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Abstract

This paper presents an evaluation of different Bayesian estimation approaches for four

basic IRT models: the Rasch model, the linear logistic test model, and their probit link

counterparts. As to estimation algorithms, we focus on a data augmentation algorithm (with

and without transformation of the parameters and the latent data) that includes a Gibbs

sampling procedure, and on a Metropolis algorithm. A comparison between the algorithms

for the different models is made on the level of convergence speed and recovery of the underlying

truth. Differences in convergence speed appeared to be considerable; an explanation for this

finding is provided.

1 Introduction

Over the last decade, interest in fully Bayesian estimation methods for psychometric models (and

statistical models more in general), has widely increased (e.g., Gilks, Richardson, & Spiegelhalter

(1996)). The reason for this is at least threefold: (1) Firstly, the Bayesian framework is very

flexible with respect to the estimation of more elaborated models; estimation algorithms for basic

models can easily be extended to account for model expansions, mostly without facing difficult

analytical issues. (2) Secondly, the Bayesian approach provides a much broader view on the whole

of the parameter space unlike standard frequentistic or maximum likelihood approaches; as such,

a comprehensive view on estimates’ uncertainty can be obtained without relying on asymptotic

approximations. (3) Thirdly, one may note the advantages of the flexible inferential framework as

implied by a Bayesian approach; by means of posterior predictive check procedures, for instance,

one may easily check absolute and relative goodness of fit as well as specific model assumptions.

Different methods have been developed in order to estimate model parameters within a Bayesian

framework. While some of these methods focus on the direct estimation of the posterior mode (a),
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others allow for summaries of the posterior parameter distribution on the basis of simulated samples

as obtained via MCMC methods (b).

(a) In the context of IRT models, with regard to mode seeking procedures Bock and Aitkin

(1981) developed an EM algorithm that gives maximum likelihood estimates of item parameters

of the marginal distribution as obtained by integrating over the ability distribution. Swaminathan

and Gifford (1982, 1985, 1986) estimated the joint posterior modes for 1-, 2-, and 3-parameter

logistic models by means of a Newton-Raphson algorithm. Mislevy (1986) also estimated the

latter models, yet by means of an EM algorithm. Tsutakawa and Lin (1986) estimated the marginal

posterior mode of the item parameters for the 2-parameter model. Tsutakawa and Soltys (1988)

and Tsutakawa and Johnson (1990) provided analytical approximations for posterior means and

variances of the person parameters, conditional on the item parameters, while the uncertainty of

the latter is taken into account.

(b) As for sampling-based methods for Bayesian estimation of basic IRT models, one may refer

to Albert (1992) and Albert and Chib (1993), who proposed a DA-Gibbs algorithm to simulate

draws from the posterior distribution of a 2-parameter normal-ogive model. This methodology

was extended by Verguts and De Boeck in order to estimate the probit counterpart of the linear

logistic test model (LLTM) (Verguts & De Boeck, 2000). From their part, Maris and Maris (2002)

showed how, for a Rasch model, one can sample from the posterior distribution by introducing

a transformation of the parameters and the latent data in the DA-Gibbs sampler; the resulting

algorithm is referred to as the DA-T-Gibbs sampler. Patz and Junker showed how a 2-parameter

logistic model can be estimated using a Metropolis-Hastings sampling (Patz, 1996; Patz & Junker,

1999).

In the present paper we focus on fully Bayesian sampling-based estimation methods. In partic-

ular, we want to evaluate three different such methods in the context of basic IRT methods. The

models under consideration are the Rasch model, the linear logistic test model and their probit-link
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counterparts. The evaluation will be done both in terms of convergence speed and recovery of the

underlying truth.

Introducing the notation used throughout the remainder of the paper the Rasch model can be

summarized as

Pr (Yni = 1|θn, βi) = logit−1 (θn − βi) , (1)

where θn is the ability of person n, with 1 ≤ n ≤ N , βi denotes the difficulty of item i, with

1 ≤ i ≤ I, and Yni represents the response of person n to item i; it is further assumed that

p (θn) ∝ N (0, σ2
θ

)
. The probit counterpart of the Rasch model is

Pr (Yni = 1|θn, βi) = Φ (θn − βi) . (2)

The linear logistic test model is a Rasch model where the item parameters can be written as a

linear combination of a restricted number of basic parameters ηj , with j = 1, . . . , J . The weights

of the constituent basic parameters are assumed to be known a priori, and are represented in the

I×J matrix Q, such that βi = qiηj .

The remainder of this paper is organized as follows: In Section 2 the different estimation

algorithms are introduced. In Section 3 the design of our simultation study as well as its results

are described, and an explanation for the differences in convergence speed between the proposed

algorithms is given. The paper is concluded by a discussion, presented in Section 4.

2 Estimation algorithms

The Bayesian sampling-based methods to be discussed will make use of two different MCMC

procedures: the Gibbs sampler and the Metropolis-Hastings algorithm. We will now successively

discuss the methods based on each of those two procedures.
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2.1 Algorithms based on the Gibbs sampler

Within this section, we will describe two estimation algorithms, based on the Gibbs sampler, in

order to obtain the posterior distribution of the parameters of the LLTM and the Rasch models; the

first algorithm (DA-Gibbs) will further be used to estimate the probit-link versions of the models,

whereas the second will be used to estimate both the logit-link and the probit-link versions.

2.1.1 The DA-Gibbs sampler

We will describe here a DA-Gibbs algorithm for the probit-link LLTM, the algorithm for the probit-

link Rasch model being fully similar. The prior distribution of the basic parameters is chosen to

be non-informative, that is, locally uniform, p (ηj) = U (−∞, +∞), the truncation at −5 and 5

being chosen to avoid impropriety of the posterior; furthermore, for the ability variance we assume

p
(
σ2

θ

) ∝ (σ2
θ

)−1.

The introduction of latent data into the Gibbs sampler (Albert, 1992; Albert & Chib, 1993) is

based on the assumption that every observed data point yni corresponds to an underlying, unob-

served data point zni. For the probit-link LLTM, the latent variable Zni is normally distributed

around θn −q,
iη, with a standard deviation of 1: Zni ∼ N (θn − q,

iη, 1). The relation between the

latent data and the observed data is specified as follows:

yni = 1 iff zni ≥ 0;

yni = 0 iff zni < 0.

Due to this data augmentation, the drawing from the full conditionals comes down to drawing

from normal distributions. Indeed, the full conditional distributions for z, θ and η are as follows:

p (zni|y, θ, η) ∝




N (θn − q,
iη, 1) , truncated at the left of 0 iff yni = 1,

N (θn − q,
iη, 1) , truncated at the right of 0 iff yni = 0,

(3)
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p (θn|y, z, η) ∝ N


(∑I

i=1 zni + q,
iη
)

+ µθ

σ2
θ

I + 1
σ2

θ

,
1

I + 1
σ2

θ


 , (4)

p
(
ηj′ |y, z, θ, η(j′)

)
∝ (5)

N


(∑N

n=1

∑I
i=1 qj′i

[
θn − zni +

∑J
j �=j′ qjiηj

])
N
∑I

i=1 q2
j′i + 1

σ2
θ

,
1

N
∑I

i=1 q2
j′i + 1

σ2
θ


 ,

where ξ(d) denotes the parameter vector ξ with parameter ξd excluded. The variance σ2
θ of the

distribution of the person parameters is drawn from:

p
(
σ2

θ |y, θ
) ∝ invχ2

(
N,

1
N

N∑
n=1

θ2
n

)
. (6)

2.1.2 The DA-T-Gibbs sampler

The DA-T-Gibbs sampler, as introduced by Maris and Maris (2002), can be used to obtain a

sample from the posterior distribution of the parameters of the probit-link as well as the original

logit-link Rasch and LLTM models. For the logit-link models, the DA-Gibbs sampler does not

involve simple full conditionals for the parameters. The latter problem can be tackled by means of

a transformation of the variables. As such, the sampling from the posterior distribution p (θ, η|y)

is based on a rewriting of the models under study as models involving latent data (DA), and to

subsequently transform the variables in order to simplify the conditional distributions (T). In the

remainder of this section we will discuss the DA-T-Gibbs sampler when used as an estimation algo-

rithm for the parameters of the original, logit-link LLTM. We assume the same prior distributions

as in the previous section.
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In order to reformulate the logit-link LLTM as a latent-data model, latent data Xni are in-

troduced that have a logistic distribution with mean (θn − q,
iη) and variance π2

3 . The relation

between the observed and the latent data is defined as:

yni = 1 iff xni ≥ 0;

yni = 0 iff xni < 0.

It then follows that Yni is Bernoulli distributed with:

p (Yni = 1|θn, ηj) =
∫ ∞

0

exni−(θn−q,
i
η)(

1 + exni−(θn−q,
i
η)
)2 dxni

=
e(θn−q,

i
η)

1 + e(θn−q,
i
η)

,

what corresponds to a LLTM. Given the latter formulation of the LLTM, the posterior p (θ, η|y)

can be written as
∫

p (θ, η,x|y) dx, in which p (θ, η,x|y) is proportional to
∏

n

∏
i

I(0,∞) (xni)
yni I(−∞,0) (xni)

1−yni
exni−(θn−q,

i
η)(

1 + exni−(θn−q,
i
η)
)2


 p (θ, η) , (7)

where IX(x) is an indicator function that equals 1 if x ∈ X , and 0 otherwise, and p (θ, η) is

the joint prior distribution of the ability parameter and the basic parameter; as to the latter, we

assume independence, such that p (θ, η) = p (θ) p (η).

The difficulty in using a Gibbs sampler to sample from (7) arises from the fact that the para-

meters appear in the distribution of the latent data. As such, complex full conditionals arise. In

analogy with Maris and Maris (2002), we propose the following transformation in order to remove

the parameters from the distribution of the latent data:

zni = xni − (θn − q,
iη) . (8)
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After this transformation, the joint posterior p (θ, η,x|y) is proportional to(∏
n

∏
i

I(0,∞) (zni + θn − q,
iη)yni I(−∞,0) (zni + θn − q,

iη)(1−yni) ezni

(1 + ezni)2

)
p (θ, η) , (9)

For this joint posterior a Gibbs sampler can be constructed that subsequently draws the latent

data, the basic parameters, the person parameters and the person parameter variance from their

conditional distributions. For the latent data we note:

p (zni|y, θ, η) ∝ I(0,∞) (zni + θn − q,
iη) ezni

(1+ezni )2
iff yni = 1,

p (zni|y, θ, η) ∝ I(−∞,0) (zni + θn − q,
iη) ezni

(1+ezni )2
iff yni = 0.

(10)

The full conditional distribution of the ability parameter θn is proportional to(
I∏

i=1

I(0,∞) (zni + θn − q,
iη)yni I(−∞,0) (zni + θn − q,

iη)1−yni

)
p (θn) . (11)

If we define a lower bound lθ and an upper bound uθ as

lθ = maxi:yni=1 (q,
iη − zni) ,

bθ = mini:yni=1 (q,
iη − zni) ,

(12)

it can easily be shown that the full conditional p (θn|y, z, η) is nothing more than the ability’s

prior, truncated at these bounds:

p (θn|y, z, η) ∝ Ilθ,uθ
(θn) p (θn) . (13)

The LLTM-basic parameters, ηj (for j = 1, . . . , J) , are subsequently drawn from their full condi-

tional distributions. For the full conditional of ηj, we note:

p
(
ηj, |y, z, θ, η(j,)

)
∝ (14)


 N∏

n=1

I∏
i=1


I(0,∞)


zni + θn − qj,iηj, −

∑
j �=j,

qjiηj






yni

I(−∞,0)


zni + θn − qj,iηj, −

∑
j �=j,

qjiηj






1−yni

 p (ηj, ) .

As such, this distribution is the prior, truncated at lηj, and uηj, , with

lηj, = max
(
l1ηj, , l2ηj,

)
,

uηj, = min
(
u1ηj, , u2ηj,

)
,

(15)
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where

l1ηj, = max(ni:yni=0∧qj,i>0)

θn+zni−
∑

j �=j, qjiηj

qj,i
,

l2ηj, = max(ni:yni=1∧qj,i<0)

θn+zni−
∑

j �=j, qjiηj

qj,i
,

u1ηj, = min(ni:yni=0∧qj,i<0)

θn+zni−
∑

j �=j, qjiηj

qj,i
,

u2ηj, = min(ni:yni=1∧qj,i>0)

θn+zni−
∑

j �=j, qjiηj

qj,i
,

(16)

Note that the cases where qij, = 0 are dropped since then the inequalities posed by the conditional

distribution of ηj, are always fulfilled.

2.2 Metropolis-Hastings based procedures

Given the prior distributions as in Section 2.2.1, and given a symmetric normal jumping kernel

J
(
ξ∗|ξt−1

)
= N (ξ∗|ξt−1, cΣ

)
= J

(
ξt−1|ξ∗) with Σ being a known variance matrix and c a scaling

constant, a Metropolis within Gibbs algorithm for the LLTM may proceed as follows at iteration

t:

1. Draw θt ∝ p
(
θ|ηt−1,y

)
:

(a) Draw θ∗ ∝ N (θt−1, cσ2
θ

)
. In order to define an appropriate jumping rule, fine tuning

is needed at the level of the scaling parameter c. We chose to adapt c for each data set

such that a mean acceptance ratio of approximately 40 percent is obtained (Gelman,

Carlin, Stern, & Rubin, 1995).

(b) Accept θt = θ∗ with probability

r = min{ p(θ∗,η|y)

p(θt−1,η|y) , 1};

= min{ p(y|ηt,θ∗)p(θ∗)

p(y|ηt,θ
t−1)p(θt−1) , 1};

= min



∏

n

∏
i




exp[yni(θ∗n−q
,
i
ηt−1)]

exp[θ∗n−q
,
i
ηt−1]

exp[yni(θ
t−1
n −q

,
i
ηt−1)]

exp[θt−1
n −q

,
i
ηt−1]


 , 1


 .

(17)
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Otherwise, θt = θt−1.

2. ∀j ∈ {1, 2, . . . , J}, draw ηt
j ∝ p

(
η|θt, ηt

(<j), η
t−1
(>j),y

)
. In order to simplify notation, we will

represent the matrix
[
ηt

(<j), η
∗
j , ηt

(>j)

]T
as η∗

(<j,j,>j), and the matrix
[
ηt

(<j), η
t−1
j , ηt

(>j)

]T
as ηt−1

(<j,j,>j):

(a) Draw η∗
j ∝ N

(
ηt−1

j , c
′
σ2

η

)
, where c

′
is again an appropriate scaling constant.

(b) Accept ηt
j = η∗

j with probability

r = min{ p(θt,η∗
(<j,j,>j)|y)

p
(
θt,ηt−1

(<j,j,>j)|y
) , 1};

= min{ p(y|θt,η∗
(<j,j,>j))p(η∗

(<j,j,>j))
p
(
y|θt,ηt−1

(<j,j,>j)

)
p
(
ηt−1

(<j,j,>j)

) , 1};

= min



∏

n

∏
i




exp

[
yni

(
θt

n−q
,
i
η∗
(<t,t,>t)

)]
exp

[
θt

n−q
,
i
η∗
(<t,t,>t)

]
exp

[
yni

(
θ

t−1
n −q

,
i
η

t−1
(<t,t,>t)

)]
exp

[
θ

t−1
n −q

,
i
η

t−1
(<t,t,>t)

]


 , 1


 .

(18)

Otherwise, ηt
j = ηt−1

j .

3. Draw the variance of the distribution of the person parameter:

p
(
σ2

θ |y, θ
) ∝ invχ2

(
N,

1
N

N∑
n=1

θ2
n

)
. (19)

3 A comparison

3.1 The experimental design

As noted above, we restrict ourselves to a comparison of the performance of the presented algo-

rithms, when used for the estimation of four basic IRT models: the Rasch model, the LLTM, and

their probit-link counterparts. The models using the probit link function are estimated by all three

algorithms, whereas, for reasons mentioned above, the logit-link Rasch model and LLTM are not
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estimated by means of the DA-Gibbs sampler. As such, all algorithm-model combinations in the

study can be summarized schematically as given in Table 1.

Table 1: The algorithm-model combinations under study

Model

Algorithm Rasch LLTM

DA Probit-link Probit-link

DAT Probit- & Logit-link Probit- & Logit-link

Metropolis Probit- & Logit-link Probit- & Logit-link

Note that the estimation of the probit-link LLTM and Rasch model by means of the DA-T-

Gibbs sampler involves a transformation that is ”redundant” in that these models can also be well

estimated without it. The latter algorithm-model combinations are included, however, in order

to improve the orthogonality of the experimental design, as well as to help us to uncover some

difficulties related to the DA-T-Gibbs procedure.

To evaluate the different estimation procedures, the algorithms are run for simulated data sets

differing in the number of persons (300 vs. 1000), the number of items (15 vs. 40), the number

of basic parameters (3 vs. 6), and the degree of correlation between the columns of the design

matrix, which was drawn from a multivariate normal distribution with a constant between-column

correlation (amounting to .2 vs. 8.). Data are further generated, both under the probit- and

logit-link LLTM. All this implies a design with 32 data type cells. We restrict ourselves to 10

replications per cell; the latter can be justified given that the within-cell variation will appear to

be small for each of the data type cells under study.
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3.2 Convergence

For each method m independent chains have been run, convergence being monitored using Gelman

and Rubin’s R̂ (Gelman & Rubin, 1992), with:

√
R̂ =

√(
n − 1

n
+

(m + 1)B

mnW

)
, (20)

where B is the between-chain variance, and W the average of the m within-chain variances. The

latter measure is calculated for the second half of the chains. If it falls below 1.2, the chains are con-

sidered to have converged. We chose a cut-off of 60000 iterations (corresponding to several hours

of calculation time) to categorize an algorithm-model combination as converged or non-converged.

Table 2 shows the means (and standard deviations) of the number of iterations needed for the

different algorithm-model combinations to reach convergence for all combinations that always con-

verged. Note that, for each algorithm-model combination, the mean and standard deviation is

not only taken over the different replications per cell, but also over the different datatype cells;

given that the within-cell variations per cell are small, the reported standard deviations are a first

indication of the sensitivity of the algorithm-model combination to differences in the number of

persons, items, etc. (see further below). If for a given cell (algorithm-model combination) non-

convergence occurred for at least one replication, this is indicated in Table 2 as ’nc’; note that if

nonconvergence occurred in a cell, nonconvergence always occurred for almost all replications in

that cell.

To examine the effect of the different design factors in our study on speed of convergence, a

fixed effects analysis of variance was run for every model with the design factors and algorithm

(restricted to the applicable, converged cells) as independent variables, and with the logarithm of

the number of iterations needed for convergence as a dependent variable. (The logarithm with

basis 10 was taken in order to improve the ’normality’ of the data.) Table 3 represents all effects
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Table 2: Mean number (and standard deviation) of iterations to reach convergence for all algorithm-

model combinations

Model

Rasch LLTM

Algorithm Probit Logit Probit Logit

DA 231 (95) na 215 (100) na

DAT 3118 (2838) 1254 (889) nc nc

Metropolis nc nc 350 (598) 119 (126)

’na’: not applicable; ’nc’: no convergence within 60000 iterations.

with effect size ω2 exceeding .05. Note that all presented effects are statistically significant at the

5% level as well.

The main results with respect to convergence are the following:

• As for the probit Rasch model, Table 3 shows that the speed of convergence considerably

depends on the estimation algorithm, with the DA algorithm converging much faster than

its DAT counterpart; the latter difference could already be seen in Table 2. The influence of

the link function of the model under which the data are simulated is further such that the

data sets generated using the probit link need more than twice the number of iterations to

converge than their logit link counterparts. With respect to the number of items, we note

that more iterations are needed to reach convergence when more items are considered.

• The logit Rasch model could only be estimated comfortably by means of the DAT algorithm.

Main determinants of the speed of convergence of this algorithm-model combination, appear

to be the number of items (positively correlated with the number of iterations needed to

reach convergence) and the link function in the model under which the data are simulated
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Table 3: Effect sizes ω2 >.05 for analysis of variance of speed of convergence

Model

Rasch LLTM

Probit Logit Probit Logit
Effect ω2 ω2 ω2 ω2

algo .833 na - na
dlink .081 .135 .572 -
item .052 .828 - .117
basis - - .050 .198
cor - - .092 .530

algo*dlink - na .051 na
algo*cor - na .081 na
basis*cor - - - .098

’algo’: the estimation algorithm (for the Probit Rasch model, DA is compared to DAT,

whereas for the Probit LLTM, DA is compared to Metropolis); ’dlink’: the link function

used to simulate the data (logit vs. probit); ’item’: the number of items (15 vs. 40);

’basis’: the number of basic parameters (3 vs. 6); ’cor’: the correlation structure of the

design matrix (mean correlation ∼.2 vs. ∼.8); ’na’: not applicable (the respective

model is estimated by one algorithm only); ’-’: no practical significance at the 5% level.

(data sets generated using a probit link need more time to get estimated).

• With respect to the probit LLTM model, it appears that probit-link-data sets converge slower

than logit-link-data sets, and that models with smaller numbers of basic parameters, and

models with lower level of correlation between the columns of the design matrix converged

faster. The significant interaction effects represented in Table 3 are disordinal, with the DA

algorithm needing less iterations than the DAT algorithm for the elevated state of the second

independent variable (probit-link data resp. lower design matrix correlation) in both cases.

• The logit LLTM could only be estimated comfortably by means of the Metropolis algorithm.

The speed of convergence of this algorithm-model combination is mainly determined by the

positive correlation between, on the one hand, the number of iterations to reach convergence

and, on the other hand, the number of items, the number of basic parameters, and the level

of correlation between the columns of the design matrix; moreover, there appears to be an
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ordinal interaction between the two latter independent variables in that the difference in

speed of convergence between data sets differing in number of basic parameters is higher for

a higher degree of correlation between the columns of the design matrix.

3.3 Recovery of the underlying truth

Apart from speed of convergence, it is important that the algorithm under consideration succeeds

in obtaining good parameter estimates. The recovery of the underlying truth was checked by means

of both the correlation and the mean difference between the estimates and the true parameters.

For all converged algorithm-model combinations where the link function is identical to the one used

for the generation of the data, it appears that the correlation between the true item parameters

and the estimated item parameters is over 99 percent, whereas the corresponding correlation for

the person parameters lies around 93 percent. If the link function in the model differs from the

link function used for the generation of the data, the correlation between the true item parameters

and the estimated item parameters stays at 99 percent, whereas the correlation for the person

parameters falls down by approximately 6 percent.

To examine the effect of the design factors on the recovery of the underlying truth, analyses

of variance were run for each model, with as dependent variables the mean absolute difference

between the estimates and the true parameters for the item and person parameters respectively.

For each of the different models Table 4 shows the effects that account for at least 5% of the

variance of the dependent variables. As was to be expected, Table 4 shows that for both the

item and the person parameters the link function of the model under which the data have been

generated is the most important determinant of the quality of the estimates. In order to grasp the

impact of a misspecification of the link function in the model, Table 5 presents the mean absolute

differences between the estimates and the true item parameters for the different model/data-link
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Table 4: Effect sizes ω2 >.05 for analyses of variance of the recovery of the underlying truth, both

for the item parameter and for the person parameter

Model

Rasch LLTM

Probit Logit Probit Logit
Parameters Effect ω2 ω2 ω2 ω2

item parameter algo - na .114 na
dlink .913 .993 .589 .940

person parameter dlink .724 .872 .748 .885
item .261 .074 .244 .086

dlink*item - .062 - -

’algo’: the estimation algorithm (for the Probit Rasch model, DA is compared to DAT;for the Probit LLTM,

DA is compared to Metropolis); ’dlink’: the link function used to simulate the data (logit vs. probit);

’item’: the number of items (15 vs. 40); ’na’: not applicable (the respective model is estimated

by one algorithm only); ’-’: no practical significance at the 5% level.

combinations under study. As for the interpretation of the absolute figures given in Table 5, note

that the mean range of the true item parameters equals approximately 4, and that the mean range

of the true person parameters equals approximately 5.

From the results shown in Table 4, we further learn that no sizeable differences show up between

the quality of the DA-estimates and the quality of the DAT-estimates, whereas such differences do

show up between the DA-estimates of the item parameters and the Metropolis-estimates of these

parameters, the Metropolis estimates being more accurate than their DA counterparts.

4 Discussion

Combining the results given under Section 3, allows one to to choose an optimal estimation algo-

rithm, for a given IRT model:
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Table 5: Mean absolute differences between estimates and true parameter for item and person

parameters and different model/data link combinations under study.

Model

Rasch LLTM

Parameters Data-link Probit Logit Probit Logit
item parameter probit .10 .57 .12 .67

logit .36 .13 .38 .04

person parameter probit .28 .58 .27 .62
logit .46 .36 .46 .36

• When considering a probit Rasch model, the DA algorithm should be preferred over the

DAT algorithm, since its convergence is significantly faster, and the quality of the estimates

is comparable.

• When considering a probit LLTM, the Metropolis algorithm should be preferred above the

DA algorithm, as both algorithms converge equally fast, and the Metropolis algorithm yields

better estimates.

• When considering a logit Rasch one is bound to estimate by means of the DA-T-Gibbs

algorithm.

• When considering a logit LLTM one is bound to estimate by means of a Metropolis algorithm.

Apart from the pragmatic consequences of the results of Section 3, these findings also leave us with

several theoretical questions, including:

1. Why does the DA-T-Gibbs sampler converge much slower than the DA-T-Gibbs sampler,
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especially when used in combination with the LLTM?

2. Why does the Metropolis algorithm only converge within a reasonable number of iterations

when used to estimate an LLTM?

3. Why does a misspecification of the link function has such an impact?

1. The most significant difference is in speed of convergence between the DA and the DA-T-

Gibbs sampler, especially when used to estimate the LLTM. The main cause for the latter

difference is to be found in the different structure of the full conditionals of both the DA and

the DAT algorithms. As outlined under Section 2.1, the full conditionals in the DA-Gibbs

sampler are normal distributions, whereas in the DA-T-Gibbs sampler the full conditionals

are truncated prior distributions. Equations 12 and 16 give the bounds for the truncation

of the priors of θ and η, respectively. For the ability parameter θ, for instance, Equation

12 shows how the normal prior distribution is truncated at the left at the value of the most

difficult of all correctly answered items and at the right at the value of the most easy of all

incorrectly answered items. It is clear that, as more items are introduced, the ’slice’ from

which to sample is likely to narrow. In the Rasch model, the same argument holds for the

full conditional of the item parameter β. For the LLTM, the argument holds as well; yet, as

can be seen from Equation 16, the determination of the upper and lower bounds is now based

on all persons and items instead of on one of both only. As such, the ’slices’ from which the

basic parameters η in the LLTM are sampled are likely to be much smaller than the ones

the item parameters β in the Rasch model are sampled from. A trivial consequence of the

narrowing of the ’slices’ to sample from is a raise in the autocorrelation over iterations of

that parameter, and thus a slower convergence. To quantify the difference in autocorrelation

between the different algorithm-model combinations, Table 6 gives the mean autocorrelation
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of the item parameter for these different combinations.

Table 6: Overview of the mean autocorrelation of the item parameter for all algorithm-model

combinations

Model

Rasch LLTM

Simulation algorithm Probit Logit Probit Logit
DA .704 na .748 na
DAT .982 .981 .999 .999

Metropolis .999 .999 .843 .796

’na’: not applicable, as the given model cannot be estimated by the respective algorithm.

2. The finding that the Metropolis algorithm converges very bad for the Rasch model, compared

to the LLTM, stems from the raise of dimensionality of the parameter space: When the

dimensionality of this space rises, a proposed jump is harder to be accepted. In order to keep

the acceptance ratio constant, the variance of the jumping then distribution will have to be

taken smaller (Johnson & Albert, 1999). Consequently, the autocorrelation of the parameters

will rise, resulting in a slower convergence.

3. The impact of a misspecification of the link function, as shown in Table 5, is a straightfor-

ward matter: the data link transforms the parameterspace into probabilities (binary data,

more exactly, that represent these probabilities), whereas the model link transforms these

probabilities back to the parameter space; it is trivial that better recovery occurs when these

transformations are each others inverse.
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