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Abstract

There are several estimation methods available for the estimation of parameters in shared frailty

models. However, obtaining the standard error of the parameter estimates, especially for the

variance of the frailty, is in general more difficult. A possible solution is to use bootstrap.

In this paper we propose two model-based bootstrap algorithms. Furthermore, we compare

them to a nonparametric algorithm proposed by Therneau and Grambsch (2000) by means of

a simulation study. The results indicate that, under the correct model, one of the proposed

algorithms provides relatively precise assessment of the empirical variability of the parameter

estimates.

1 Introduction

The shared frailty model is used in order to model correlated survival times. The unobserved

risk factor that is common for all the observations in the same cluster is called the frailty. A

commonly used estimation procedure in frailty models is the EM algorithm (Klein, 1992). The

EM algorithm provides estimates for the treatment effect and for the variance of the frailty

density, but does not automatically provide estimates for the variances of these estimates.

Klein and Moeschberger (1997, p.413) show how the standard errors of the estimates can be

obtained from the inverse of the observed information matrix. This information matrix has

rank equal to the number of distinct event times plus the number of covariates plus one (for

the heterogeneity parameter). For large data sets, this procedure is not appropriate because of

the high dimensionality.

For the gamma distributed frailty case, Therneau and Grambsch (2000, p.254) proved that

the estimates obtained from the penalized partial likelihood maximization coincide with the
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estimates obtained from the EM algorithm for any fixed value of the heterogeneity parameter.

Hence we can use the fast algorithm for the penalized partial likelihood procedure available

in S-Plus. However, the standard error estimates reported in S-Plus are computed under the

assumption of fixed θ. Since θ needs to be estimated, the given standard errors are too small

(Therneau and Grambsch, 2000, p.249).

Thus, the issue of estimating the standard errors of the parameter estimates requires further

investigation. A useful tool might be the bootstrap. The results developed for resampling

in linear mixed models show that resampling schemes need to be chosen in a careful way

(Davison and Hinkley, 1997, p.100-102; Morris, 2002). Therneau and Grambsch (2000, p.249)

already proposed a nonparametric bootstrap algorithm to obtain standard error estimates. If we

assume a parametric model, however, we might prefer model-based resampling schemes above

the nonparametric resampling plan. In this paper we propose two model-based resampling

schemes that can be used to find variance estimates.

The frailty model is described in section 2. Some estimation methods for the frailty model are

briefly reviewed in section 3. In section 4, two model-based resampling plans for frailty models

are proposed. The main purpose of this paper is to compare model-based and nonparametric

resampling plans. The comparison is based on a simulation study (section 5).

2 The shared frailty model

Assume we have a total of n individuals that come from K different groups, group i having

ni individuals (n =
�K
i=1 ni). Each subject is observed from a time zero to a failure time Tij

or to a potential right censoring time Cij . Let T
0
ij = min(Tij , Cij) be the observed time and δij

be the censoring indicator which is equal to 1 if T 0ij = Tij and 0 otherwise. Hence the observed

data available for the ith individual in the jth group is yij = (T
0
ij, δij), with j = 1, . . . , ni and

i = 1, . . . ,K. The number of observed events in group i is Di =
�ni
j=1 δij.

The frailty model is given by

hij(t) = h0(t) exp(x
T
ijβ + wi), (1)

where hij(t) is the hazard rate at time t for individual j from group i, h0(t) is the baseline

hazard at time t, xij is the vector of p covariates recorded for the individual and wi is the

random effect for group i. In this model h0(t) can be left unspecified or it may be assumed
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to have some specific parametric form. The wi’s, i = 1, . . . , K, are a sample (independent and

identically distributed) from a density fW (.).

Model (1) can be rewritten as:

hij(t) = h0(t)ui exp(x
T
ijβ).

The factor ui = exp(wi) is termed the frailty for the ith group. A typical choice for the frailty

density is the one-parameter gamma density of form

fU (u) =
u(1/θ)−1 exp(−u/θ)

θ1/θΓ(1/θ)
, θ > 0.

The corresponding density for W is

fW (w) =
{exp(w)}1/θ exp {− exp(w)/θ}

θ1/θΓ(1/θ)
.

For the gamma density E(Ui)= 1. Typically Var(U) = θ is used to describe heterogeneity.

3 Methods of estimation for the shared frailty model

Klein (1992) shows that the observable (marginal) likelihood is given by

lobs(β, θ, h0(.)) =
K3
i=1

}
Di log θ − logΓ(1

θ
) + logΓ(

1

θ
+Di)

−
w
1

θ
+Di

W
log{1 + θ

ni3
j=1

H0(tij) exp(x
T
ijβ)}

+
ni3
j=1

δij{xTijβ + log h0(t)}
 , (2)

where H0(t) =
$ t
0 h0(u)du is the cumulative baseline hazard.

As noted in the previous section, the baseline hazard h0(t) in the frailty model can be specified

explicitly or left unspecified. Under the parametric assumption, the parameters in the resulting

model can be estimated using maximum likelihood estimation procedures. For example, for

h0(t) ≡ h0 constant, the parameters β, θ and h0 can be estimated by maximizing the observable
log likelihood lobs(β, θ, h0). If h0(t) is left unspecified, the EM algorithm (Klein, 1992) and the

penalized partial likelihood approach (Therneau and Grambsch, 2000) can be used to estimate

the unknown parameters in (2).
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The EM algorithm for the gamma frailty

To estimate ζ = (θ, β), we would like to base the likelihood maximization on the observable

log likelihood (2). However, this likelihood is difficult to maximize as it contains, apart from ζ,

also the unspecified baseline hazard. We therefore rely on the EM algorithm to estimate ζ (for

details see, e.g., Duchateau et al., 2002).

It is worth noting that Therneau and Grambsch (2000, p.254) have shown that for any fixed

θ, the EM algorithm and the penalized partial likelihood maximization have the same solution

for the gamma frailty case. Since S-Plus contains a fast algorithm for the penalized partial

likelihood approach, this property is very important from a practical point of view.

The penalized partial likelihood for shared frailty models.

An alternative proposal for the likelihood to use for the estimation of ζ = (θ,β) is the penalized

partial likelihood

lppl(ζ, w) = lpart(ζ, w)− lpen(ζ, w),

where

lpart(ζ, w) =
r3
l=1

 3
tij=t(l)

ηij −N(l) log{
3

tqs≥t(l)
exp(ηqs)}

 ,
with ηij = x

T
ijβ +wi, r denoting the number of different event times, t(1) ≤ . . . ≤ t(r) being the

ordered event times, N(l) denoting the number of events at time t(l), l = 1, . . . , r and

lpen(θ, w) = −
K3
i=1

log fW (wi).

For random effects wi, i = 1, . . . ,K, with corresponding one-parameter gamma density for the

frailties, we have

lpen(θ, w) = −
K3
i=1

F
wi − exp(wi)

θ

k
−K

F
log θ

θ
− logΓ

w
1

θ

Wk
.

The maximization of the penalized log likelihood consists of an inner and an outer loop. In

the inner loop the Newton-Raphson procedure is used to maximize, for a provisional value of

θ, lppl(ζ, w) for β and w. In the outer loop, a likelihood similar to (2) is maximized for θ as in

the case of the EM algorithm. The process is iterated until convergence (for details see, e.g.,

Duchateau et al., 2002).
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4 Bootstrap : Resampling schemes

The EM algorithm does not provide estimates for the variances of the estimates in the frailty

model. Klein and Moeschberger (1997) determine the standard errors of the estimates of β and

θ from the inverse of the observed information matrix of the observable likelihood. The infor-

mation matrix is a square matrix of size r + p + 1. For large data sets, this approach is not

appropriate because of the high dimensionality. On the other hand, the standard error estimates

reported by S-Plus are computed under the assumption of θ known (Therneau and Grambsch,

2000, p.249). In many cases, this assumption is not correct and the estimated standard errors

are too small. An alternative approach for finding variance estimates might be provided by the

bootstrap.

Therneau and Grambsch (2000, p.249) proposed the following nonparametric bootstrap tech-

nique to obtain standard error estimates:

1. Choose K groups by sampling with replacement from the K groups in the study.

2. The bootstrap sample contains the subjects from the selected groups.

3. Fit a gamma frailty model with covariates to this bootstrap sample.

This procedure is repeated a number of times. The estimates of the coefficients β̂∗ and the

estimates of the heterogeneity parameter θ̂∗ are stored for each bootstrap sample. The standard

errors of the estimated parameters β̂ and θ̂ are calculated based on the variability of β̂∗ and θ̂∗.

If a parametric model is appropriate, we might prefer model-based resampling techniques above

the nonparametric resampling plan. We therefore propose two model-based resampling schemes.

We rely on a resampling plan for a simple random effects model with a balanced design, proposed

by Davison and Hinkley (1997, p.102). A random effects model can be written as

yij = xi + zij , j = 1, . . . , ni = n, i = 1, . . . , K,

where K is the number of groups, ni = n is the number of subjects per group, the xi’s are

randomly sampled from Fx and independent of the zij’s, which are randomly sampled from Fz

with E(Z) = 0 to force uniqueness of the model.

In the “naive” version of their algorithm, Davison and Hinkley (1997, p.102) define

x̂i = ȳi and ẑij = yij − ȳi .
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The resampled data set is then obtained in the following way

1. Choose x∗1, . . . , x∗K by randomly sampling with replacement from x̂1, . . . , x̂K ;

2. Choose z∗i1, . . . , z∗in randomly with replacement from one group of residuals ẑ∗k1, . . . , ẑ
∗
kn,

either from a randomly selected group or the group corresponding to x∗i ;

3. Set y∗ij = x∗i + z∗ij, j = 1, . . . , n, i = 1, . . . ,K.

To construct a resampling plan for frailty models, we can argue that sampling from the means

of the groups in the case of the random effects model is like sampling from the frailty estimates

in the case of the frailty model. However, in the situation of frailty models, we do not have

any residuals to resample from. Therefore, we will adapt a resampling scheme for proportional

hazards regression, proposed by Hjort (1985) (see also Davison and Hinkley, 1997, p.351). This

resampling scheme can be applied if the survival times are assumed to be independent. We

combine both ideas to obtain a model-based resampling plan for the frailty model.

Model-based bootstrap, algorithm 1:

For j = 1, . . . , ni, i = 1, . . . , K,

1. Fit the model; obtain the estimate β̂ and the predictions û1, . . . , ûK .

2. Choose u∗1, . . . , u∗K by sampling with replacement from û1, . . . , ûK .

3. Generate the true failure time T ∗ij from the estimated failure time survivor function

Ŝij(t) = {Ŝ0(t)}u
∗
i exp(x

T
ij β̂).

4. If δij = 0, set C∗ij = T 0ij, and if δij = 1, generate C∗ij from the conditional censoring

distribution given that Cij > T
0
ij , namely

Ĝ(t)− Ĝ(T 0ij)
1− Ĝ(T 0ij)

,

where Ĝ is an estimate (e.g. Kaplan-Meier) of the censoring distribution G. Assume that

G is independent of the covariates.

5. Set T 0∗ij = min(T ∗ij, C∗ij), with δ∗ij = 1 if T 0∗ij = T ∗ij and zero otherwise.
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Steps 3, 4 and 5 are the adaption of the algorithm proposed by Hjort (1985). For mixed

models it has been demonstrated (Morris, 2002) that the variances of the BLUP’s are biased

downwards as estimators of the variance components. Due to this bias, bootstrapping BLUPs

results in underestimation of the variation in the data, causing standard error estimates bi-

ased downwards. The above-mentioned model-based resampling algorithm may suffer from this

problem. Therefore, we propose a second resampling scheme, where resampled frailty parame-

ters are obtained by sampling from a gamma distribution with parameter θ̂. We again assume

that censoring is independent of the covariates.

Model-based bootstrap, algorithm 2:

For j = 1, . . . , ni, i = 1, . . . , K,

1. Fit the model; obtain the estimates β̂, θ̂.

2. Sample u∗1, . . . , u∗K from a gamma distribution with mean 1 and variance θ̂.

3. Generate the true failure time T ∗ij from the estimated failure time survivor function

Ŝij(t) = {Ŝ0(t)}u∗i exp(xTij β̂).

4. If δij = 0, set C∗ij = T 0ij, and if δij = 1, generate C∗ij from the conditional censoring

distribution given that Cij > T
0
ij , namely

Ĝ(t)− Ĝ(T 0ij)
1− Ĝ(T 0ij)

.

5. Set T 0∗ij = min(T ∗ij, C∗ij), with δ∗ij = 1 if T 0∗ij = T ∗ij and zero otherwise.

For a semi-parametric model, the true failure times are generated from the estimated failure

time survival function

Ŝij(t) = {Ŝ0(t)}u∗i exp(xTij β̂),

where Ŝ0(t) = exp(−Ĥ0(t)) is the estimated baseline survival function, with

Ĥ0(t) =
3
t(l)≤t

ĥl0,

where Ĥ0(t) is the estimated baseline cumulative hazard at time t and

ĥl0 =
N(l)�

tqs≥t(l) u
∗
s exp(x

T
qsβ̂)

.

For a parametric model, the true failure times are generated under the parametric assumption.
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5 Simulations

In this section, the two model-based resampling plans are compared to the nonparametric

resampling plan by simulation. We will consider the setting of a multicenter clinical trial as the

model for the simulations. The size of a multicenter clinical trial is a function of the number of

centers, K, and the number of patients per center, ni, i = 1, . . . ,K. In the simulations we study

the effect of the number of patients per center on the precision of the variance estimation.

Additionally, we investigate the effect of the event rate h0(t) (assumed constant over time:

h0(t) = h0), the size of the true heterogeneity parameter θ and the treatment effect β.

We assume 15 centers, with 20 or 40 patients per center. The parameter values h0, β and θ are

chosen in such a way that a different magnitude of spread in the median time to event from

center to center is induced. This was determined by computing the density function of the

median time to event over the centers (Figure 1). It can be shown that this density function

fTM (t) is given by

fTM (t) =

w
log(2)

θh0 exp (β)

W 1
θ 1

Γ(1/θ)

w
1

t

W1+1/θ
exp

w
− log(2)

θth0 exp (β)

W
.

For the treatment effect, we use β = 0.25. As true values for the event rate, we take h0 = 0.1

and h0 = 0.5. The heterogeneity parameter is set at θ = 0.1 and θ = 0.6.

For setting 1 (θ = 0.6, h0 = 0.5) and setting 2 (θ = 0.6, h0 = 0.1), there is little spread in

the median time to event over the centers, with a bigger spread for θ = 0.6. For setting 3

(θ = 0.1, h0 = 0.5) and setting 4 (θ = 0.1, h0 = 0.1), there is much spread in the median time

to event over the centers . Again θ = 0.6 induces more spread.

For each parameter setting (K,n, h0, θ,β), 100 data sets are generated. Given a particular

parameter setting, the observations for each data set are generated in the following way. First,

K frailty parameters u1, . . . , uK are generated from a gamma distribution with mean 1 and

variance θ. The time to event outcome for the j th patient from center i is randomly generated

from an exponential distribution with parameter hij = h0ui exp(x
T
ijβ), where xij is generated

from a Bernoulli distribution. The censoring time for each patient is randomly generated from

a uniform distribution so that approximately 30% censoring is obtained.

For each simulated data set, R = 100 bootstrap samples are taken by using one of the three re-

sampling algorithms. In the nonparametric resampling scheme, the penalized partial likelihood

approach is used to estimate the treatment effect and the heterogeneity parameter (Therneau
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and Grambsch, 2000). In the model-based resampling schemes, we consider both a paramet-

ric frailty model with a constant baseline hazard and a semi-parametric model to compute

the estimates of the treatment effect and the heterogeneity parameter. For the parametric

model, the model-based resampling schemes assume that the time to event follows an exponen-

tial distribution with parameter hij . Under this assumption, the parameters β, θ and h0 can

be estimated by maximizing the observable log likelihood lobs(β, θ, h0), given in (2), using the

Newton-Raphson method. For the semi-parametric model, the estimates of the treatment effect

and the heterogeneity parameter are obtained from the penalized partial likelihood approach.

5.1 Results of simulations

(a) Parametric frailty model with constant baseline hazard:

We will concentrate on the estimated standard error of the heterogeneity parameter (Table 1).

For sake of completeness, however, the standard error of the treatment effect is also added to

the results (Table 2).

By performing the bootstrap, we obtain for each data set a bootstrap estimate of the standard

error of the heterogeneity parameter. The mean of these 100 estimated standard errors is

denoted by mean(SEB). The values of mean(SEB) for each resampling scheme are compared

to the empirical standard error of θ̂, denoted by SEE . Moreover, since the simulated data

sets have moderate size, an estimate of the standard error of the heterogeneity parameter can

be determined, for each data set, based on the inverse of the observed information matrix, as

explained by Klein and Moeschberger (1997). The mean of these 100 estimated standard errors

will be denoted as mean(SEM ).

In all settings studied, the estimated standard error of the heterogeneity parameter obtained

by the first model-based resampling plan underestimates the standard error, as compared to

SEE (Figure 2). This underestimation is more clearly visible when the number of patients per

center is decreased from 40 to 20. The standard errors obtained by the nonparametric and the

second model-based resampling plan are very close to each other. When there are 40 patients

per center, the standard error from the nonparametric resampling plan is for each parameter

setting between SEE and mean(SEM ). This is also true for the second model-based resampling

plan, except for the setting θ = 0.6, h0 = 0.5. Decreasing the number of patients per center to

20, increases the variability of the parameter estimates and, for all three bootstrap algorithms,
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leads to standard errors smaller than SEE and mean(SEM ).

(b) Semi-parametric frailty model:

As in the parametric case, we obtain for each data set a bootstrap estimate of the standard

error of the heterogeneity parameter SEB (Table 1). For each resampling scheme, the mean

value of SEB is computed. This value is compared to the empirical standard error of θ̂, denoted

by SEE. There is no value of mean (SEM ) provided.

In the case of 40 patients per center and θ = 0.6, the first model-based resampling scheme gives

the standard error of θ̂ which is nearest the empirical standard error, whereas the second model-

based resampling scheme gives a larger standard error (Figure 2). When θ = 0.1, the bootstrap

standard error obtained by each of the three bootstrap algorithms is close to the empirical

standard error, with the first model-based resampling scheme giving the smallest value. When

the number of patients per center is decreased from 40 to 20, the estimated standard error for θ̂

obtained by the second model-based resampling scheme is nearest the empirical standard error

for each setting studied. When θ = 0.1, the values obtained by the nonparametric resampling

scheme are very close to the values obtained by the second model-based resampling scheme.

6 Conclusions

In this paper, the use of bootstrap for the estimation of the standard errors of the parameter

estimates in a frailty model is proposed. To complement the existing nonparametric resam-

pling plan, we propose two model-based bootstrap algorithms. The comparison between the

nonparametric and model-based resampling schemes was studied by simulation. The results

indicate that, in most cases, the first model-based resampling plan underestimates the empiri-

cal variability of the parameter estimates, whereas the second model-based resampling scheme

provides relatively precise estimates. In general, the nonparametric and the second model-based

resampling plans give similar results.

The results indicate that the proposed resampling schemes may offer a useful approach to

variance extimation. Further investigation of their properties will be necessary, though. For

instance, in the model-based resampling schemes we have made the assumption that censoring

is independent of the covariates. In principle, it should be possible to extend the schemes to
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the more general situation where the censoring distribution depends on the covariates, using

the approach developed by Davison and Hinkley (1997, p.351). Furthermore, it would be also

of interest to consider frailty densities other than gamma. Finally, the presented simulation

results were obtained assuming that the model is correct. The question rises how the bootstrap

algorithms behave if the model is misspecified. These are important topics for further research.
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Table 1: Estimated standard error for heterogeneity parameter estimate
non-par. model-based(1) model-based(2)

Setting (θ, h0) SEE mean(SEM ) mean(SEB) mean(SEB) mean(SEB)

Parametric 40

(0.6, 0.5) 0.1850 0.1909 0.1870 0.1663 0.1829

(0.6, 0.1) 0.1811 0.1994 0.1887 0.1703 0.1958

(0.1, 0.5) 0.0367 0.0482 0.0405 0.0306 0.0396

(0.1, 0.1) 0.0324 0.0467 0.0383 0.0281 0.0371

Parametric 20

(0.6, 0.5) 0.2266 0.2103 0.2031 0.1802 0.2036

(0.6, 0.1) 0.2351 0.2153 0.2139 0.1838 0.2119

(0.1, 0.5) 0.0531 0.0622 0.0527 0.0373 0.0515

(0.1, 0.1) 0.0527 0.0615 0.0496 0.0370 0.0502

Semi-parametric 40

(0.6, 0.5) 0.1922 0.1975 0.1960 0.2194

(0.6, 0.1) 0.1862 0.2022 0.1927 0.2162

(0.1, 0.5) 0.0502 0.0418 0.0357 0.0467

(0.1, 0.1) 0.0420 0.0401 0.0348 0.0456

Semi-parametric 20

(0.6, 0.5) 0.2288 0.1916 0.1798 0.2112

(0.6, 0.1) 0.2292 0.2082 0.2088 0.2426

(0.1, 0.5) 0.0579 0.0482 0.0394 0.0528

(0.1, 0.1) 0.0617 0.0503 0.0393 0.0559

Table 2: Estimated standard error for estimate of treatment effect.
non-par. model-based(1) model-based(2)

Setting SEE mean(SEM ) mean(SEB) mean(SEB) mean(SEB)

Parametric 40

(0.6, 0.5) 0.0934 0.0962 0.0953 0.1017 0.0993

(0.6, 0.1) 0.1085 0.0963 0.0963 0.1008 0.0992

(0.1, 0.5) 0.0894 0.0887 0.0956 0.0999 0.0972

(0.1, 0.1) 0.1102 0.0858 0.0940 0.1009 0.0976

Parametric 20

(0.6, 0.5) 0.1400 0.1369 0.1393 0.1443 0.1456

(0.6, 0.1) 0.1341 0.1345 0.1330 0.1463 0.1440

(0.1, 0.5) 0.1436 0.1206 0.1362 0.1420 0.1431

(0.1, 0.1) 0.1323 0.1156 0.1431 0.1432 0.1417

Semi-parametric 40

(0.6, 0.5) 0.0929 0.0969 0.1069 0.1059

(0.6, 0.1) 0.1023 0.0968 0.1049 0.1074

(0.1, 0.5) 0.1005 0.0948 0.0993 0.1014

(0.1, 0.1) 0.0943 0.0934 0.0997 0.1013

Semi-parametric 20

(0.6, 0.5) 0.1512 0.1375 0.1521 0.1531

(0.6, 0.1) 0.1550 0.1440 0.1562 0.1567

(0.1, 0.5) 0.1588 0.1342 0.1433 0.1433

(0.1, 0.1) 0.1326 0.1300 0.1402 0.1435
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Figure 1: Density function of the median time to event from center to center .
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Figure 2: Mean estimated standard errors for the heterogeneity parameter estimate.
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