succeeds in finding the true, when large data matrices are considered, even if the data

are highly error-perturbed.

6 Two empirical applications

A KC-HICLAS analysis may be considered if one may wish (1) to limit the size of the partition of

one mode in order to obtain a simpler hierarchical structure for that mode (descriptive approach),
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or (2) to test the goodness of fit of a constrained a priori model of the partitioning of the mode

with respect to the data (confirmatory approach). In this section, we present two illustrative

applications of KC-HICLAS analysis, one of each type.

6.1 A descriptive KC-HICLAS analysis

In this first application we consider data from a study on an implicit taxonomy in psychiatric

diagnosis (Van Mechelen & De Boeck, 1989). In this study, an experienced senior psychiatrist

working on an intake ward of a university psychiatric clinic was asked to judge the next 30 patients

arriving at his ward. First, each patient was scored by the psychiatrist on a checklist with 22

symptoms, based on the scale headings of the Psychiatric Status Schedule (Spitzer, Endicott,

Fleiss, & Cohen, 1970). A symptom was scored 0 if it was absent, and 1 if it was present (in part

or in whole) during the last week before the ratings. Next each patient was also given a DSM-III

diagnosis by the same psychiatrist; subsequently the resulting diagnoses were coded into three

(not necessarily disjoint) diagnostic categories: affective disorder (AD), psychotic disorder (PD)

and substance use disorder (SUD), respectively.

The data matrix D was analyzed by means of a KC-HICLAS algorithm in ranks 1 to 6 and with

K-values 1 to 9. Moreover, in order to avoid either meaningless or overparametrizated solutions,

only the (R, K) pairs satisfying the condition R ≤ K ≤ 2R were considered (see Section 7.1 for

further details). The number of discrepancies for the resulting solutions are displayed in Figure 2.

To select a final solution, we made use of a two-step scree procedure: First, for each value of K

we selected the optimal value of R (denoted by a dashed circle in Figure 2). Second, the optimal

value of K was selected among the solutions selected in Step 1. From this procedure, we derive

that the solution (R = 3,K = 3) is the one to be preferred, with 13.6% discrepancies with respect

to the input data D.

Figure 3 shows the graphic representation of this solution. Three main implicit categorization
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principles of the psychiatrist emerge from an inspection of the symptom structure (lower half of

Figure 2). They correspond to affective problems (left lower half of Figure 2: class S1); psychotic

problems (middle-right lower half of Figure 2: class S2); and substance abuse problems (rightmost

symptom class: S3).

In order to examine the relationship between the implicit categorization principles and the

DSM-III classifications as provided by the psychiatrist, we can calculate the proportion of patients

classified in each diagnostic category with respect to the three patient classes. In class AD, 81% of

the patients got a diagnosis of affective disorder. In class PD, 83% of the patients got a diagnosis

of psychotic disorder. Finally in class SUD, 87% of the patients got a diagnosis of substance use

disorder. The latter results appear to be consistent with the overall structure of Figure 3.

6.2 A confirmatory KC-HICLAS analysis

In this second application we present a confirmatory KC-HICLAS analysis of data from a study

on archetypal psychiatric patients (Mezzich and Solomon, 1980). In this study, each of 11 psy-

chiatrists was invited to think of a typical patient for each one of four diagnostic categories:

manic-depressive/depressed (MDD), manic-depressive/manic (MDM), simple schizophrenic (SS)

and paranoid schizophrenic (PS). These four diagnostic categories are part of the nomenclature

of mental disorders (DSM-II) issued in 1968 by the American Psychiatric Association. The 11

psychiatrists characterized each archetypal patient by 0− 6 severity ratings on 17 symptoms from

the Brief Psychiatric Rating Scale (BPRS).

For the KC-HICLAS analysis, each symptom of the original data base was trichotomized into

two dummy variables indicating at least a minimal severity rating (1 − 6) and a high severity

rating (3− 6), respectively. This resulted in a 44× 34 patient by symptom data matrix D. Next,

D was analyzed by means of the KC-HICLAS algorithm in ranks 2 to 4 with K = 4. The

proportion of discrepancies for the resulting solutions were .20, .16 and .14, respectively. On the
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basis of a scree test, the rank 4 solution was retained. The four archetypal patient classes of

this model corresponded to the four diagnostic categories under study, with 10% misclassifications

only. Figure 4 shows the graphical representation of the KC-HICLAS rank-4 solution. In order

to simplify the reading of this representation we will interpret the symptom structure by mainly

taking into account symptoms with a high rating.

From an a priori point of view one might expect two groups of archetypal psychiatric patients

with the associated specific psychiatric symptoms: a) the schizophrenic group (S) that can be

further decomposed into the SS group and the PS group, and b) the affective disorder group

(A) that can further be split into the MDD group and the MDM group. However, within each

group (S or A) the two subgroups share a few common symptoms only. Three other different

groups emerge from the KC-HICLAS analysis. The first group (PS + MDM) is characterized

by positive hypomanic affective symptoms. With this group, the paranoid schizophrenic type is

further hierarchically superordinate with respect to the manic-depressive/manic type, in that PS

in addition is also characterized by positive psychotic signs (such as hallucinations). The second

group (MDD) is characterized by depressive affective symptoms (S2, S7). Finally the third group

(SS) is represented by the negative psychotic sign blunted affect.

7 Discussion and possible extensions

In this section, we will first discuss the link between the KC-HICLAS model rank R and the upper

bound K. Next, we will explore the relationships between KC-HICLAS and standard partitioning

techniques that minimize certain clustering criteria, such as standard K-means clustering as well

as two–way two–mode partitioning techniques. Finally, two possible extensions of KC-HICLAS

will be proposed.
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7.1 Relationship between the model ranks R and K

In general the model rank R specifies the global complexity of a HICLAS model. This global

complexity implies an upper–bound for the number of object (resp. attribute) classes, that is,

2R. From this it follows that in a KC-HICLAS analysis it is meaningless to select a value of the

maximal number of object classes K greater than the general upper bound 2R, given that this

would imply that at least K − 2R object classes would show up to be equivalent. On the other

hand, if in KC-HICLAS one would specify a value of K < R, then an overparametrization of the

model would occur. Indeed, assume that M = PM∗, where M∗ = A∗
R ⊗ B∗

R denotes a rank-R

model decomposition of M∗. Now the smallest integer R′ which is such that M∗ can be given a

rank-R′ decomposition (i.e., the Schein rank of M∗), is necessarily less than or equal to the number

of rows of M∗ (Kim, 1982), that is K; hence, R′ ≤ K. From K < R, then it further follows that

R′ < R, which implies that a rank-R decomposition of M boils down to an overparametrization.

All of the above can be summarized as

R ≤ K ≤ 2R (12)

7.2 Relationship with other models

As a partitioning model for two-way two-mode data, KC-HICLAS is similar to standard partition-

ing techniques that minimize a certain clustering criterion, such as, for example, standard one-mode

K-means (MacQueen, 1967) as well as several two-mode partitioning techniques (e.g. Bock, 2003;

Castillo and Trejos, 2002; Govaert, 1995). In general, however the specific optimization criteria

used in K-means clustering and KC-HICLAS are slightly different. In particular, standard K-means

produces an optimal K–partition of the objects by minimizing the trace of the within group sum–

of–squares and crossproducts matrix W, or, equivalently, by minimizing the sum of the squared

Euclidean distances between objects and their cluster mean; from its part KC-HICLAS seeks for

an optimal K–partition of the objects by minimizing the least absolute deviation or least squares
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loss function as defined in (7), which further comes down to minimizing the summed within-group

squared Euclidean distances between the objects and their respective partition class centroids.

From all this it can be derived that the optimization in K-means clustering and KC-HICLAS differ

with regard to how the within group heterogeneity is quantified. In K-means clustering this is done

in terms of squared Euclidean distances to the cluster means, in KC-HICLAS this is done in terms

of squared Euclidean distances to the partition class centroids, the latter as defined in Section 3,

being a binary vectors that can be considered the Boolean counterpart of the real-valued means.

Furthermore, KC-HICLAS is also related to factorial K-means analysis for two-way real data

(Vichi and Kiers, 2001): Factorial K-means is characterized by the combination of a discrete

clustering model and a continuous factorial model that are fitted simultaneously to two-way real

data. The objective of a factorial K-means analysis is to identify the optimal partition of one of the

two modes, optimality being defined in terms of a least squares criterion with regard to centroids

in a space of reduced dimension. Like factorial K-means also KC-HICLAS restricts the number of

partition classes (≤ K) of one of the two modes with, in particular, the partition class centroids

being constrained to be located in a Boolean vector space that is reduced in terms of the model

rank R. However, like the standard K-means method, factorial K-means does not allow for any

additional structural organization of the partition classes implied by the model.

7.3 Possible extensions

Two possible extensions of the K-Centroids hierarchical classes model may be considered: First,

in the present paper, KC-HICLAS has been proposed as a model for two-way two-mode Boolean

data. However, the current approach can be straightforwardly extended to rating-valued data. In

particular, a KC-HICLAS model for rating data could be considered as a particular constrained

instance of the HICLAS-R model family (Van Mechelen, Lombardi and Ceulemans, 2002). In

a rating-valued context, the approximation problem would boil down to seeking a KC-HICLAS
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rating-valued model matrix M that approximates the rating-valued data matrix D such that (7)

is minimal. A second further extension of the KC-HICLAS model could imply an explicit limit on

the classification of the elements of both modes to at most K1 (resp. K2) partition classes. In this

extension, the association rule (4) would change into

M = P(A∗ ⊗B∗′)Q (13)

with Q being the partition matrix of the second mode.
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Figure 1: Graphic representation of the hierarchical classes model of Table 3. Empty boxes denote

empty classes.
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Figure 2: Scree plot of number of discrepancies as a function of the model rank R and the number

of clusters K. Circled points denote the preferred solution within each of the K-values.
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Figure 3: Graphic representation of the KC-HICLAS rank-3 solution with K = 3. Patient classes

(resp. symptoms) are displayed in the upper half (resp. lower half) of the figure.
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Figure 4: Graphic representation of the KC-HICLAS rank (R = 4,K = 4) solution with K = 4.

Diagnostic categories (resp. symptoms) are displayed in the upper half (resp. lower half) of the

graphic. M and H denote medium rating and high rating, respectively.
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Table 1: Hypothetical Two-Way Two-Mode Binary Data Matrix D

a b c d e f g h

Obj 1 0 0 1 1 0 0 0 0

Obj 2 0 0 1 1 0 0 0 1

Obj 3 1 0 0 0 1 1 1 1

Obj 4 0 1 0 0 1 1 1 1

Obj 5 1 1 1 1 0 1 1 1

Obj 6 0 0 0 0 0 0 0 0

Obj 7 0 0 0 0 0 0 0 0
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Table 2: Model matrix M of the data matrix D in Table 1

a b c d e f g h

Obj 1 0 0 1 1 0 0 0 1

Obj 2 0 0 1 1 0 0 0 1

Obj 3 0 0 0 0 1 1 1 1

Obj 4 0 0 0 0 1 1 1 1

Obj 5 1 1 1 1 1 1 1 1

Obj 6 0 0 0 0 0 0 0 0

Obj 7 0 0 0 0 0 0 0 0
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Table 3: Disjunctive Hierarchical Classes Model for the Matrix in Table 2

Row Bundles Column Bundles

Row Entries I II III Column Entries I II III

Obj 1 1 0 0 a 0 1 0

Obj 2 1 0 0 b 0 1 0

Obj 3 0 0 1 c 1 1 0

Obj 4 0 0 1 d 1 1 0

Obj 5 1 1 1 e 0 1 1

Obj 6 0 0 0 f 0 1 1

Obj 7 0 0 0 g 0 1 1

h 1 1 1
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Table 4: Hypothetical data matrix D and related KC-HICLAS model matrix M

D M

Attributes Attributes

Objects a b c d Objects a b c d

Obj 1 1 0 1 0 Obj 1 1 0 1 0

Obj 2 1 1 1 0 Obj 2 1 0 1 0

Obj 3 1 0 1 0 Obj 3 1 0 1 0

Obj 4 0 0 1 1 Obj 4 0 0 1 0

Obj 5 0 0 1 0 Obj 5 0 0 1 0

Obj 6 0 1 1 0 Obj 6 0 1 1 0

Obj 7 0 0 1 0 Obj 7 0 1 1 0
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Table 5: Centroids decomposition for matrix M in Table 4

P M∗

Centroids Attributes

Objects α β γ Centroids a b c d

Obj 1 1 0 0 α 1 0 1 0

Obj 2 1 0 0 β 0 0 1 0

Obj 3 1 0 0 γ 0 1 1 0

Obj 4 0 1 0

Obj 5 0 1 0

Obj 6 0 0 1

Obj 7 0 0 1
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Table 6: Model decomposition for matrix M∗ in Table 5

A∗ B∗

Bundles Bundles

Centroids I II III Attributes I II III

α 1 1 0 a 0 1 0

β 1 0 0 b 0 0 1

γ 1 0 1 c 1 1 1

d 0 0 0
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Table 7: Mean Differences between Badness of Fit and ε at Levels of Size × Error

Error Level
Size .00 .05 .10 .20 .30 Overall
25 × 15 .004 -.000 -.006 -.027 -.073 -.020
20 × 20 .004 .000 -.004 -.025 -.071 -.019
80 × 20 .013 .003 -.000 -.008 -.032 -.005
40 × 40 .007 .002 .001 -.004 -.025 -.004
500 × 50 .053 .022 .012 .003 -.003 .017
150 × 150 .030 .006 .003 .002 .001 .008
Overall .018 .006 .001 -.010 -.034 -.004
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Table 8: Mean Badness of Recovery at Levels of Size × Error

Error Level
Size .00 .05 .10 .20 .30 Overall
25 × 15 .004 .010 .025 .101 .240 .076
20 × 20 .004 .008 .021 .100 .243 .076
80 × 20 .013 .006 .010 .046 .158 .047
40 × 40 .007 .003 .005 .030 .154 .040
500 × 50 .053 .025 .016 .011 .041 .029
150 × 150 .030 .007 .004 .004 .015 .012
Overall .018 .010 .014 .049 .142 .046
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Table 9: Mean Corrected Rand Index at Levels of Size × Error

Objects Attributes
Size .00 .05 .10 .20 .30 Overall .00 .05 .10 .20 .30 Overall
25 × 15 .946 .883 .781 .469 .166 .649 .971 .927 .838 .552 .235 .705
20 × 20 .963 .919 .844 .526 .185 .688 .970 .920 .831 .522 .207 .690
80 × 20 .889 .908 .876 .654 .283 .722 .924 956 .953 .858 .504 .839
40 × 40 .952 .974 .961 .832 .419 .828 .960 .968 .943 .790 .410 .814
500 × 50 .646 .807 .861 .885 .679 .776 .759 .884 .921 .962 .932 .892
150 × 150 .795 .931 .969 .978 .927 .920 .858 .959 .967 .965 .893 .928
Overall .865 .904 .882 .724 .443 .764 .907 .936 .909 .775 .530 .811
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Table 10: Mean Badness of Hierarchy Recovery at Levels of Size × Error

Objects Attributes
Size .00 .05 .10 .20 .30 Overall .00 .05 .10 .20 .30 Overall
25 × 15 .035 .049 .084 .205 .341 .143 .009 .023 .046 .130 .248 .091
20 × 20 .024 .038 .066 .186 .328 .128 .009 .022 .046 .142 .266 .097
80 × 20 .045 .038 .050 .132 .295 .112 .021 .014 .015 .040 .148 .048
40 × 40 .023 .016 .024 .075 .240 .076 .013 .010 .017 .059 .183 .056
500 × 50 .134 .067 .052 .052 .131 .087 .077 .036 .023 .012 .022 .034
150 × 150 .076 .035 .038 .033 .047 .046 .045 .014 .011 .012 .031 .023
Overall .056 .041 .052 .114 .230 .099 .029 .020 .026 .066 .150 .058


