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1 Introduction

In this paper we consider, for a random sample from F , the goodness-of-fit hypo-

thesis H0 : F = G, where G is a given general parametric family of distribution

functions, containing unknown parameters θ (e.g. location, scale, ...) which have

to be estimated. It is well known that, in the situation where θ is known, the

classical test statistics typically take the form of a degenerate U- or V -statistic and

that the limiting null distribution is that of a (possibly infinite) sum of weighted

chi-squared variables. Finding the weights is not easy since they are the eigenvalues

of some operator equation and they can only be found in some special cases. We

avoid this problem by using some slight modification of the empirical distribution

function in the construction of our test statistic. A similar idea has been used in

Ahmad (1993, 1996) and Ahmad and Alwasel (1999). This leads to test statistics

which have a limiting normal distribution with the usual n1/2 standardization both

under the null and the alternative hypothesis (Section 3). The first main objective

of our paper is to provide conditions under which the replacement of the unknown

θ by a suitable estimator �θ keeps this asymptotic normality in force (Section 4). It
turns out that the statistic with estimated nuisance parameter has the same limit

distribution under H0. The question of replacing the unknown θ by an estimator

has not been dealt with in the above references. The problem has been considered

by De Wet and Randles (1987) in the unmodified case and our result provides an

alternative to their paper. Our approach has the advantage of also providing the

limit behavior under the alternative hypothesis H1 : F W= G. The second main result
of our paper is to establish the validity of bootstap approximations; this provides a

way to avoid the estimation of the complicated and unknown variance parameter in

the asymptotic distribution under the alternative hypothesis H1 (Sections 5 and 6).

Our proposed resampling scheme is nonparametric and works underH0 andH1. This

is more general than the parametric bootstrap in a recent paper of Jiménez-Gamero

et al. (2003), who only prove consistency under H0. We begin, in Section 2, with a

useful characterization for the equality of two continuous distribution functions.

2 Characterization

Assume that F and G are continuous distribution functions. The problem of testing

the hypothesis H0 : F = G versus H1 : F W= G is often based on the L2-distance$
(F −G)2dG or more generally on the L2p-distance

$
(F −G)2pdG for some p ≥ 1.

If X1, . . . , Xn is a random sample from F , then an obvious test statistic is given
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by
$
(Fn − G)2pdG, where Fn is the usual empirical distribution function of the

sample. The case p = 1 is the well known Cramér-von Mises statistic. Using the

binomial expansion and some integration by parts it is easily shown that the L2p-

distance statistics can be rewritten and that this leads to the following alternative

characterizations of the null hypothesis: we have that F = G if and only if

2p3
i=2

X
2p

i

~
(−1)2p−i
2p− i+ 1E

J
G2p−i+1(max(X1, . . . ,Xi))

o− E JG2p(X1)o = 1

2p+ 1

(for p = 1, 2, . . . ).

In the present paper we will only work with the p = 1 version of this characterization,

which takes the simple form

E[G(max(X1, X2))]−E[G2(X1)] = 1

3
. (1)

Note that characterization (1) also implicitly appears in Too and Lin (1989) via a

totally different approach.

3 Goodness-of-fit: a distribution function with known para-

meters

Suppose that we have a random sample X1, . . . , Xn from an unknown continuous

distribution function F and that we want to test the composite hypothesis H0 :

F (·) = G(· ;θ) versusH1 : F (·) W= G(· ;θ), where G(· ;θ) is a continuous distribution
function depending on some parameter θ. Suppose for the moment that θ is known.

A straightforward empirical estimator for the left hand side of (1) is given by

Un(θ) =

X
n

2

~−1 3
1≤i<j≤n

max(G(Xi;θ), G(Xj ;θ))− 1
n

n3
i=1

G2(Xi;θ). (2)

Both terms in (2) are in fact U -statistics with a bounded kernel. Under H0, it easily

follows that E(Un(θ)) = 1/3 and that the kernel is degenerate. So n
1/2(Un(θ)−1/3)

does not have a limiting normal distribution and the use of the correctly normalized

statistic n(Un(θ)− 1/3) leads to the problem of finding the eigenvalues. In order to
rectify this we consider instead of (2) the following class of modified estimators

Unc(θ) =

X
n

2

~−1 3
1≤i<j≤n

max(G(Xi;θ), G(Xj;θ))− 1
n

n3
i=1

cinG
2(Xi;θ) (3)
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where {cin; 1 ≤ i ≤ n, n = 1, 2, . . . } is a triangular array of real numbers, satisfying
(i) max

1≤i≤n
|cin| ≤ K, some constant

(ii) lim
n→∞

1

n

n3
i=1

cin = 1

(iii) lim
n→∞

1

n

n3
i=1

c2in = c
2 > 1.

(4)

A typical example (see Ahmad (1993)) is: cin = 1 + γ if i is odd and cin = 1− γ if

i is even, with 0 < γ ≤ 1; in this case c2 = 1 + γ2.

The classical theory of U -statistics (see e.g. Serfling (1980)) can be applied to (3),

to obtain

Unc(θ) = µnc(θ) +
1

n

n3
i=1

gin(Xi;θ) + oP (n
−1/2)

where (integration is over IR)

µnc(θ) = E(Unc(θ)) = 2

8
G(x;θ)F (x)dF (x)−

l
1

n

n3
i=1

cin

M8
G2(x;θ)dF (x) (5)

gin(Xi;θ) = 2

1− ∞8
Xi

F (x)dG(x;θ)− 2
8
G(x;θ)F (x)dF (x)


−cin
w
G2(Xi;θ)−

8
G2(x;θ)dF (x)

W
.

It follows that, as n→∞,

n1/2(Unc(θ)− µnc(θ)) d→ N(0; σ2(θ)) (6)

where

σ2(θ) = −4 + 16
8
G(x;θ)F (x)dF (x)− 16

w8
G(x;θ)F (x)dF (x)

W2

+4E

X∞$
X1

F (x)dG(x;θ)

~2+ c2 [E(G4(X1;θ))− (EG2(X1;θ))2]

+4E

^X
∞$
X1

F (x)dG(x;θ)

~
(G2(X1;θ)− EG2(X1;θ))

�
(7)
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Note 1. (1) Under H0, we have that µnc(θ) = µnc =
2

3
− 1
3

l
1

n

n3
i=1

cin

M
and

σ2(θ) = σ20 =
4

45
(c2 − 1). Hence the statistic is asymptotically distribution-free

under H0.

Note 2. In (6) we may replace the exact mean µnc(θ) by its asymptotic value,

provided that the cin satisfy the condition n
1/2

X
1

n

n3
i=1

cin − 1
~
→ 0. This is satis-

fied by the specific example above.

4 Goodness-of-fit: a distribution function with estimated par-

ameters

Suppose from now on that the nuisance parameter θ in G(· ;θ) is unknown and that
it can be estimated by an estimator �θ, based on the random sample X1, . . . , Xn from
F . Let Unc(t) and µnc(t) denote the expressions in (3) and (5) respectively, but with

θ replaced by some general variable t.

To obtain the asymptotic distribution of the test statistic Unc(�θ) (given in Theorem
2), the following property is a key tool.

Theorem 1. Assume

(i) n1/2
p�θ − θQ = OP (1), as n→∞

(ii) there exists a neighborhood K(θ) of θ and a constant C > 0 such that, if

t ∈ K(θ) and D(t, d) is a sphere, centered at t with radius d, satisfying

D(t, d) ⊂ K(θ), we have

E

^
sup

tI∈D(t,d)
|G(X1; tI)−G(X1; t)|

�
≤ Cd.

Then, as n→∞,

n1/2
�
Unc(�θ)− µnc(�θ)− Unc(θ) + µnc(θ)= P→ 0.

Proof. We apply the result of Randles (1982) on U -statistics with estimated para-

meters. It is easily verified that the presence of the weights {cin} causes no compli-
cation, due to their uniform boundedness property in (4). We only have to verify
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that G(max(x1; x2); t) and G
2(x1; t) satisfy his condition (2.4), since these functions

are bounded (see Lemma 2.6 in Randles (1982)). Since |G2(x1; tI) − G2(x1; t)| ≤
2|G(x1; tI)−G(x1; t)| and also E[ sup

t ∈D(t,d)
|G(max(X1, X2); tI)−G(max(X1, X2); t)|] =

2E[ sup
t ∈D(t,d)

|G(X1; tI) − G(X1; t)|F (X1)], his condition (2.4) is guaranteed by our
condition (ii). This proves Theorem 1.

Now write

n1/2(Unc(�θ)− µnc(θ))
= n1/2(Unc(θ)− µnc(θ) + µnc(�θ)− µnc(θ))
+n1/2(Unc(�θ)− Unc(θ)− µnc(�θ) + µnc(θ)).

(8)

The above theorem gives conditions under which the second term in the right hand

side of (8) is oP (1). The asymptotic normality of n
1/2(Unc(�θ) − µnc(θ)) will follow

if we can show the asymptotic normality of the first term in the right hand side of

(8).

Assume that θ = (θ1, . . . , θk) is a k-dimensional parameter, which has been esti-

mated by �θ = (�θ1, . . . , �θk). Typically, we can establish an i.i.d. representation for
each component of �θ, in the following sense

�θj − θj =
1

n

n3
i=1

kj(Xi) + oP (n
−1/2) (9)

where E(kj(X1)) = 0. The asymptotic normality of n
1/2(Unc(θ)−µnc(θ)+µnc(�θ)−

µnc(θ)) will then follow by applying the central limit theorem to

n−1/2
n3
i=1

[gin(Xi;θ) +
k3
j=1

kj(Xi)µ
(j)
nc (θ)]

where µ
(j)
nc (θ) is the partial derivative of µnc(t) with respect to the j-th variable and

evaluated at t = θ:

µ(j)nc (θ) = 2

8
G(j)(x;θ)F (x)dF (x)−

l
1

n

n3
i=1

cin

M8
2G(x;θ)G(j)(x;θ)dF (x)

for j = 1, . . . , k and where G(j)(x;θ) is the partial derivative of G with respect to

the j-th component of θ, and evaluated at θ (we are assuming that these derivatives
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exist). We are now able to establish the asymptotic distribution of Unc(�θ).
Theorem 2. Assume that the components of the estimator �θ = (�θ1, . . . , �θk) satisfy
(9) with E(kj(X1)) = 0 and Var(kj(X1)) > 0 for j = 1, . . . , k.

Assume that G(x;θ) is a continuous distribution function for which condition (ii)

of Theorem 1 is satisfied and which has bounded partial derivatives G(j) in a neigh-

borhood of θ.

Then, as n→∞,

n1/2(Unc(�θ)− µnc(θ)) d→ N(0; τ2(θ))

where

τ2(θ) = σ2(θ)− 2
k�
j=1

µ
(j)
c (θ)E

2 ∞8
X1

F (x)dG(x;θ) +G2(X1;θ)

 kj(X1)


+
k�
j=1

k�
jI=1

µ
(j)
c (θ)µ

(jI)
c (θ)E[kj(X1)kjI(X1)]

(10)

and µ
(j)
c (θ) = lim

n→∞
µ
(j)
nc (θ) = 2

8
G(j)(x;θ)(F (x)−G(x;θ))dF (x).

Under H0, we have that µnc(θ) =
2

3
− 1
3

l
1

n

n3
i=1

cin

M
= µnc and τ

2(θ) = σ2(θ) = σ20.

Example 1. Test for exponentiality.

G(x; θ) = 1− e−x/θ; k = 1; �θ = X, the sample mean; k1(X1) = X1 − θ; G(1)(x; θ) =

− x
θ2
e−x/θ.

Example 2. Test in location-scale family.

G(x;θ) = G0

w
x− µ
σ

W
(G0 known, with density g0); k = 2; θ = (µ, σ); �θ = (X,S),

where S2 is the sample variance; k1(X1) = X1 − µ; k2(X1) = 1

2σ

J
(X1 − µ)2 − σ2

o
;

G(1)(x;θ) = −1
σ
g0

w
x− µ
σ

W
; G(2)(x;θ) =

µ− x
σ2

g0

w
x− µ
σ

W
.

5 Bootstrap approximation

If F W= G, then the asymptotic variances σ2(θ) and τ 2(θ) in (7) and (10) cannot be
calculated because the expressions depend on the unknown F and on θ. Therefore
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we now establish the validity of bootstrap approximations as alternatives to the

normal approximations. In this section we first deal with the case of a known θ

and show uniform consistency for the bootstrap estimator for the distribution of

n1/2 (Unc(θ)− µnc(θ)). In the next section we will deal with the analogous problem
with estimated θ.

Let (c∗in, X
∗
i ) ≡ (cin, Xi)∗, i = 1, . . . , n, be a random sample with replacement from

the set of pairs {(c1n,X1), . . . , (cnn, Xn)} giving equal probability n−1 to each pair;
and use as notation Yin(t) = cinG

2(Xi; t) and Y
∗
in(t) = c

∗
inG

2(X∗i ; t). Based on this
resample we define the bootstrapped version of Unc(t) as

U∗nc(t) =

X
n

2

~−1 3
1≤i<j≤n

max(G(X∗i ; t), G(X
∗
j ; t))−

1

n

n3
i=1

Y ∗in(t).

The following theorem shows the uniform strong consistency of the bootstrap es-

timator P ∗(n1/2(U∗nc(θ) − Unc(θ)) ≤ x). We use the notation P ∗ and E∗ for the
conditional probability and expectation given (cin,Xi), i = 1, . . . , n.

Theorem 3. As n→∞,

sup
x∈IR

|P ∗ Dn1/2(U∗nc(θ)− Unc(θ)) ≤ xi− P Dn1/2 (Unc(θ)− µnc(θ)) ≤ xi |→ 0 a.s.

Proof. Write

U∗nc(θ)− Unc(θ)

=


X
n

2

~−13
1≤i<j≤n

max(G(X∗i ;θ), G(X
∗
j ;θ))−

X
n

2

~−13
1≤i<j≤n

max(G(Xi;θ), G(Xj;θ))


−
l
1

n

n3
i=1

Y ∗in(θ)−
1

n

n3
i=1

Yin(θ)

M

= (V ∗n (θ)− Vn(θ))− (W ∗nc(θ)−Wnc(θ)) . (11)

From the bootstrap theory for U-statistics (see e.g. Bickel and Freedman (1981),

Janssen (1997), we have

V ∗n (θ)− Vn(θ) =
1

n

n3
i=1

ψ1(X
∗
i )−

1

n

n3
i=1

ψ1(Xi) +R
∗
n

8



where ψ1(x) = 2

1− ∞8
x

F (y)dG(y;θ)− 2
8
G(x;θ)F (x)dF (x)

 andR∗n = oP ∗(n−1/2)
a.s. (meaning that, for all ε > 0, P ∗(n1/2|R∗n| > ε)→ 0 a.s.).

Hence,

U∗nc(θ)− Unc(θ) =
1

n

n3
i=1

g∗in(θ)−
1

n

n3
i=1

gin(θ) +R
∗
n

with g∗in(θ) = ψ1(X
∗
i )− Y ∗in(θ) and gin(θ) = ψ1(Xi)− Yin(θ).

From (6), with Φ the standard normal distribution function, we have that

sup
x∈IR

eeeeP Dn1/2(Unc(θ)− µnc(θ)) ≤ xi− Φw x

σ(θ)

Weeee→ 0. Now, for each ε > 0,

sup
x∈IR

eeeeP ∗ Dn1/2(U∗nc(θ)− Unc(θ)) ≤ xi− Φw x

σ(θ)

Weeee
≤ sup

x∈IR

eeeeeP ∗
X
n1/2

X
1

n

n3
i=1

g∗in(θ)−
1

n

n3
i=1

gin(θ)

~
≤ x
~
− Φ
w

x

σ(θ)

Weeeee
+O(ε) + P ∗

D
n1/2|R∗n| > ε

i
. (12)

The first term in the right hand side of (12) can be rewritten and bounded above

by

sup
x∈IR

eeeeeP ∗
X

1√
nSn

n3
i=1

(g∗in(θ)− gn) ≤ x
~
− Φ(x)

eeeee+ supx∈IR

eeeeΦw xSn
W
− Φ
w

x

σ(θ)

Weeee (13)
where gn =

1

n

n3
i=1

gin(θ) and S
2
n =

1

n

n3
i=1

(gin(θ)− gn)2.

The second term in (13) tends to 0 almost surely since S2n → σ2(θ) a.s. Indeed,

S2n =
1

n

n3
i=1

^
ψ1(Xi)− 1

n

n3
j=1

ψ1(Xj)

�2

+
1

n

n3
i=1

^
Yin(θ)− 1

n

n3
j=1

Yjn(θ)

�2

9



− 2

n

n3
i=1

ψ1(Xi)

^
Yin(θ)− 1

n

n3
j=1

Yjn(θ)

�

a.s.→ E(ψ21(X1)) + c
2[E(G4(X1;θ)− (EG2(X1;θ))2]

−2E[ψ1(X1)G2(X1;θ)] = σ2(θ), as in (7).

Here we applied the result of Choi and Sung (1987) which, since the cin are uniformly

bounded, implies that
1

n

n3
i=1

cinZi → E(Z1) a.s. and
1

n

n3
i=1

c2inZi → c2E(Z1) a.s., for

any sequence of i.i.d. random variables Z1, . . . , Zn with E|Z1| < ∞. For the first
term in (13), we apply the Berry-Esseen bound (see e.g. Chung (1974)) to find that

it is bounded above by a constant times Γn, where

Γn =
n�
i=1

E∗
eeeeg∗in(θ)− gn√

nSn

eeee3 = n−3/2

S3n

n3
i=1

|gin(θ)− gn|3

≤ 4n
−3/2

S3n

l
n3
i=1

|gin(θ)|3 + n |gn|3
M
.

Now,

n−3/2
n3
i=1

|gin(θ)|3 ≤ 4n−3/2
n3
i=1

|ψ1(Xi)|3 + 4K3n−3/2
n3
i=1

G6(Xi;θ)

n−3/2n |gn|3 ≤ 4n−7/2
n3
i=1

|ψ1(Xi)|3 + 4K3n−7/2
n3
i=1

G6(Xi;θ).

All these terms tend to 0 a.s. by application of the law of large numbers. This,

together with the fact that S2n → σ2(θ) a.s., makes that Γn → 0 a.s.

5 Bootstrap approximation in the case of estimated parame-

ter

In this section we prove consistency of the bootstrap estimator for the distribution

of the test statistic in which the nuisance parameter has been estimated.
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Theorem 4. Assume condition (ii) of Theorem 1 and moreover

(1) the components of the estimator �θ = (�θ1, . . . , �θk) satify (9) with E(kj(X1)) = 0
and Var(kj(X1)) > 0 for j = 1, . . . , k.

(2) the components of the estimator �θ∗ = (�θ∗1, . . . , �θ∗k) satisfy
�θj∗ − �θj = 1

n

n3
i=1

kj(X
∗
i )−

1

n

n3
i=1

kj(Xi) + r
∗
nj

where for each j = 1, . . . , k and all ε > 0 : P ∗(n1/2|r∗nj| ≥ ε)
P→ 0.

(3) the partial derivatives G(j) are continuous at θ and not all zero at θ.

Then, as n→∞,

sup
x∈IR

eeeP ∗ pn1/2(U∗nc(�θ∗)− Unc(�θ)) ≤ xQ− P pn1/2(Unc(�θ)− µnc(θ)) ≤ xQeee P→ 0.

Proof. From the proof of Theorem 1 and the definition of µ
(j)
nc (θ) it follows that

Unc(�θ)− µnc(θ) = 1

n

n3
i=1

^
gin(Xi;θ) +

k3
j=1

kj(Xi)µ
(j)
nc (θ)

�
+ oP (n

−1/2). (14)

Following ideas in Liu, Singh and Lo (1989) it is therefore sufficient to show that

U∗nc(�θ∗)− Unc(�θ) = 1

n

n3
i=1

4g∗in(θ)− 1n
n3
i=1

4gin(θ) + 4R∗n (15)

with 4gin(θ) = gin(θ) +
k3
j=1

kj(Xi)µ
(j)
nc (θ) and 4g∗in(θ) = g∗in(θ) +

k3
j=1

kj(X
∗
i )µ

(j)
nc (θ),

and where, for each ε > 0, P ∗(n1/2| 4R∗n| ≥ ε)
P→ 0. To obtain the representation (15)

we consider the following decomposition

U∗nc(�θ∗)− Unc(�θ)
= (U∗nc(θ)− Unc(θ)) + (µnc(�θ∗)− µnc(�θ)) +R∗n1 +R∗n2 (16)

with R∗n1 = R
∗
n11 − R∗n12, R∗n2 = R∗n21 −R∗n22 and

R∗n11 = (V ∗n (�θ∗)− Vn(�θ∗))− (V ∗n (θ)− Vn(θ))
R∗n12 = (W ∗nc(�θ∗)−Wnc(�θ∗))− (W ∗nc(θ)−Wnc(θ))

R∗n21 = (Vn(�θ∗)− µ1(�θ∗))− (Vn(�θ)− µ1(�θ))
R∗n22 = (Wnc(�θ∗)− µnc2(�θ∗))− (Wnc(�θ)− µnc2(�θ)).

11



Here V ∗n , Vn, W
∗
nc, Wnc are the four functions appearing in the decomposition

U∗nc − Unc = (V ∗n − Vn) − (W ∗nc − Wnc) in (11). Also µ1 and µnc2 are the two

terms in the decomposition µnc = µ1−µnc2 in (5). The i.i.d. sums in the right hand
side of (15) are easily obtained from the i.i.d. representations for U∗nc(θ) − Unc(θ)
and µnc(�θ∗)− µnc(�θ) in (16).
To show that the contributions ofR∗n11 and R

∗
n21 are negligible we can apply Lemma 1

in Janssen and Veraverbeke (1992). It therefore remains to prove that

P ∗(n1/2|R∗n12| ≥ ε)
P→ 0 (17)

and

P ∗(n1/2|R∗n22| ≥ ε)
P→ 0. (18)

To establish (17) note that, with

Q∗nc(s) = n
1/2 1

n

l^
n3
i=1

Y ∗in

w
θ +

s√
n

W
−

n3
i=1

Yin

w
θ +

s√
n

W�

−
^

n3
i=1

Yin(θ)−
n3
i=1

Yin(θ)

�M
,

we have n1/2R∗n12 = Q
∗
nc(n

1/2(�θ∗−θ)). With D(0, d) a sphere with radius d centered
at zero we have for each ε > 0

P ∗(n1/2|R∗n12| ≥ ε)

≤ P ∗
X

sup
s∈D(0,d)

|Q∗nc(s)| ≥ ε

~
+ P ∗

p
n1/2(�θ∗ − θ) /∈ D(0, d)Q . (19)

The second term in the right hand side of (19) is oP (1) (see Janssen and Veraverbeke

(1992), p.1598 for details). To handle the first term in the right hand side of (19)

we use the discretization argument explained on p.1598 in Janssen and Veraverbeke

(1992), from which we also borrow the notation. This leads to

Q∗nc(s) = Q
∗
nc(δr) +Q

∗
r,nc(s)

with

Q∗r,nc(s) = n
1/2 1

n

l^
n3
i=1

Y ∗in

w
θ +

s√
n

W
−

n3
i=1

Yin

w
θ +

s√
n

W�

−
^

n3
i=1

Y ∗in

w
θ +

δr√
n

W
−

n3
i=1

Yin

w
θ +

δr√
n

W�M
.
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Therefore the first term in the right hand side of (19) tends to zero in probability if

we show that

P ∗
X

sup
s∈D(v,δ)

|Q∗r,nc(s)| ≥ ε

~
P→ 0 (20)

and

P ∗ (|Q∗nc(δr)| ≥ ε)
P→ 0, (21)

where D(v, δ) denotes some sphere with radius δ centered at v.

To show (20), rewrite Q∗r,nc(s) as follows:

Q∗r,nc(s) = n
1/2 1

n

n3
i=1

F
hin

w
θ +

s√
n

W
− hin

w
θ +

δr√
n

Wk

where hin(t) = Yin(t)− 1
n

n3
j=1

Yjn(t).

With Hinr

w
δr√
n

W
= sup
s∈D(v,δ)

eeeehinwθ + s√
n

W
− hin

w
θ +

δr√
n

Weeee, we have that
sup

s∈D(v,δ)

eeQ∗r,nc(s)ee ≤ Dnc1 +Dnc2
where

Dnc1 = n1/2
1

n

n3
i=1

}
Hinr

w
δr√
n

W
−E∗Hinr

w
δr√
n

W]
Dnc2 = n1/2E∗Hinr

w
δr√
n

W
.

Using the uniform boundedness of the cin, together with the law of large numbers

and condition (ii) of Theorem 1, we easily find that

Dnc2 ≤ 4Kn−1/2E
^
sup

s∈D(v,δ)

eeeeG2wX1;θ + s√
n

W
−G2

w
X1;θ +

δr√
n

Weeee
�
≤ 8KCδ

and this can be made arbitrary small by appropriate choice of δ.

ForDnc1 we use the inequality P
∗(|Dnc1| ≥ ε) ≤ ε−2E∗(D2

nc1) = ε−2E∗
w
H2
1nr

w
δr√
n

WW
.

By the uniform boundedness of the cin, we obtain that

E∗
w
H∗1nr

w
δr√
n

WW
≤ 4K2

X
1

n

n3
i=1

sup
s∈D(v,δ)

eeeeG2wXi;θ + s√
n

W
−G2

w
Xi;θ +

δr√
n

Weeee
~2

13



and this tends to zero in probability, by the law of large numbers and condition (ii)

of Theorem 1.

To show (21), rewrite Q∗nc(δr) as follows:

Q∗nc(δr) = n
1/2 1

n

n3
i=1

F
hin

w
θ +

δr√
n

W
− hin(θ)

k
with hin(t) as before.

To prove (21) it suffices to establish that E∗
^w
h1n

w
θ +

δr√
n

W
− h1n(θ)

W2�
P→ 0,

as n→∞. Using the uniform boundedness of the cin we obtain that

E∗
^w
h1n

w
θ +

δr√
n

W
− h1n(θ)

W2�
≤ 2K2

l
1

n

n3
i=1

w
G2
w
Xi;θ +

δr√
n

W
−G2(Xi;θ)

W2

+

X
1

n

n3
i=1

w
G2
w
Xi;θ +

δr√
n

W
−G2 (Xi;θ)

W~2 .
By condition (ii) of Theorem 1, this right hand side tends in probability to a quan-

tity which is O(δ) +O(δ2), and this can be made arbitrary small by choice of δ.

To establish (18) note that

P ∗(n1/2 | R∗n22 |≥ ε)

≤ P ∗
p
n1/2
eee(W ∗nc(�θ∗)− µnc2(�θ∗))− (Wnc(θ)− µnc2(θ))

eee ≥ ε

2

Q
+I
+eee(Wnc(�θ)− µnc2(�θ))− (Wnc(θ)− µnc2(θ)

eee ≥ ε

2

Q
. (22)

The second term in the right hand side of (22) tends to zero in probability. The

first term in the right hand side also tends to zero in probability as follows, from

a modification (allowing weights) of the argument used on p.1602 in Janssen and

Veraverbeke (1992).
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