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Abstract

Posterior predictive checking is a method for detecting violations against a posited model. The basic

idea is to compare the observed data to data sets generated from the posterior predictive distribution.

Although comparable to classical goodness-of-fit testing, the test quantities or discrepancy measures

used in posterior predictive checking are allowed to depend on unknown nuisance parameters. The

posterior predictive check is computationally cheap but criticized for lack of power to detect model

violations. We discuss the applicability of existing methods for enhancing the performance of a

posterior predictive check. We also present new type of test quantities based on taking expectations,

which have a similar interpretation as the discrepancy measure but yield a more powerful model

check. Computational and distributional aspects of the modified model checks are discussed in

theoretical and empirical examples.

Key words: posterior predictive check, discrepancy measure, posterior predictive p-value, frequentist

properties.
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1 Introduction

In any statistical analysis, it is important to check whether the data are adequately fitted by the

model. Because statistical models are in general developed to yield accurate inferences for theoret-

ically interesting model parameters, the fit of the model should be examined for theory-driven test

quantities. Rubin (1984) considered comparing the observed data y to hypothetical replicated data

sets yrep
1 , . . . , yrep

S for test quantities T (y) that can be defined by the user. The replicated data sets

are generated from the posterior predictive distribution p(yrep|y). This approach, called posterior

predictive checking, was introducted by Guttman (1967).

One may wish to consider statistics T (y) that are functions of point estimates θ̂y of θ. In that

case, it seems more natural to use discrepancy measures D(y, θ) that are functions of θ and therefore

directly measure the discrepancy between model and data. For a detailed discussion of discrepancy

measures, see Gelman, Meng, and Stern (1996) and Meng (1994). Using discrepancy measures,

model violations are detected by comparing D(y, θ) to D(yrep, θ) where (yrep, θ) is drawn from the

posterior predictive distribution p(yrep, θ|y). The advantage of using discrepancy measures instead of

statistics is not only conceptual but also computational, since in complex Bayesian modeling, point

estimates θ̂y like the maximum likelihood estimate may be hard to obtain. Moreover, for performing

predictive checks, θ̂yrep would have to be computed for each simulation draw of yrep, which would

require nested looping if θ̂y is computed iteratively.

The exact distribution of discrepancy measures under the posited model is usually not avail-

able and a posterior predictive check then is attractive because it is computationally and analytically

undemanding. Although easy to carry out, a posterior predictive check may fail to detect a model

violation because the data are used twice: once to obtain the posterior and once to assess the fit of

the model. Hence, if the posterior predictive check does not indicate that the model is violated, it

remains to be examined whether the outcome of the model check is related to the double use of the

data. This can be done by changing the replication distribution (Gelfand, Dey, and Chang, 1992;

3



Bayarri and Berger; 1999, 2000) or by modifying the test quantity (Robins, Van der Vaart, Ventura,

2000), usually at the cost of additional computational and/or analytical efforts.

In this paper, we discuss the applicability of existing methods for enhancing the performance

of the model check. Besides, we present two modifications of D(y, θ) based on taking expectations

but in slightly different ways. The idea is to reduce the dependence between D(yrep, θ) and θ by

integrating out θ from D(y, θ). This yields test quantities that have a similar interpretation as the

corresponding discrepancy measure D(y, θ) but have reference distributions with narrower tails. We

also present efficient simulation techniques for computing the modified discrepancy measures.

The remainder of this paper is organized as follows. In Section 2, we review posterior

predictive model checking and in Section 3, we discuss existing modifications of the model check.

In Sections 4 and 5, we present the two modifications that are based on taking expectations and in

Section 6, we offer some concluding remarks.

2 Model checking

This section contains a brief explanation of the concept of posterior predictive checking and a

discussion of the Bayesian and frequentist properties of the posterior predictive check.

2.1 Plotting discrepancy measures

A posterior predictive check involves drawing (θs, y
rep
s ) (s = 1, . . . , S) from the posited model

p(yrep, θ|y) and comparing D(yrep
s , θs) to D(y, θs). The easiest way to draw from p(yrep, θ|y) is

to draw θ from p(θ|y) and yrep from p(yrep|θ). To judge the possible model violation, the draws can

be presented in a two-dimensional scatterplot of D(yrep
s , θs) against D(y, θs) (Gelman et al., 1996).

Relatively large values of D(y, θs) compared to D(yrep
s , θs) contribute to the evidence against the

posited model.

Instead of visualizing the fit of the model by a two-dimensional plot, one can also compute a
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discrepancy comparison δ(yrep, y, θ) = D(yrep, θ) - D(y, θ). The observed data y and the replicated

data yrep are equally close to the model if δ(yrep, y, θ) equals zero. Hence, a model violation can be

detected from a histogram of δ(yrep, y, θ) compared to the value 0.

2.2 Posterior predictive p-value

The performance of the posterior predictive check under the posited model can be summarized by

the p-value. The p-value as a measure of outlyingness has been disputed in the literature (Berger

and Sellke, 1986; Kass and Raftery, 1995) although its merits have been recognized as well (Rubin,

1984; Meng, 1994; Gelman et al., 1996; Bayarri and Berger, 2000; Robins et al., 2000; Berger, 2003).

The posterior predictive p-value is defined as

pD = Pr{D(yrep, θ) ≥ D(y, θ)|y} =

∫∫

ID(yrep,θ)≥D(y,θ) p(yrep, θ|y) dθ dyrep . (1)

If the posterior distribution of D(y, θ) does not depend on θ0, the posterior predictive p-value

coincides with the conditional p-value

pcond(θ) = Pr{D(yrep, θ) ≥ D(y, θ)|θ} . (2)

2.3 Sampling distribution of the posterior predictive p-value

The performance of the posterior predictive check under the posited model can be examined by

making a frequency evaluation of the posterior predictive p-value (Rubin, 1984; Meng, 1994; Bayarri

and Berger, 2000; Robins et al., 2000). This in itself is of limited value as the posterior predictive p-

value is a Bayesian posterior probability and not a frequentist p-value. Nevertheless, even within the

Bayesian framework, it is desirable to have a p-value that has a uniform distribution over hypothetical

observed data sets drawn from the true model (Rubin, 1984; Bayarri and Berger, 2000).

For the sampling distribution of hypothetical observed data sets, more than one choice is

possible. Meng (1994) allowed the value of θ to vary across studies and assumed that the hypo-
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thetical data sets are drawn from the prior predictive distribution p(y) =
∫

p(y|θ) p(θ) dθ. Let U

denote a standard uniform variable. Under the assumption of a continuous sampling distribution

for discrepancy D(y, θ), Meng (1994) showed that the prior predictive mean E[pD] = 1/2 and that

E[h(pD)] ≤ E[h(U)] for all convex functions h(.) : [0, 1] → R. The intuitive interpretation of the

result is that the posterior predictive check tends to be conservative (i.e. the probability that the

posterior predictive p-value is smaller than or equal to a nominal signficance level α is smaller than

or equal to α). Robins et al. (2000) studied the asymptotic frequentist properties of the posterior

predictive p-value under the assumption that the value of θ does not vary across studies but that

there exists a true θ0 and demonstrated that the posterior predictive check remains conservative

when the sample size tends to infinity. The conservatism property makes the posterior predictive

check justifiable from a frequentist point of view, but also indicates that the posterior predictive

check may lack sensitivity to detect model violations.

2.4 Double use of the data

The conservatism of the posterior predictive check is strongly related to the double use of the data.

We illustrate this by reformulating pD as a posterior mean of conditional p-values (Meng, 1994):

pD =

∫

pcond(θ) p(θ|y) dθ = Eθ|y[pcond(θ)] . (3)

An interesting aspect of formulation (3) is that it connects posterior predictive checking to classical

hypothesis testing. In classical testing, the value of θ is known under the null H0 : θ = θ0 and the

p-value then is pcond(θ0). Classical testing is not applicable when the null distribution of D(y, θ)

contains nuisance parameters that are not fixed. In posterior predictive checking, the nuisance

parameters are dealt with by estimating the true unknown pcond(θ0) by its posterior mean pD as

shown in (3). Therefore, the data are used both for computing conditional p-values and for averaging

these p-values. It is the averaging part that leads to a conservative model check.
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3 Remedies against conservatism

3.1 Partial posterior predictive check

For model checks that are based on statistic T (y), Bayarri and Berger (2000) proposed the partial

posterior predictive p-value, obtained by averaging the conditional p-values pcond(θ) over draws θ

from the partial posterior (instead of the posterior). The partial posterior distribution is obtained

by conditioning on the part of y that is not contained in T (y) and can be written as

p(θ|y \T (y)) ∝ p(y|θ) p(θ) / p(T (y)|θ) .

Because the information in y contained in T (y) is not used in the partial posterior predictive dis-

tribution, double use of the data is avoided. Robins et al. (2000) showed that under asymptotic

normality of T (y), the partial posterior p-value, asymptotically, is a frequentist p-value. The idea

of the partial posterior is similar to the one underlying case-deleted posteriors (Pettit and Smith,

1985; Geisser, 1993), that is, the data information used to produce the posterior should not be used

when computing the test quantity. Bayarri and Berger (2000) also presented a conditional predictive

p-value but it is more difficult to compute than the partial posterior predictive p-value and therefore

is less useful for general consumption.

Draws from the partial posterior distribution can be obtained by weighing the posterior

draws θ1, . . . , θS proportional to 1/p(T (y)|θ1), . . . , 1/p(T (y)|θS). The partial posterior predictive

p-value can be computed as

p̂ppost =

∑S
s=1 Pr{T (yrep) ≥ T (y)|θs} / p(T (y)|θs)

∑S
s=1 1 / p(T (y)|θs)

.

The estimator p̂ppost performs fine because p(T (y)|θ) usually is less concentrated than p(y|θ) (DiCic-

cio et al., 1997). A problem may arise when the model is violated by the data because then p(T (y)|θ)

is concentrated at a different θ than p(y|T (y), θ) and p(y|θ) becomes diffuse. Another problem is

that p(T (y)|θ) often is not available in closed form in which case it has to be approximated by
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density-fitting techniques.

The partial posterior predictive check was developed only for model checking problems

where the test quantity is a statistic T (y). If the test quantity is a parameter-dependent discrepancy

D(y, θ), double use of the data is not avoided because the test quantity directly depends on the

posterior. Attempts to avoid double use of the data to some extent are not recommendable and may

produce an extremely liberal model check as is illustrated in the following example.

Example 1. Consider y = (y1, . . . , yn)t an n×1 vector of responses for which we assume y ∼ N(vθ, In)

where v is a known n × 1 vector and p(θ) ∝ 1. We define test quantity Da(y, θ) = (w′y − w′vθ)/n

with w a known n × 1 vector. We further assume that w′w = v′v = n. A check based on Da(y, θ)

is equivalent to a check based on T (y) = w′y/n because Da(yrep, θ) ≥ Da(y, θ) if and only if

T (yrep) ≥ T (y). Bayarri and Berger (2000) and Robins et al. (2000) showed that the partial

posterior predictive p-value of this model check is a frequentist p-value. Here we outline this result

using the discrepancy measure notation. The partial posterior distribution is

p(θ|y \T (y)) ∝ p(y|θ)p(θ)/p(y|w′y) ∝ N(θ|θ̃, σ̃2) ,

where θ̃ = v′Hy/v′Hv and σ̃2 = 1/v′Hv with H = In − ww′/n. If we condition on y except T (y),

we can evaluate
√

n(Da(yrep, θ) − Da(y, θ)) as follows

√
n(Da(yrep, θ) − Da(y, θ)) =

1√
n

(w′yrep − w′vθ) +
1√
n

(w′vθ − w′vθ̃) − 1√
n

(w′y − w′vθ̃)

= z1 + z2
w′v(v′Hv)−1v′w

n
− 1√

n
(w′y − w′vθ̃)

= z
√

w′v(v′Hv)−1v′w/n + 1 − 1√
n

(w′y − w′vθ̃) , (4)

were z1, z2, and z are standard normal variables. The partial posterior predictive p-value therefore

is

pppost = Pr{z
√

w′(v′Hv)−1v′w/n + 1 ≥ 1√
n

(w′y − w′vθ̃)} . (5)
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Because for any θ, it holds that (w′y−w′vθ̃) /
√

n | θ ∼ N(0, w′v(v′Hv)−1v′w/n + 1), the partial

posterior predictive p-value is a frequentist p-value.

Next consider test quantity Db(y, θ) = (w′y−w′vθ)2/n3/2. After conditioning on θ, Db(y, θ)

depends on y only via w′y. Therefore, it makes some intuitive sense to draw from the partial posterior

distribution p(θ|y \T (y)). If we condition on y except T (y), we have

√
n(Db(y

rep, θ) − Db(y, θ)) =
1

n
(w′yrep − w′vθ)2 − 1

n
((w′y − w′vθ̃) − (w′vθ − w′vθ̃))2

= χ2
1 + χ2

1(λ(y))
w′v(v′Hv)−1v′w

n
, (6)

where χ2
1(λ(y)) is a chi-square variable with one degree of freedom and non-centrality parameter

λ(y) = (w′y − w′vθ̃)2 / w′v(v′Hv)−1v′w. The p-value is

p = Pr{Db(y
rep, θ) ≥ Db(y, θ) | y, \T (y)}

= Pr{χ2
1 − χ2

1(λ(y))
w′v(v′Hv)−1v′w

n
≥ 0}

= Pr{χ2
1 − χ2(λ(y))

ρ2

1 − ρ2
≥ 0} ,

where ρ = w′v/n. If ρ approaches 1, the sampling distribution of λ(y)|θ converges to a χ2
1 distribution

and the p-value tends to zero. In that case, the model will always be rejected regardless the value

of the observed discrepancy. The predictive check can perhaps be repaired at the expense of further

analytical effort, but if the discrepancy measure is a function of θ, it is more natural to remain

within the posterior predictive framework.

3.2 Modification of the discrepancy measure

The performance of the posterior predictive check can also be enhanced by modifying the test

quantity such that the dependence between the test quantity and the nuisance parameters θ is

reduced. This is a common idea in statistics and examples include the studentized residual statistic
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and the generalized test quantity (Tsui and Weerahandi, 1989). Robins et al. (2000) presented

some generally applicable modifications that produce asymptotic frequentist tests. These include

the centered statistic Tc(y) = T (y)−E[T (y)|θ]|θ=θ̂, where θ̂ is the maximum likelihood estimator of

θ, and the discrepancy measure

D̃(y, θ) = D(y, θ) − h(θ)i(θ)−1n−1S(θ)

where h(θ) = ∂ limn→∞ E[D(y, θ)|θ0]/∂θ0 |θ0=θ, i(θ) = limn→∞ E[−∂2p(y|θ)/∂θ∂θ′|θ], and S(θ)

the score function (i.e. ∂ log p(y|θ)/∂θ). Regarding the power, Robins et al. (2000) showed that

the posterior predictive check based on D̃(y, θ) is a locally most powerful asymptotic test against

Pitman alternatives if D(y, θ) is a score discrepancy. To derive the asymptotic frequentist proper-

ties, a number of conditions need to be fulfilled. An important condition that can be violated is

that the sampling distribution of the test quantity is asymptotically normal with variance O(n−1).

We illustrate the use of D̃(y, θ) and the importance of the asymptotic normality condition for the

example described in the previous subsection.

Example 1 (continued). Consider first the discrepancy Da(y, θ) = 1
n (w′y − w′vθ). The mean

E[Da(y, θ)|θ0] = ρ(θ0 − θ) and hence h(θ) = ρ. Furthermore, i(θ) = 1/n and S(θ) = v′y − nθ

so D̃a(y, θ) = (w′y − w′vθ)/n − ρ(v′y − nθ) = w′y − ρv′y + (n − 1)ρθ, which is equivalent

to the pivotal statistic w′y − ρv′y. Hence the model check based on the modified discrepancy is a

frequentist test. Next consider Db(y, θ) = (w′y − w′vθ)2/n3/2. The asymptotic normality condition

is not fulfilled (
√

nDb(y, θ) is χ2
1) and the modified discrepancy measure D̃b(y, θ) coincides with

Db(y, θ) since E[Db(y, θ)|θ0] = n + θ0v
′ww′vθ0 − 2θ0v

′ww′vθ + θv′ww′vθ, and hence h(θ) = 0.

The posterior predictive check based on test quantity Db(y, θ) is conservative (the predictive p-value

tends to .5 if ρ → 1) and therefore the posterior predictive check based on the modified discrepancy

is also conservative.

In the following two sections, we present two modifications of D(y, θ) that are obtained by posterior

10



averaging but in different ways. Posterior averaging does not only improve the asymptotic properties

but can also improve the small-sample properties of an asymptotic frequentist test. Besides, it is

conceptually appealing because the whole posterior of the test quantity is explored.

4 Mean discrepancy comparison

In Section 2.1, we formulated the test quantity as a discrepancy comparison δ(yrep, y, θ) = D(yrep, θ)−

D(y, θ). This measure compares the discrepancy between model and observed data to the discrep-

ancy between model and replicated data and therefore is particularly attractive from a conceptual

viewpoint since it formalizes in a most straightforward way what we care about in posterior predic-

tive model checking, that is, a comparison of the closeness of y to the model with that of yrep. The

modification of the discrepancy comparison that we will present in this section stems from the sym-

metric nature of y and yrep (y|θ and yrep|θ have the same likelihood, by definition). Much classical

and Bayesian literature on the topic is limited because it does not allow the simultaneous existence

of y and yrep, even thought this is the key comparison being made in model checking. From this

perspective, conditioning on both y and yrep is quite reasonable which is pursued in the following.

4.1 Definition

We present a Rao-Blackwellized version of δ(yrep, y, θ) by taking the mean conditional on y and yrep:

∆(yrep, y) = E {δ(yrep, y, θ)|yrep, y} =

∫

δ(yrep, y, θ) p(θ|yrep, y) dθ . (7)

This yields a fair comparison of the discrepancies of y and yrep as the conditional mean is anti-

symmetric with respect to y and yrep. The mean discrepancy comparison ∆(yrep, y) and δ(yrep, y, θ)

have the same posterior mean and the posterior variance of δ(yrep, y, θ) is never exceeded by the one

of ∆(yrep, y). The latter immediately follows from the following decomposition:

Var[ δ(yrep, y, θ)|y ] = E[ Var[ δ(yrep, y, θ)|yrep, y] | y] + Var[ E[ ∆(yrep, y)|y] | y] . (8)
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The first term at the right hand side of (8) measures the variability among the discrepancy compar-

isons that remains when conditioning on yrep. This variability is removed when replacing δ(yrep, y, θ)

by ∆(yrep, y).

4.2 Frequentist properties

The posterior predictive check based on an anti-symmetric discrepancy comparison δ(yrep, y, θ)

(which includes ∆(yrep, y)) has conservative operating characteristics. In the appendix, it is shown

that under the assumption of a continuous sampling distribution, it holds that the prior predictive

mean E(pδ) equals 1/2 and E[pq
δ] ≤ E[U q ] for q ≥ 1 where U denotes a standard uniform vari-

able. Hence Var(pδ) ≤ Var(U) which suggests that posterior predictive checks based on discrepancy

comparisons are conservative. The result is less general than Theorem 1 of Meng (1994) where the

inequality holds for all convex functions on [0, 1].

The frequentist properties of the posterior predictive check are likely to improve when condi-

tioning on yrep and y because Var[∆(yrep, y)|y] ≤ Var[δ(yrep, y, θ)|y]. A stronger result is obtained

when it is assumed that δ(yrep, y, θ) and ∆(yrep, y) are normal. Then it holds that |p∆−.5| ≥ |pδ−.5|

which implies that p∆ has superior frequentist properties than pδ.

4.3 Computation

The value of ∆(yrep, y) is usually not obtainable in analytic form. We may approximate the value

of ∆(yrep, y) by averaging over draws from p(θ|yrep, y) but this involves additional MCMC sampling

for each yrep. The computational burden can be reduced by importance sampling (Hammersley

and Handscomb, 1964; Geweke, 1989), which yields a simulation consistent estimator for ∆(yrep, y).

Let h(θ) be an importance sampling density that approximates p(θ|yrep, y). Then ∆(yrep, y) can be

estimated by

∆̂(yrep, y) =

∑S
s=1 wsδ(y

rep, y, θq)
∑S

s=1 ws

, (9)
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where θs is a draw from h(θ) and

ws ∝ p(θs|yrep, y)

h(θs)
.

An obvious choice for h(θ) is the posterior p(θ|y). This choice often gives satisfactory results because

p(θ|yrep, y) tends to be more concentrated than p(θ|y) (diCiccio et al., 1997).

4.4 Theoretical and empirical example

The performance and computation of the mean discrepancy comparison are considered in the fol-

lowing two examples.

Example 2. Suppose the linear regression model y ∼ N(Xθ, In) where X is an N ×K design matrix.

Assume p(θ) ∝ 1 so that p(θ|y) ∼ N(θ̂, (X ′X)−1) where θ̂ = (X ′X)−1X ′y. The fit of the model can

be examined with a χ2 goodness-of-fit measure D(y, θ) = (y − Xθ)′(y − Xθ). The properties of χ2

goodness-of-fit measures in posterior predictive checking have been studied by Gelman et al. (1996).

Here we examine the effect of replacing the discrepancy comparison by its mean. The discrepancy

comparison δ(yrep, y, θ) can be written as

δ(yrep, y, θ) = (yrep − Xθ)′(yrep − Xθ) − (y − Xθ̂ − (Xθ − Xθ̂))′(y − Xθ̂ − (Xθ − Xθ̂)

= χ2
n − χ2

k − D(X, θ̂) ,

and the mean discrepancy comparison ∆(yrep, y) can be written as

∆(yrep, y) = (yrep − Xθ̂rep)′(yrep − Xθ̂rep) − (y − Xθ̂)′(y − Xθ̂) = χ2
n−k − D(X, θ̂) . (10)

The posterior mean of δ(yrep, y, θ) (and ∆(yrep, y) ) is n−k−D(X, θ̂) and the posterior variances of

δ(yrep, y, θ) and ∆(yrep, y) are n+k and n−k, respectively. The ratio of variances is (n+k)/(n−k)

which indicates that the effect of modifying δ(yrep, y, θ) is substantial only when the fraction k/n is

large. The posterior predictive check based on ∆(yrep, y) is a frequentist test because the sampling

distribution of the test statistic D(y, θ̂) does not depend on θ and is χ2
n−k. Hence, by taking the

13



-40 0 40

(a)

pδ = .034
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(b)

p∆ = .012
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(c)

pδ = .72
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(d)

p∆ = .82

Figure 1: Infant temperament data: posterior predictive distributions of δ(yrep, y, θ) (a and c) and ∆(yrep, y)

(b and d) for the one class model (a and b) and the two class model (c and d), δ(yrep, y, θ) being the difference

between likelihood ratio discrepancy measures.

mean of the discrepancy comparison, the conservatism of the goodness-of-fit measure is eliminated.

Example 3. Stern, Arcus, Kagan, Rubin, and Snidman (1994) and Rubin and Stern (1994) fitted

latent class models to the scores from 93 infants on motor activity (M) at four months (scores 1, 2,

3, 4), crying intensity (C) at four months (scores 1, 2, 3), and fear intensity (F) at twelve months

(scores 1, 2, 3). This model assumes that the infants can be divided in a number of classes; within

each class, the probability vectors on the scores of M, C, and F are assumed to be independent and

multinomial. Vaguely informative Dirichlet priors for the one and two class model were presented

by Rubin and Stern (1994).
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Gelman et al. (1996) checked the fit of the model using the likelihood ratio discrepancy

measure (posited model versus saturated model): D(y, θ) = 2
∑

yilog[yi/E(yi|θ)], where yi is the

frequency of a cell in the 4×3×3 contingency table for combinations of scores on (M,C,F). Parameter-

dependent discrepancy measures are useful in latent class modeling (Berkhof, van Mechelen, and

Gelman, 2003) as they can address features of the different mixture components. We checked the fit

of the one and two class model by examining the posterior predictive distributions of δ(yrep, y, θ) and

∆(yrep, y, θ). A posterior sample for the two class model was obtained via data augmentation. The

MCMC settings were 5 chains of 5000 draws with independent starting values and a burnin period

of 5000 draws per chain; convergence criterion
√

R̂ (Gelman and Rubin, 1992) was smaller than

1.1 for all parameters. The value of ∆(yrep, y, θ) was approximated using 25000 posterior draws.

Simulation from p(θ|yrep, y) was avoided by using the the posterior distribution as an importance

sampling function.

Histograms of δ(yrep, y, θ) and ∆(yrep, y) under the one and two class models are presented

in Figure 1. The distribution of ∆(yrep, y, θ) has narrower tails both for the one and two class model.

The effect on the p-value is small for the one-class model but even small changes can give rise to a

different interpretation as a p-value of .012 is more conclusive evidence against the posited model

than a p-value of .034 (see panels a and b). Regarding the computation of ∆(yrep, y), the average

simulation standard error of the approximation of ∆(yrep, y) in the two class model was 1.2. We

compared the estimate of ∆(yrep, y) in the two class model with the one based on 5000 draws from

the target density p(θ|yrep, y) (instead of 25000 draws from the posterior). The average standard

error then was equal to .10 and the estimated p-value p∆ became .85. We see that the sample sizes

are large enough for the importance sampling estimate to produce an accurate p-value.
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5 Mean discrepancy measure

5.1 Definition and example

If the expectations of D(y, θ) and D(yrep, θ) are taken over p(θ|y) and p(θ|yrep) (instead of one

distribution p(θ|yrep, y)), the test quantity of the posterior predictive check is

D∗(y) = E[D(y, θ)|y] =

∫

D(y, θ)p(θ|y)dθ . (11)

This test quantity is equivalent to the discrepancy comparison

∆∗(yrep, y) = D∗ (yrep) − D∗ (y) .

The posterior mean of ∆∗(yrep, y) can be formulated as

E[∆∗(yrep, y)|y] = E[δ(yrep, y, θ)|y] + E[D∗(yrep)|y] − E[D(yrep, θ)|y] (12)

The difference between the latter two terms tends to zero for large sample size as can be shown by a

first-order expansion. The underlying argument is that because the distributions p(θ|yrep) and p(θ|y)

concentrate around E[θ|y], both D∗(yrep) and D(yrep, θ) tend to the limit of D(yrep, E[θ|y]) (it is

assumed that D(yrep, θ) converges to a constant and is a continuous function with bounded derivative

in the neighborhood of E[θ|y]). The asymptotic equality of the posterior means of ∆∗(yrep, y) and

δ(yrep, y, θ) suggests that what we showed for the mean discrepancy comparison ∆(yrep, y) also

holds for the mean discrepancy D∗(y), that is, that the improvement of the model check is not

attributable to a change in the posterior mean of the discrepancy measure but to a change in its

posterior variance.

Using D∗(y) instead of D(y, θ) does not always increase the sensitivity of the model check.

The posterior variance of ∆∗(yrep, y) can be larger than the posterior variance of δ(yrep, y, θ) de-

pending on the choice of D(y, θ). We illustrate this for an outlier example.

Example 4. Consider y = (y1, . . . , yn)t an n×1 vector of responses for which we assume y ∼ N(θ, In),
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p(θ) ∝ 1, and hence p(θ|y) ∼ N(y, 1/n) where y is the sample mean. Let D(y, θ) = ymax + aθ where

a is a known constant. The posterior variance of ∆∗(yrep, y) is

Var[∆∗(yrep, y)|y] = Var[yrep + ayrep|y] = Var[yrep
max − yrep|y] + (a + 1)2Var[yrep|y] ,

= Var[δ(yrep, y, θ)|y] + a(a + 2) Var[yrep|y] .

The posterior variance Var(∆∗(yrep, y)|y] is smaller than Var(δ(yrep, y, θ)|y] if and only if |a+1| < 1.

The minimum of Var[∆∗(yrep, y)|y] is attained when a is set equal to -1. In that case, D∗(y) is a

centered test quantity obtained by subtracting y from ymax.

5.2 Centering

As illustrated in Example 4, the choice of D(y, θ) is important in order to have a sensitive model

check. In practical model checking, it often is advisable to transform the individual observations

such that D(y, θ)|θ is pivotal or nearly pivotal. If near-pivotality cannot be achieved by a simple

transformation of the observations (like for instance standardization), then the dependence between

D(y, θ) and θ can be reduced by centering the discrepancy measure around its sampling mean

E[D(y, θ)|θ], yielding

Dc (y, θ) = D(y, θ) − E[D(y, θ) | θ] .

The centering step was proposed by Robins et al. (2000) for asymptotically normal test statistics

T (y) with variance O(n−1) and yields an asymptotic exact test. The asymptotic exactness follows

on the asymptotic sampling mean of the centered statistic of zero. The same condition is fulfilled

for the statistic D∗
c (y) = E[Dc (y, θ) | y] as can be shown by means of first-order expansions of

D(y, θ) and E[D(y, θ) | θ] around D(y, θ0). However, there is no guarantee that the centered quantity

performs well when the sample size is small or moderate. Centering is just one way to enhance the
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sensitivity of the model check and it usually does not change a bad test quantity into a good one.

Asymptotic properties can be considered when developing test quantities for general consumption,

but the formulation of test quantities should be guided by the posterior at hand.

5.3 Computation

The computation of ∆∗(y) is problematic when direct sampling from the posterior is not possible.

Then computation involves additional MCMC sampling for each yrep. An intermediate approach

is to split θ into θ = (θ′1, θ
′
2)

′ and to average the discrepancies using draws from p(θ1|y, θ2) rather

than draws from p(θ|y). In many Bayesian models, conditional sampling is straightforward and has

motivated the development of Gibbs sampling schemes. The resulting test quantity is a discrepancy

measure (namely a function of θ2) and is given by

D∗(y, θ2) =

∫

D(y, θ) p(θ1|y, θ2) dθ1 .

The discrepancy D∗(y, θ2) may be regarded as an intermediate between D(y, θ) and D∗(y) as both

D(y, θ) and D∗(y, θ2) have posterior mean D∗(y).

Conditioning on θ2 is effective only if the distribution of D(y, θ)|y, θ2 is diffuse. Therefore,

splitting θ into θ1 and θ2 should be done such that the posterior of D(y, θ)|y, θ2 is relatively con-

centrated in comparison to the posterior of D(y, θ)|y, θ1. If D(y, θ)|y, θ1 is very concentrated, the

performance loss from using D∗(y, θ2) instead of D∗(y) is almost negligible.

5.4 Empirical example

Example 5. The data yij are saliva cortisol concentrations collected at time points t1j , . . . , tnj ,j

for 87 male white-collar workers. Van Eck et al. (1996) collected and analyzed these data using a

mixed effects model in which the random intercepts β0j and slopes β1j are related to individual trait

characteristics. We fitted a random slopes model to the data and captured the diurnal pattern by a

fourth-degree polynomial. The likelihood of ln(yij) is ln(yij)|βj ∼ N(β0j + β1jtij + β2t
2
ij + β3t

3
ij +
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Figure 2: 95% posterior predictive intervals of (a) D(k)(y
rep, θ)−D(k)(y, θ) against time; (b) D∗

(k)(y
rep, θ2)−

D∗

(k)(y, θ2) against time.

β4t
4
ij , σ

2) and (β0j , β1j)
′ ∼ N((β0, β1)

′, W ). The chosen priors are p(σ2) ∝ 1/σ2, p(βk) ∝ 1, and

W−1 ∼ Wish(.001E2, .001), where E2 is a 2×2 identity matrix. The model was estimated by Gibbs

sampling (burnin period 2000, the subsequent 2000 draws were stored).

We examined whether the homoskedasticity of the within-subject errors (after log-transformation

of the cortisol values) is violated by the data. Because the data are concentrated around 10 equally

spaced time points, we formulated 10 intervals of one-and-a-half hour denoted by A(1), . . . , A(10) and

carried out a posterior predictive check per interval. The k-th discrepancy measure is defined as

D(k)(y, θ) = ln (

87
∑

j=1

nj
∑

i=1

e′ijeijI{tijεA(k)}) ; eij = ln (yij) − β0j − β1jtij − β2t
2
ij − β3t

3
ij − β4t

4
ij .

In panel a of Figure 2, 95% posterior predictive intervals of the discrepancy comparisons are drawn

(constructed from 1000 posterior predictive draws). It can be read that the homoskedasticity assump-

tion is possibly violated at the second interval but the posterior predictive check is not conclusive.

As a following step, the performance of the check was increased. Because direct sampling from

the posterior is not possible, θ was split into θ1j = (β0j , β1j) and θ2 = (β2, β3, β4, σ
2, W ) and the
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discrepancy measures were averaged using draws from p(θ1j |y, θ2). The number of draws of θ1j was

set at 500 and was sufficient for accurate approximation of D∗
(k)(y, θ2). The results are presented in

panel b. The 95% intervals have shrinked substantially and the assumption of homoskedasticity is

violated at the second interval and possibly violated at the seventh, ninth, and tenth interval, which

seems sufficient evidence for reconsidering the posited model. To conclude, in this example a check

on the assumption of homoskedasticity could be enhanced by a simple modification that does not

require demanding computations inherent in nested MCMC schemes.

6 Concluding remarks

We discussed several methods for improving the sensitivity of a predictive model check. By means of

examples, we showed that the applicability of the different methods varies with the testing problem

under consideration. When the test quantity is a statistic, the model check can be improved by using

the partial posterior predictive distribution instead of the posterior predictive distribution. This

approach handles double use of the data in a natural way but involves evaluation of the likelihood of

T (y) at each posterior draw. This likelihood often is not available in closed form in which case one

has to make an approximation. This can be done but it is not appealing and an alternative strategy

may be adopted where the test quantity is modified rather than the replication distribution. We

discussed some modifications suitable when the test quantity has a normal sampling distribution.

In addition to the existing modifications, we presented the mean discrepancy comparison

and the mean discrepancy measure. The two methods operate similarly in that, approximately, they

do not lead to a change in the posterior predictive mean but to a reduction in the posterior predictive

variance. A difference between the two methods is that the mean discrepancy comparison always

improves the performance of the check whereas this may not be the case for the mean discrepancy

measure: If the formulation of the discrepancy measure is poor, computation of the posterior mean

may produce an inferior model check. Therefore it is important to center the observations and some-
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times center the discrepancy measure itself. With regard to the computation, the mean discrepancy

comparison can be computed by importance sampling which is a fast method when the sample sizes

are small. A mean discrepancy measure can only be efficiently computed when direct sampling of

the posterior is possible after conditioning on a subset of parameters. The examples showed that

both methods may lead to a substantial improvement in the sensitivity of the check while analytical

calculations and demanding computations are avoided.

Appendix

The prior predictive mean of pq
cond(θ) is smaller than or equal to the q-th moment of a standard

uniform variable. To show this, the prior predictive mean of pq
cond(θ) is written as

E[pq
cond(θ)|θ] = E[Pr{δ(yrep

1 , y, θ) ≥ 0 ∩ · · · ∩ δ(yrep
q , y, θ) ≥ 0|θ, y}]

= Pr{δ(yrep
1 , y, θ) ≥ 0 ∩ · · · ∩ δ(yrep

q , y, θ) ≥ 0|θ} , (13)

where yrep
1 , . . . , yrep

q are replicated data sets. Under the prior predictive sampling distribution, y,

yrep
1 , . . . , yrep

q are independent and identically distributed so that interchanging y and yrep
j does not

affect probability (13). Besides, as a continuous sampling distribution for δ(yrep
1 , y, θ) is assumed, the

sum of probability (13) and the q probabilities obtained by interchanging y and yrep
j (j = 1, . . . , q)

is not larger than 1. Combining the two statements gives E[pq
cond(θ)|θ] ≤ 1/(q + 1) = E[Uq ] for

q ≥ 1 where U denotes a standard uniform variable. The equality is attained for q = 1. The

rest of the proof is analogous to the proof of Theorem 1 of Meng (1994): by Jensen’s inequality,

E[pq
δ|θ] ≤ E[pq

cond(θ)|θ] for all q ≥ 1 and E[pδ|θ] = E[pcond(θ)|θ]. Combining the two results concludes

the proof.
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