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Abstract

We consider the analysis of a study for Dorper, Red Maasai and crossbred lambs born over a

period of 6 years at Diani Estate, Kenya. The study was designed to compare survival and

performance traits of genotypes with differing susceptability to helminthiasis. The available

data include information on time to death and repeated measurements of body weight, packed

cell volume (PCV) and faecal egg count (FEC) for the animals. In the paper we consider joint

modelling of the survival time and the repeated measurements. Such an approach allows to

account in the analysis the possible asociation between the survival and repeated measurement

processes, what offers several advantages. In the paper, the advantages and limitations of the

joint modelling are dicussed and illustrated using the Diani Estate study data.
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1 Introduction

The data used in this study come from an animal breeding experiment carried out by the In-

ternational Livestock Research Institute (ILRI) from 1991 to 1996 [1] at Diani Estate, Kenya

Coast. The objective of the experiment was to study genetic resistance to naturally acquired

gastro-intestinal nematodes in different breeds of sheep, namely the Red Maasai (found in

East Africa and perceived to be resistant to helminthisis), Dorper (originating from South

Africa and presumed to be susceptible) and their cross breeds. Three ewe genotypes (Dor-

per, Red Maasai, and Red Maasai × Dorper) were mated to Dorper and Red Maasai rams

in single-sire mating groups in a diallel design to generate two pure-bred and four cross-bred

genotypes. The data collected during the study consisted of repeated measurements of the

traits: body weight (BWT), packed cell volume (PCV) and faecal egg count (FEC), which

were measured periodically over a lamb’s first one year of life. Overall, 1745 lambs were

born alive during the six-year period of the study. The repeated measurements, however,

were highly unbalanced as 655 (38%) of the lambs died and 92 (5%) were stolen before they

reached one year of age.

Assessment of the level of genetic resistance has been carried out by Baker et al. [1, 2], by

applying linear mixed models to individual measurements of the traits, that were recorded

from birth to one year of age. In the analysis undertaken by these authors only the informa-

tion on the animals that survived to each of the analysed time points was utilised. Nguti et

al. [14] used these same traits in a frailty model for survival, where correlation was induced

among the ages at time of death for lambs from the same sire. In that analysis, PCV and

FEC were separately included in the model as time-varying covariates, with either a baseline

or time-varying BWT. One handicap of this latter analysis was that the measured traits

were only recorded at monthly time points, and were thus unknown at the time of death.

To overcome this problem, the nearest preceding measured value of the trait was used to
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impute for the value at the time of death, resulting in a piecewise constant process. In addi-

tion, the analysis did not correct for the possible measurement error in the measurements of

BWT, PCV and FEC. Such error can result from both the analytical error and short-term,

biological variability. Failure to account for the measurement error and for any missing time-

varying covariate observations, has been shown to cause the estimated regression parameters

in the Cox proportional hazard (PH) model to be biased towards the null [4, 16].

In the described study, as in many longitudinal studies where individuals are followed over

time, the data can be grouped into three categories: (1) the elapsed time to an event such

as death; (2) repeated measurements of time-varying variables (like PCV, FEC, BWT); (3)

time-varying (e.g., rainfall) or constant baseline (e.g., sire, breed) covariates that may affect

both the repeated measurement and the time-to-event processes. When modelling of the

repeated measurements is of interest, one may focus, for instance, on how the measurements

change with time, how the parameter estimates are influenced by drop-out of individuals

during the course of the study, or on how the measurements may be affected by the addi-

tional covariates. Looking at things from a time-to-event process point of view, the interest

may focus on, e.g., how the time to the event is affected by both the repeated measurement

process and the additional covariates. A vast amount of literature exists on the methods suit-

able for either approach. To analyse event-time data parametric or non-parametric models

can be used, but the Cox PH model is often the method of choice. Repeated measurements

are commonly analysed using linear mixed effects models [11]. These models are attractive

for several reasons, one of them being the ability to easily accommodate unbalanced designs,

especially regarding the timing and frequency of observations. The models also allow for an

explicit partitioning of variability and estimation of individual effects. In particular, at least

two sources of variability are readily identified: between- and within-individual variation.

The between-individual variability is often modelled by a vector of correlated, individual
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random effects.

In the last ten years many methods, which simultaneously use the information available

in both the time-to-event and the repeated measurement processes, have been proposed in

medical research. In particular, several models have been developed in the area of acquired

immunodeficiency syndrome (AIDS) research [5, 7, 17, 19, 21] and in schizophrenia studies

[9, 22]. A detailed review of research work in joint modelling of times to an event and re-

peated measurements is given in reference [20]. Several advantages of joint modelling of the

repeated measurement and the time-to-event processes have been highlighted in the litera-

ture: (1) the repeated measurements can be extrapolated from the observed measurement

times to the specific event time in a way that utilises the entire measurement history; (2) the

time-to-event is allowed to depend on the ‘true’ but unknown value of the repeated measure-

ment, thus making an adjustment for the measurement error, which in turn leads to reduced

bias of the parameter estimates of the Cox model; and (3) the repeated measurement process

is adjusted for any loss of information arising from death or loss of individuals.

The objective of the current paper is to use the joint modelling approach to model the

time to death and the repeated measurements of PCV, BWT and FEC. To this aim, the

methodology proposed by Henderson et al. [9] is used. The need for joint models to model

survival and performance traits in animals studies is discussed in [6]. The paper is organised

as follows. In Section 2 more details on the motivating dataset are given. Section 3 provides

a brief background on the linear mixed effects and the Cox PH models, as well as the joint

model of Henderson et al. [9]. In Section 4 we adopt the joint model to the analysis of the

motivating dataset. Results are presented in Section 5 and discussed in Section 6.
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2 Motivating data

Measurements of PCV, FEC and BWT were taken from lambs from birth to one year of age

in batches of lambs born in each of the years 1991 to 1996. Packed cell volume and FEC

were measured according to methods reported by Baker et al. [1]. All lambs were weighed

at birth and their BWT, PCV and FEC subsequently recorded at one and two months of

age. On either of these latter occasions, when individual lambs had a FEC greater than

or equal to 2,000 eggs per gram (epg) and/or a PCV less than or equal to 20%, they were

treated (drenched) with an anthelmintic drug. Lambs with low PCV were also checked for

trypanosome infections. At about three months of age, when weaned, the lambs were again

weighed, and blood and faecal samples collected for PCV and FEC, respectively. All lambs

were then drenched. The lambs were then left to graze on pasture, separately from the ewes

and rams. Every week a monitor group of about 50 lambs, made up of approximately equal

numbers of lambs of each genotype and sex, was sampled and their mean FEC recorded. If

the mean FEC was over 2,000 epg then, during two consecutive days, all lambs were weighed,

faeces and blood samples taken and the lambs drenched. This procedure was followed until

the lambs reached on average one year of age. This procedure resulted in five drenchings in

each year except 1994 and 1996. In 1994, the year with the highest rainfall, the lambs were

drenched eight times post-weaning, while in 1996 six drenchings occurred.

3 Methodology

In this section we first briefly discuss the methods used in (separate) modelling of repeated

measurements and time-to-event data. Then we shortly review joint modelling.

3.1 Linear mixed effects models for repeated measures

Data sets resulting from follow-up studies are often highly unbalanced, with subjects having

unequal number of measurements. Moreover, the data have complex correlation structure
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due to repeated measurements for each individual. As a result such data are not ideally

suited to analysis by classical least squares techniques and linear mixed effects models [11]

are now standard tools for analysing such complex hierarchical data.

Let Yij denote the observed jth measurement for the ith individual recorded at time tij

(i = 1, . . . , N ; j = 1, . . . , ni) and let Y T
i = (Yi1, Yi2, . . . , Yini). Then a linear mixed effects

model is written as

Y i =X1iβ1 +Zibi + εi, (1)

where X1i and Zi are ni × p and ni × q design matrices, respecitvely, β1 is a p × 1 vector

containing the fixed effects, and bi is a q× 1 vector of the random effects. It is assumed that

bi is N(0,D), i.e., it is normally distributed with mean zero and variance-covariance matrix

D = [dkl], where dkl = Cov(bik, bil). Furthermore, it is assumed that bi is independent from

the vector of residual random errors εi. The residual errors are assumed to be N(0,Σi), with

variance-covariance matrix Σi depending on i only via its size (ni×ni). It then follows that,

marginally, Y i is normally distributed with mean X1iβ1 and variance-covariance matrix

Vi = ZiDZ
T
i + Σi. In model (1) Σi captures the within-individual variability while the

between-individual variability is modelled through the random effects bi. In particular if

ZTi =
1 1 ... 1

ti1 ti2 ... tini

then model (1) is known as a random intercepts and slopes model (see reference [18], p. 25).

The underlying assumption of this model is that the measurements increase linearly in time,

but for each individual the linear trend has its own intercept and slope. Further, we have, if

Var(εij) = σ2, the result that the assumed covariance function of the response for this model

is

Cov(Yik, Yil) = d11 + d22tiktil + d12(tik + til) + 1(k = l)σ
2, (2)

where 1(A) is the indicator function of event A. Note that function (2) is quadratic over time.
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Model (1) has been used extensively to analyse repeated measurements arising from animal

breeding programs [8, 10, 12, 13]. In these applications more emphasis has been placed on

the covariance structure of the random effects (bi,εi) in order to capture different sources of

variability, such as those due to maternal, paternal and environmental effects.

To estimate the parameters of model (1), various approaches can be applied. The most com-

monly used is the classical method of maximum likelihood (ML), which results in generalised

least square (GLS) estimates for β. This method of estimation however leads to underesti-

mation of the variance parameters involved in D and Σi. As an alternative, the restricted

maximum likelihood estimation (REML) can be used, which remedies this problem [18].

3.2 The Cox proportional hazard model

Let the ith individual (i = 1, . . . , N) be observed from a time zero to a failure time Ti or to

a potential right censoring time Ci. Let T oi = min(Ti, Ci), be the observed time and δi be the

censoring indicator which is equal to 1 if T oi = Ti and 0 otherwise. Hence the observed data

for the ith subject are (T oi , δi). The basic analytical quantities for time-to-event data are the

survivor function

S(t) = Pr(T ≥ t),

which is the probability of surviving beyond time t, and the hazard function

λ(t) = lim
∆t→0+

Pr(t ≤ T < t+∆t|T ≥ t)
∆t

,

which is the instantaneous failure rate after surviving up to time t. In most time-to-event

studies interest focuses on how the hazard function is affected by independent covariates.

To assess this effect, Cox [3] has proposed the following model:

λi(t) = λ0(t) exp(x
T
2iβ2), (3)

where λ0(t) is the baseline hazard function common to all individuals, x2i is a p× 1 vector of

the observed covariates for the ith individual, and β2 is the corresponding vector of regression
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parameters to be estimated. Model (3) is known as the Cox proportional hazard model and

has been used extensively in the last three decades in the analysis of failure-time data.

3.3 A joint model for repeated measurements and time-to-event

Let Y T
i = (Yi1, Yi2, ..., Yini) be the vector of the repeated measurements for the ith individual

measured at times tTi = (ti1, . . . , tini). Let T
o
i = min(Ti, Ci) and δi denote, respectively, the

time-to-event and the censoring indicator for the ith individual. The observed data avail-

able for the ith individual are thus (T oi , δi,Y i, ti,X1i,x2i), where X1i denotes the matrix of

the observed values of covariates believed to influence the repeated measurements Y i, while

x2i is a vector of the observed values of covariates believed to affect the time-to-event process.

Henderson et al. [9] have proposed a model for the joint analysis of both the time-to-event and

repeated measurements. They postulate a latent (unobserved) bivariate Gaussian process

W i(t) = {W1i(t),W2i(t)} such that the repeated measurements process depends on W1i(t)

and the event time process on W2i(t). In particular, for the repeated measurements process,

consider a model of the general form

Y i = µi(ti) +W 1i(ti) + 6i, (4)

where 6i is an N(0,Σi) error vector such that Σi is a diagonal matrix and Var(6ij)=σ2e . Note

that in (4), we use µi(ti) = (µi(ti1), . . . , µi(tini))
T and W 1i(ti) = (W1i(ti1), . . . ,W1i(tini))

T as

shorthand notation. Further, µi(ti) is the systematic component, which can be described

by a linear model, e.g., µi(ti) = X1iβ1. As a basic example for the latent process W1i(t),

Henderson et al. [9] consider

W1i(t) = U1i + U2it, (5)

where (U1i, U2i) is a bivariate normal random vector with zero mean and variance-covariance

D1 =
σ21 σ12

σ12 σ22
.
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One can observe that µi(t) in model (4) corresponds to X1iβ in model (1), while W1i(t)

corresponds to Zibi, with bi ≡ (U1i, U2i)T .

On the other hand, the time-to-event is modelled through a Cox proportional hazard model

λi(t) = λ0(t) exp xT2iβ2 +W2i(t) . (6)

It is assumed that the repeated measurement and time-to-event processes are conditionally

independent givenW i(t). However, in order to induce association between the two processes,

W2i(t) is taken to be related to particular components of W1i(t). This is achieved via the

general equation

W2i(t) = γ1U1i + γ2U2i + γ3W1i(t). (7)

For example, a joint model withW2i(t) = γ1U1i+γ2U2i, would allow both the random intercept

U1i and slope U2i, involved in (5), to affect the risk of the event.

The parameters of the models for the repeated measurement process and the time-to-event

process are estimated jointly by maximising the observed joint likelihood of the data, as

described in references [20, 21].

4 Application

We now describe the application of the joint model described in the previous section to the

data introduced in section 2. Separate analyses of the repeated measurements of PCV, FEC

and BWT were performed. Survival times of lambs that survived beyond one year, or those

of lambs that were stolen, were censored at one year and at the last recorded observation,

respectively.

Nguti et al. [14] reported an average lamb mortality of 19% in the pre-weaning period and

31% in the post-weaning period. The age at death during the post-weaning period ranged

from 3 to 12 months (median 6.4 months). The number of repeated measurements recorded
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from weaning ranged from 1 to 8 (median 6) per lamb with 1994 having the most post-

weaning measurements. Figures 1 to 3 show scatter plots of the measurements recorded

from one to 12 months for PCV and FEC and those from birth to 12 months for BWT

across the six years. In each plot individual profiles for a randomly selected sample of 15

lambs are highlighted. Although all animals were weighed and sampled on the same day,

ages varied as a result of lambs being born within a period of about 20-40 days.

FIGURE 1 and 2 ABOUT HERE

In the joint models with either PCV, BWT or FEC as repeated measurements, fixed effects

of genotype (6 levels), year of birth (6 levels) and sex (2 levels) were included in the repeated

measurements component of the joint model. As suggested by Figures 1—3, each of the traits

was assumed to be curvilinear over time. Age of dam (5 levels) was considered as a base-

line covariate for the time-to-event component only, but not for the repeated measurements,

where it was found not to be significant.

Consequently, we can define βT1 = [µ,β
T
0 ], where β

T
0 = [α1,α2,α3,α4,α5, ς1, ς2, ς3, ς4, ς5,d1], αm

(m = 1, . . . , 5) are the binary indicators capturing the breed effects, ςk (k = 1, . . . , 5) are the

indicators for year of birth effects and dl is the binary indicator for males. As a result, the

repeated measurements model can be written as

Y i =X1iβ1 + η1ti + η2t
∗
i +W 1i(ti) + 6i, (8)

where X1i is the ni × 12 design matrix corresponding to β1, (η1, η2) are the parameters

associated with the time trend, t∗Ti = (t2i1, . . . , t
2
ini
) is the vector of the quadratic times, and

W 1i(ti)
T = {Wi1(ti1), . . . ,Wini(tini)}. Let βT = (βT1 , η1, η2), and X1(ti) = (X1i | ti | t∗i ) be the

ni × 14 design matrix corresponding to β. Model (8) can then be re-written as

Y i =X1(ti)β +W 1i(ti) + 6i. (9)
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FIGURE 3 ABOUT HERE

To specify the survival component of the joint model, let βT2 = [βT0 , a1, a2, a3, a4], where

ar (r = 1, . . . , 4) are the binary indicators coding the dam age groups (with levels: ≤ 2 years,

3, 4, 5 and ≥ 6 years). The model for survival time is then given by

λi(t) = λ0(t) exp xT2iβ2 +W2i(t) , (10)

where X2i is the ni × 15 design matrix associated with β2.

For all the three traits the following settings for W1i and W2i were considered:

(S1) W1i(t) = U1i, W2i = 0;

(S2) W1i(t) = U1i + U2it, W2i = 0;

(S3) W1i(t) = U1i, W2i = γW1i;

(S4) W1i(t) = U1i + U2it, W2i = γ1U1i + γ2U2i + γ3W1i(t).

Settings (S1) and (S2) assume independence between the repeated measurement and survival

processes. Settings (S3) and (S4) correspond to (S1) and (S2), respectively, with respect to

the structure of W1i(t), but allow for dependence between the processes (joint models).

To obtain parameter estimates for the fixed effects, variance components and the associa-

tion parameters of the joint models (S3) and (S4) specified above, a program in SAS was

written. Estimates from either setting (S1) and (S2) were computed using PROC MIXED

(for repeated measurements) and PROC PHREG (for survival time) in SAS.

Estimates of the standard errors for all parameter estimates in the joint models were ob-

tained by using the jackknife method. This was achieved by leaving out the observations

for lambs from the same sire and then re-fitting the model to the remaining observations.

Classically, jackknife provides reliable estimates of the standard errors if the observations

omitted are independent from those that are left in. When observations for lambs from the

same sire are left out, so is the genetic component of these lambs. This genetic component is
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assumed here to provide more individual contribution to the lamb characteristics (e.g. sur-

vival, BWT) than the common enviromental components, which are shared by lambs born

in the same year. This is supported by the findings in reference [2]. These authors show that

for the analysed data set, the differences observed in heritability estimates of PCV and FEC

for Dorper- compared with Red Masaai-sired lambs were more likely due to the differences

in genetic variance rather than in environmental variability.

5 Results

Below the results of the fitted models for PCV, BWT and FEC for the above settings

are reported. For each trait the results of the joint model are compared with those of

the corresponding independence model for both the repeated measurements and survival

estimates.

5.1 Packed cell volume from one month

Initally, the analysis of the repeated measurements for PCV from one month until one year

of age was considered. When fitting the model corresponding to setting (S2), a non-positive

definite estimate of the variance-covariance matrix D1 (see Section 3.3) was obtained. On

further investigation, it was discovered that the PCV repeated measurements were negatively

correlated, with the correlation increasing in the absolute value over time. This negative se-

rial correlation cannot be captured by a model with a random intercept and random slope,

as specified under setting (S2). In particular, taking into account the magnitude of the cor-

relation and low variability of the slopes of individual profiles, the variance of the random

slope is estimated to be less than or equal to 0, which is obviously an inadmissible value.

Therefore, for the PCV measurements collected from one month to one year of age, the

models for settings (S2) and (S4) could not be fitted. On the other hand, the models for

settings (S1) and (S3), which do not account for the negative correlation, could be used. The
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results for these models are given in Table 1. Strictly speaking, one should treat the results

with caution since they are based on models with a possibly misspecified variance-covariance

structure.

TABLE 1 ABOUT HERE

Setting (S1): Under this setting, which assumes independence between PCV measurements

and survival time, the Dorper (DxD) breed had the lowest mean PCV from one month to

one year of age, which was between 0.1 to 1.9% units lower than for other genotypes (see

the ‘Repeated measurements model - S1’ column in Table 1). This difference increased as

the Red Maasai genotype in the lambs increased, with the Red Maasai having the highest

mean PCV. The linear and quadratic time effects were both significant (P<0.001) implying

an average non-linear trend in PCV. The trend is as indicated in Figure 1, which shows a

general sharp decline in PCV after one month in all years except 1996 followed by a slight

rise. The lambs born in 1992-1995 had on average a lower PCV (0.3 to 3.2%) units than

those born in 1991. The mean PCV was the highest in 1996. On average, male lambs had

lower PCV than female lambs.

By exponentiating the estimates given in the ‘Survival model - S1’ column in Table 1, one

can see that, as compared to the Dorper, the relative mortality hazard of the other genotypes

ranged from exp(−0.476) = 0.62 to exp(−1.34) = 0.26. The Rx(RxD) and RxR breeds had

the lowest, and similar, mortality. The hazard of the lambs born in the years 1993—1996

was statistically significantly higher than that of the lambs born in 1991 and ranged from

2.2 to 4.0. Male lambs had a higher mortality hazard than females while the hazard ratio

decreased with increasing age of dam.

Setting (S3): This setting corresponds to (S1), but assumes dependence between PCV mea-

surements and survival time. As compared with (S1) the differences in the mean PCV,
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relative to the Dorper breed, increased slightly for all other genotypes. For instance, the

estimated mean PCV for the non-Dorper genotypes was 0.2-2.2% units higher than for the

Dorper breed (see the ‘Repeated measurements model - S3’ column in Table 1). This in-

crease might be the result of the adjustment of the analysis of the repeated measurements

for the variation in death rates. The estimated time trend parameters for the repeated mea-

surements model for (S1) setting were similar to those obtained for (S3).

Relative to the mortality hazard for the Dorper breed, the hazard ratio for the non-Dorper

genotypes now ranged between 0.60 to 0.24, as compared to (S1) setting (see the ‘Survival

model - S3’ column in Table 1). Significant negative estimates (P<0.001) were obtained for

the association parameters (γ in Table 1) for the survival model under (S3). This indicates

that the mortality hazard decreased with increasing PCV.

5.2 Packed cell volume from weaning

As the critical period for assessing genetic resistance to endoparasites in lambs is between

weaning and 12 months of age [1], the analysis of the PCV repeated measurements for the

period from weaning onwards was also considered. In this analysis, the survival time was

re-defined by using weaning as the time of origin. Consequently, in this analysis only the

animals alive at the time of weaning were considered. The results for settings (S1)—(S3) and

(S2)—(S4) are given in Tables 2 and 3, respectively.

Settings (S1) and (S2): For (S1), similar trends in the repeated measurement model, as those

reported for the analysis of data from one month of age (see Table 1), were observed when

PCV measurements were considered from weaning (see Table 2). However, unlike for the

period from one month of age, the time trend had a more moderate negative slope estimate.

This corresponds to Figure 1, which shows a more gradual decline in PCV after weaning

than before.
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TABLE 2 ABOUT HERE

The relative mortality hazard in the post-weaning period exhibited similar pattern as in the

analysis of data from one month of age, but now the Rx(RxD) had the lowest mortality

(exp(−1.641) = 0.19) when compared to the Dorper breed. The hazard of the lambs born in

the years 1993—1995 was now five times higher while it was 70% higher for lambs born in

1996 when compared to lambs born in 1991.

In the repeated measurements model with both random intercepts and slopes, i.e. under (S2)

setting (see the ‘Repeated measurements model - S2’ column in Table 3), similar trends for

the fixed effects parameter estimates were observed as in the simpler, random-intercept-only

model (see the ‘Repeated measurements model - S1’ column in Table 2). However, in the for-

mer, the ranges of the estimates were reduced. In the model under (S2) setting the random

intercept and slope were negatively correlated (σ12 = −1.82). This implies that lambs with

a high PCV at weaning had a more rapid decline in PCV than those with a low PCV. The

estimated variance component for the random intercept (σ21) was more than 2 times larger

in (S2) than in the simpler model (S1). Note, however, that, according to equation (2),

the negative correlation between random intercept and slope will reduce the total variability

under (S2) setting, making it similar to the sum of σ21 and σ2e in the simpler (S1) model.

It is also worth noting that, according to equation (2), under (S2) covariance between two

PCV measurements depends on time, and can be negative if the correlation between ran-

dom intercept and slope is negative. Since it is possible that the correlation between PCV

measurements may change in time and may be negative (see remarks in Section 5.1), this

gives more credibility to the results obtained for (S2) and (S4) settings, because the mod-

els used in (S1) and (S3) impose a constant positive correlation between PCV measurements.

TABLE 3 ABOUT HERE
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Settings (S3) and (S4): As compared with (S1) and (S2) settings, the differences in the mean

PCV for all other genotypes , as compared with the Dorper breed, increased slightly in the

joint models constructed under both (S3) (see the ‘Repeated measurements model - S3’ col-

umn in Table 2) and (S4) (see the ‘Repeated measurements model - S4’ column in Table 3)

settings. For instance, for (S3) setting (Table 2), the estimated mean PCV from weaning for

the non-Dorper genotypes was 0.6-3.4% units higher than for the Dorper breed. For (S4)

setting (Table 3), the difference was between 0.3% and 3.0%. An increase that might be

attributed to the adjustment of the analysis of the repeated measurements for the variation

in death rates.

Relative to the mortality hazard for the Dorper breed, the hazard ratio for the non-Dorper

genotypes now ranged from 0.55 to 0.16 for both (S3) and (S4) settings (see the ‘Survival

model - S3’ column in Table 2 and the ‘Survival model - S4’ column in Table 3). These

estimates are lower than the estimates obtained for the corresponding (S1) and (S2) survival

models. For (S3) setting the mortality hazard for lambs born in 1993—1995 was about five

times higher than in 1991 (Table 2). For (S4) the ratio was about five for 1993, while for

1994 and 1995 it was about four times, a lower ratio than for (S3). This would appear to be

supported by Figure 1. The lambs born in 1994 and 1995 had much lower PCV measure-

ments at weaning than those born in 1991, and PCV has been shown to correlate with pure

survival. However, the former, PCVs increased over time while those for the latter decreased.

Thus, adjusting for the PCV evolution over time results in a slight decrease in the mortality

hazard for 1994—1995. On the other hand, the lambs born in 1993 and 1991 had almost

similar PCV measurements at weaning. The decrease in 1993 over time was, however, much

sharper (larger negative slope) than in 1991. Adjusting for this decrease translates into a

higher mortality hazard for 1993. Finally, higher hazard ratios are observed for 1994 and

1995 in (S3) than (S4), since the latter model adjusts the risk only for the overall level of

PCV over time (without adjusting for the rate of change).
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Significant negative estimates (P<0.001) were obtained for all the association parameters (γ

in Table 2, and γ1—γ3 in Table 3) for the survival model under both (S3) and (S4) settings.

This indicates that the mortality hazard decreased with increasing PCV. Thus, after weaning

in (S3) setting, lambs with PCV measurements higher than the average had a lower mortality

hazard than those with lower PCV measurements. The standard deviation of the distribution

of the random intercepts in the repeated measurements part of the joint model for (S3) setting

was estimated to equal 2.51(=
√
6.318 - see Table 2). Thus, the model predicts that for a

(random) increase of PCV due to an increase of the random intercept W1i = U1i by one

standard deviation, the risk of death decreases by exp(−γ ∗W1i) = exp(−0.303 ∗ 2.51) = 0.47

(see Table 2). For the (S4) model a large negative estimate was obtained for γ2, which

corresponds to the random individual slope. Thus, the model indicates that at any time,

lambs that had large decrease in PCV had increased risk of death.

5.3 Body Weight

Measurements of body weight from birth to one year of age were used in this analysis. Models

were fitted using all four settings. The parameter estimates of the fixed effects were similar

for (S1)—(S3) and (S2)—(S4) settings. We thus report only the estimates of the models con-

structed under (S2) and (S4) setting, which are shown in Table 4.

Setting (S2): The Dorper (DxD) breed had the highest mean BWT, which was between 0.04

to 0.72 kg higher than for other genotypes (see the ‘Repeated measurements model - S2’

column in Table 4). There was a non-linear trend in change of the body weight over time.

On average, the lambs born in 1994—1996 were lighter than those born in 1991. Male lambs

were on average 0.11 kg heavier than the females.

Compared with the Dorper the relative mortality hazard of the other genotypes ranged from

0.61 to 0.27, with the Red Maasai (RxR) and Rx(RxD) having the lowest hazard. As for the

previous PCV analyses, an increased mortality hazard was noted for the years 1993—1996.
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Lambs born to ewes ≥ 3 years of age had lower hazard than those born to younger ewes.

TABLE 4 ABOUT HERE

Setting (S4): Adjusting the repeated measurement process for the variation in death rates

had a only slight effect on the parameter estimates of the (S4) models when compared to

(S2) setting.

The relative mortality of the genotypes now ranged from 0.61 to 0.24 with the RxR geno-

type having the lowest hazard mortality. This result indicates that despite being lighter

in body weight when compared to the other genotypes the Red Maasai demonstrates bet-

ter performance in terms survival. The age of dam effect was non-significant. This could

be due to the fact that in this analysis, we account for the low body weight of lambs born

to young dams, which biologically is due to low milk production of the dam in her first parity.

Negative estimates of the parameters relating the random components of the repeated mea-

surements model to the survival model were observed (see the estimates for γ1—γ3 in Table 4).

In particular, there was a significant negative association only between random growth rate

(γ2, P<0.001) and risk of death. This shows that animals who had weight profiles with

increasing slope had reduced risk of death. In a reduced model with γ1 and γ3 constrained

to zero (results not shown), the estimates obtained for the association parameter γ2 was

γ̂2 = −3.262 (s.e.=0.389). The standard deviation of the random slope in this reduced model

was equal to 0.22. Thus for every increase by one standard deviation, the mortality hazard

associated to the rate of change in BWT was reduced by 0.49 (= exp(−3.262× 0.22)).

5.4 Faecal Egg Count

The repeated measurements for FEC were log-transformed into LFEC=ln(FEC +25) as the

data were highly skewed. Initially, an analysis of the repeated measurements from one month
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to one year of age was considered. As in the case with PCV, a negative correlation between

repeated measurements, that increased over time, was observed. This problem precluded the

estimation of any of settings (S1)—(S4). Considering only LFEC measurements from weaning

onwards did not resolve the problem, as the negative correlation continued to persist among

measurements collected towards the end of the one year period. The problem may be due

to strong oscillations of the individual patterns that can be observed in the LFEC measure-

ments in Figure 2 from one month onward, as well as from the time of weaning, that could

be linked with the treatment protocol instigated in the study. A possible solution might be

to extend the random structure (W1i) of the repeated measurements model by including a

serial correlation component in the model for repeated measurements process. Owing to the

limitation in software availability, this modelling option was not attempted.

6 Discussion

The data discussed in this paper were previously analysed by Baker et al. [2] and Nguti et al.

[14]. Baker et al. [2] analysed the repeated measurements of BWT, PCV and FEC without

taking into account the survival pattern of the animals, and chose to analyse the data for

each time point separately. They confirmed the higher resistance (lower FEC) and higher

resilience (higher PCV) of Red Maasai than Dorpers. Nguti et al. [14], on the other hand,

studied the survival of each genotype and introduced the effects of BWT, PCV and FEC as

time-varying covariates in a shared frailty model, with the frailty defined as a random effect

of sire. Introduction of PCV and FEC as time-varying covariates in that analysis in mod-

els with BWT (time-invariant or time-varying) reduced the magnitude of the sire variance,

confirming the moderate levels of heritability reported by Baker et al. [2].

In the analysis presented in the current paper, individual repeated measurements were

analysed jointly with the survival process. By doing so, parameter estimates in both com-
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ponents of the joint model in general increased in absolute order of magnitude, as compared

with the models assuming independence beteen the two processes. For instance, in the joint

model with PCV as the repeated measurement, the range of the mortality hazard ratios for

different genotypes relative to the Dorper changed from 0.61—0.19 for (S1) and (S2) models to

0.55—0.16 for (S3) and (S4) models. Thus, adjustment for the evolution of PCV resulted in a

clearer separation between the Dorpers and the Red Maasai. On the other hand, adjustment

for the death rates widened the ranges of the parameters reflecting the differences among

the various genotypes in PCV measurements. As shown by Baker et al. [2] the PCV values

among the genotypes were similar at the first sampling at one month, prior to any significant

of disease. The subsequent reductions in PCV were inversely correlated with levels of FEC,

suggesting that the differences in overall mean PCV values among the genotype were more

likely the result of the different levels of resistance between the Dorpers and the Red Maasai,

rather than any genetic differences between breeds in their normal PCV values.

In general, repeated measurements such as PCV, BWT or FEC, are only recorded at specific

time points. When such variables are used in a proportional hazards model as time-varying

covariates, the standard method is to impute the missing observations by using the last

observed value. This results in a piece-wise constant profile. This approach has been shown

to lead to biased model parameters [16], with the presence of measurement error in the co-

variate attenuating the estimates towards zero. On the other hand, in the joint analysis, the

repeated measurements are imputed by the ‘true’ values predicted under the model for the

repeated measurement process. This reduces the attenuation and can explain the increase in

the magnitude of parameter estimates observed for the joint models. In addition, the joint

modelling allows other characteristics of the repeated measurements pattern, such as the rate

of change (slope), to influence the risk of death. The effects of these characteristics is well

demonstrated in this study when repeated measurements of PCV recorded from weaning

were considered. Including a random slope had a major effect on the post-weaning risks of
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death for the years 1993 to 1995 when compared with 1991.

Nguti [15] compares the results from the survival component of the joint model under setting

(S4) for the repeated measurements of PCV (from weaning) and BWT (from birth) together

with those for a Cox PH model with a time-varying covariate for these measurements. Dif-

ferences in hazard estimates are obtained by the two approaches. However, it would be

erroneous to make direct comparisons of the two sets of results as the methodological as-

pects of the two models are different. The survival component of the joint model can be

viewed as a conditional model (conditioned on the random effects which may be partially

confounded with genotype), while a Cox PH model with a time-dependent covariate can be

viewed as a population average model.

The aforementioned potential of the joint models for a more accurate analysis of the re-

peated measurements and survival processes is an attractive feature of the methodology.

This potential, however, was reduced by the negative correlation limitations encountered in

our data. These limitations need to be carefully reflected upon. For instance, it should be

noted that the post-weaning measurements were obtained at the time lambs were diagnosed

for treatment based on observations of the sentinel group of 50 lambs (see Section 2). Treat-

ment will have resulted in decreases in FEC especially, and also increases in PCV. Thus

data collected in between treatments, when measurements were more likely to have been

within normal limits, were missing. These regular treatments are likely to have influenced

the covariance structure resulting in the observed negative correlations. A similar problem

occurred pre weaning when individual animals were treated on the basis of PCV and FEC. It

should also be noted here that not all lambs that died did so due to helminthiasis. Although

Nguti [14] found a survival rate differential between Dorper and Red Maasai regardless of

whether deaths due to causes other than helminthiasis were omitted or not, the decreases in

PCV and increases in FEC that are typical of the onset of helminthiasis may not have been

reflected in deaths due to other causes. More frequent sampling and use of the data collected
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mid-way between treatment interventions may have both understood better the patterns of

changes in PCV and FEC in individual lambs and overcome the problem of negative corre-

lation.

In the application of any statistical method one needs to be aware of the assumptions made.

For example, in the joint models considered in this paper, the models used a bivariate

Gaussian process to induce the association between the repeated measurements and the

survival process. This, in turn, imposes a particular, hierarchical structure (e.g., random

intercepts and slopes) of the model for the repeated measurements process. Such structure

may not necessarily be adequate for a particular dataset. As already noted the models with

random intercepts and random slopes were not able to capture the intrinsic patterns of FEC

induced by the treatment interventions. On the other hand, they coped better with the

BWT profiles from the time of birth. In general, random intercepts and slopes provide a

representation of the dominant part of the evolution of the profiles, but do not capture a more

subtle behaviour (e.g. short-term oscillations around an average pattern). Such a behaviour

might be captured by using an autocorrelated stochastic processes. Henderson et al. [9] has

proposed the use of a non-stationary Gaussian process in their approach. Unfortunately, due

to the lack of appropriate software, this solution is not yet available in practice.

The joint models applied here did not allow for adjusting for correlations among survival

times of lambs from the same sire. For this purpose, Nguti et al. [14] used frailty models

with a random sire effect. In theory, the models formulated by Henderson et al. [9] allow

for the inclusion of a frailty term in the time-to-event component of the joint model, but

implementation needs to await development of appropriate software.

Conclusion

Classically, the effect of repeated measurements on the risk of death is assessed by treating

the repeated measurement as a time-dependent covariate in a survival model. Estimates from
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such an analysis have been shown to be biased towards zero, thus showing over-estimated

hazard ratios. The bias can be removed by using joint models. This paper has illustrated

the application of such models. Accounting for the survival (drop-out) mechanism has been

observed to affect the parameter estimates related to the repeated measurements process.
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Table 1: Estimates from settings S1 and S3 for repeated measurements of PCV(%) from one month to 12 months

and survival.

Repeated measurements model Survival model

S1 S3 S1 S3

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 31.730 0.238 31.457 0.394 - - - -

time(months) -2.856 0.052 -2.866 0.119 - - - -

time*time 0.217 0.005 0.217 0.011 - - - -

Genotype

DxD ref ref ref ref

Dx(DxR) 0.132 0.231 0.237 0.281 -0.476 0.121 -0.514 0.136

DxR 0.355 0.332 0.449 0.392 -0.569 0.172 -0.583 0.209

RxD 1.406 0.260 1.603 0.381 -0.872 0.169 -0.945 0.197

Rx(RxD) 1.668 0.224 1.935 0.313 -1.341 0.141 -1.390 0.184

RxR 1.937 0.279 2.230 0.356 -1.342 0.177 -1.407 0.226

Year of birth

1991 ref ref ref ref

1992 -0.412 0.222 -0.373 0.303 -0.023 0.185 -0.048 0.209

1993 -0.340 0.219 -0.470 0.248 0.921 0.149 0.948 0.157

1994 -2.867 0.252 -3.098 0.270 1.358 0.167 1.361 0.185

1995 -3.178 0.251 -3.384 0.291 1.328 0.165 1.361 0.187

1996 1.097 0.257 1.008 0.306 0.724 0.197 0.769 0.248

Gender

Females ref ref ref ref

Males -0.512 0.138 -0.558 0.156 0.220 0.088 0.232 0.115

Age of dam

<=2yrs - - - - ref ref

=3 yrs - - - - -0.277 0.158 -0.271 0.160

=4 yrs - - - - -0.544 0.167 -0.505 0.181

=5 yrs - - - - -0.368 0.159 -0.278 0.182

>=6yrs - - - - -0.509 0.168 -0.461 0.150

Variances

σ2e 25.817 0.398 25.905 0.839 - - - -

σ21 3.037 0.283 2.804 0.327 - - - -

Association

γ - - - - - -0.236 0.020
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Table 2: Estimates from settings S1 and S3 for repeated measurements of PCV (%) from weaning to 12 months and

survival.

Repeated measurements model Survival model

S1 S3 S1 S3

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 26.179 0.285 25.603 0.451 - - - -

time (months) -1.406 0.054 -1.419 0.084 - - - -

time*time 0.146 0.006 0.147 0.009 - - - -

Genotype

DxD ref - ref - ref - ref -

Dx(DxR) 0.361 0.287 0.563 0.399 -0.492 0.142 -0.584 0.190

DxR 0.978 0.412 1.140 0.580 -0.678 0.200 -0.707 0.293

RxD 1.756 0.318 2.206 0.465 -0.975 0.195 -1.169 0.242

R(RxD) 2.405 0.276 3.045 0.408 -1.641 0.176 -1.839 0.243

RxR 2.866 0.344 3.430 0.454 -1.332 0.201 -1.527 0.242

Year of birth

1991 ref - ref - ref - ref -

1992 0.884 0.269 0.947 0.388 0.037 0.228 -0.077 0.278

1993 -1.160 0.263 -1.678 0.345 1.468 0.174 1.637 0.209

1994 -5.170 0.313 -5.678 0.466 1.570 0.203 1.640 0.252

1995 -5.666 0.310 -6.082 0.419 1.533 0.203 1.677 0.250

1996 1.974 0.316 1.901 0.359 0.531 0.268 0.458 0.276

Gender

Females ref - ref - ref - ref -

Males -0.477 0.169 -0.616 0.212 0.300 0.104 0.342 0.150

Age of dam

<=2yrs - - - - ref - ref -

=3 yrs - - - - -0.377 0.177 -0.385 0.165

=4 yrs - - - - -0.728 0.187 -0.669 0.183

=5 yrs - - - - -0.549 0.178 -0.437 0.203

>= 6yrs - - - - -0.810 0.196 -0.698 0.209

Variances

σ2e 15.315 0.293 15.390 0.451

σ21 6.465 0.427 6.318 0.542

Association

γ - - - - - - -0.303 0.023
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Table 3: Estimates from settings S2 and S4 for repeated measurements of PCV(%) from weaning to 12 months and

survival.

Repeated measurements model Survival model

S2 S4 S2 S4

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 25.817 0.273 25.844 0.444 - - - -

time (months) -1.465 0.052 -1.562 0.081 - - - -

time*time 0.160 0.006 0.164 0.009 - - - -

Genotype

DxD ref - ref - ref - ref -

Dx(DxR) 0.169 0.267 0.333 0.354 -0.492 0.142 -0.594 0.200

DxR 0.726 0.387 0.842 0.489 -0.678 0.200 -0.634 0.284

RxD 1.585 0.290 1.892 0.451 -0.975 0.195 -1.221 0.277

Rx( RxD) 2.070 0.254 2.521 0.404 -1.641 0.176 -1.843 0.257

RxR 2.586 0.319 2.991 0.440 -1.332 0.201 -1.569 0.304

Year of birth

1991 ref - ref - ref - ref -

1992 1.460 0.237 1.392 0.404 0.037 0.228 -0.260 0.340

1993 -0.779 0.239 -1.208 0.358 1.468 0.174 1.678 0.282

1994 -3.685 0.286 -4.311 0.631 1.570 0.203 1.343 0.403

1995 -3.631 0.290 -4.285 0.661 1.533 0.203 1.396 0.471

1996 2.101 0.286 1.998 0.365 0.531 0.268 0.582 0.308

Gender

Females ref - ref - ref - ref -

Males -0.539 0.154 -0.597 0.188 0.300 0.104 0.357 0.170

Age of dam

<=2yrs - - - - ref - ref -

=3 yrs - - - - -0.377 0.177 -0.425 0.184

=4 yrs - - - - -0.728 0.187 -0.685 0.205

=5 yrs - - - - -0.549 0.178 -0.453 0.227

>=6yrs - - - - -0.810 0.196 -0.676 0.213

Variances

σ2e 12.901 0.272 12.641 0.401

σ21 15.894 0.990 15.380 1.517

σ12 -1.817 0.145 -1.590 0.236

σ22 0.276 0.024 0.261 0.028

Association

γ1 - - - - - - -0.273 0.097

γ2 - - - - - - -1.986 0.505

γ3 - - - - - - -0.251 0.087
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Table 4: Estimates from settings S2 and S4 for repeated measurements of BWT(kg) from birth and survival.

repeated measurements model Survival model

S2 S4 S2 S4

est s.e. est s.e. est s.e. est s.e.

Fixed effects

Intercept 4.662 0.103 4.665 0.146 - - - -

time (months) 2.330 0.016 2.229 0.045 - - - -

time*time -0.101 0.001 -0.101 0.003 - - - -

Gentotype

DxD ref - ref - ref - ref -

Dx(DxR) -0.036 0.103 -0.042 0.109 -0.494 0.108 -0.498 0.130

DxR -0.405 0.150 -0.396 0.159 -0.630 0.157 -0.577 0.165

RxD -0.058 0.117 -0.074 0.131 -0.809 0.149 -0.947 0.194

Rx(RxD) -0.361 0.100 -0.391 0.125 -1.263 0.124 -1.221 0.160

RxR -0.715 0.127 -0.727 0.142 -1.302 0.157 -1.404 0.203

Year of birth

1991 ref - ref - ref - ref -

1992 -0.621 0.102 -0.637 0.160 0.073 0.161 0.158 0.163

1993 0.504 0.100 0.647 0.138 0.763 0.136 0.017 0.219

1994 -1.852 0.120 -1.836 0.140 1.384 0.148 1.330 0.162

1995 -1.238 0.120 -1.167 0.145 1.246 0.149 0.968 0.188

1996 -2.033 0.118 -2.088 0.060 0.763 0.173 1.084 0.325

Gender

Females ref - ref - ref - ref -

Males 0.113 0.064 0.095 0.118 0.202 0.079 0.387 0.097

Age of dam

<=2yrs ref - ref - ref - ref -

=3 yrs - - - - -0.187 0.144 0.096 0.147

=4 yrs - - - - -0.490 0.152 0.086 0.162

=5 yrs - - - - -0.333 0.145 0.291 0.163

>=6yrs - - - - -0.433 0.152 0.098 0.148

Variances

σ2e 2.533 0.038 2.520 0.091 - - - -

σ21 0.825 0.058 0.867 0.052 - - - -

σ12 0.179 0.013 0.221 0.017 - - - -

σ22 0.070 0.004 0.082 0.007 - - - -

Association

γ1 - - - - 0.000 - -0.086 0.389

γ2 - - - - 0.000 - -3.285 1.609

γ3 - - - - 0.000 - 0.006 0.079
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Figure 1: PCV measurements for the years 1991 to 1996. Bold vertical line indicates when the lambs were weaned.
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Figure 2: Transformed log(FEC+25) measurements for the years 1991 to 1996. Bold vertical line indicates when
the lambs were weaned.
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Figure 3: Body weight measurements for the years 1991 to 1996. Bold vertical line indicates when the lambs were
weaned.


