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Abstract

In this paper a modiÞcation of the Kaplan-Meier and Nelson-Aalen
estimators in the right random censorship model is studied. The new
estimators are obtained by replacing the censoring indicator variables in
the classical deÞnitions by values of a nonparametric regression estimator.
Asymptotic normality is obtained and it is shown that this presmoothing
idea leads to a gain in asymptotic mean squared error. A local plug-in
bandwidth selector is introduced and the problem of optimal pilot band-
width selection for this estimator is studied. The gain of the presmoothed
estimators with automatic plug-in bandwidth selector is demonstrated in
a simulation study.

Abbreviated Title: Presmoothed Kaplan-Meier estimator.
AMS 1991 Subject classiÞcations. Primary: 62G07; secondary: 60F05,
62G20.
Key words and phrases: Bandwidth selection, censored data, kernel
smoothing, plug-in bandwidth.

1 Presmoothed estimators for censored data

Let Y1, . . . , Yn be independent, identically distributed (iid) positive random
variables (survival times or failure times) with unknown continuous distribution
function (df) F (·). In the right random censorship model these survival times are
censored to the right by positive iid random variables C1, . . . , Cn with unknown
continuous df G(·). For each i = 1, . . . , n we observe (Ti, δi) where Ti = Yi ∧Ci
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and δi =1{Yi ≤ Ci}. We assume the Yi�s independent of the Ci�s. Therefore
the df H(·) of Ti satisÞes

1−H(t) = (1− F (t))(1−G(t)).
The variable δi indicates whether Yi is censored (δi = 0) or uncensored (δi = 1).
The success probability for this binary outcome is

γ = P (δ1 = 1) = E(δ1) = P (Y1 ≤ C1) =

Z ∞

0

(1−G(t))dF (t) = Hu(+∞)

where Hu(t) = P (T1 ≤ t, δ1 = 1) is the subdistribution function of the uncen-
sored observations. Note that

Hu(t) =

Z t

0

p(s)dH(s)

where

p(t) = P (δ1 = 1 | T1 = t) = E(δ1 | T1 = t).

The function p(·) is the conditional probability that the observation is non-
censored given that T1 = t. The importance of the function p(·) is clear from
the following relations (see also Dikta (1998)):

ΛF (t) =

Z t

0

1

1−H(s−)dH
u(s) =

Z t

0

p(s)dΛH(s) (1)

with ΛF (·) and ΛH(·) the cumulative hazard functions corresponding to F (·)
and H(·).
From (1) we easily obtain

1− F (t) = exp(−ΛF (t)) = exp
µ
−
Z t

0

p(s)dΛH(s)

¶
(2)

and

λF (t) = p(t)λH(t) (3)

with λF (·) and λH(·) the hazard functions.
Note that p(t) ≡ 1 in the case of no censoring. If δ1 is independent of T1,

i.e.,

p(t) = E(δ1 = 1 | T1 = t) = E(δ1) = γ

then (1) implies that we have the Koziol-Green proportional hazards model (see
Koziol and Green (1976)):

1− F (t) = exp(−ΛF (t)) = exp(−γΛH(t)) = (1−H(t))γ
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or equivalently 1−G(t) = (1− F (t))β with β = (1− γ)/γ.
The classical estimator for ΛF (t) is the Nelson-Aalen estimator (see Nelson

(1972) and Aalen (1978))

ΛNAn (t) =
X
T(i)≤t

δ[i]

n− i+ 1 (4)

where T(1) ≤ . . . ≤ T(n) are the ordered Ti�s and the δ[i]�s are the concomitants.
The intuitive idea behind the Nelson-Aalen estimator is to consider the purely

empirical version of ΛF (t) =
Z t

0

p(s)

1−H(s−)dH(s), i.e., at the i-th ordered jump

(of size n−1) of Hn(s) = n−1
Xn

i=1
1{Ti ≤ s} we estimate p(s)

1−H(s−) by the

purely empirical value
δ[i]

1− (i− 1)/n) =
nδ[i]

n− i+ 1 . It is however clear that in
this expression we can replace δ[i] by a more smooth (parametric or nonpara-
metric) estimator of p(·). An appealing intuitive idea is to estimate p(T(i)) by
pn(T(i)) where

pn(t) =

(nb)−1

nX
i=1

K

µ
t− Ti
b

¶
δi

(nb)−1

nX
i=1

K

µ
t− Ti
b

¶ =

n−1

nX
i=1

Kb(t− Ti)δi

n−1

nX
i=1

Kb(t− Ti)

with K(·) a kernel, Kb(u) = 1

b
K(u/b) and b ≡ bn, n = 1, 2, . . . , a bandwidth

sequence (pn(·) is the Nadaraya-Watson kernel estimator for p(·) based on the bi-
nary responses δi with covariates Ti, i = 1, . . . , n). This yields the presmoothed
estimator

ΛPn (t) =
X
T(i)≤t

pn(T(i))

n− i+ 1 . (5)

It should be noted that the parametric version of this idea appeared in
Dikta (1998). He proposed working with a parametric estimator for p(·). In
the unpublished Diploma Thesis by Ziegler (1995) the asymptotic distribution
of some modiÞed presmoothed Kaplan-Meier process has been established and
used to construct conÞdence bands for the underlying distribution function.
It is immediate from (3) that λF (t) can be estimated by means of a pres-

moothed hazard function estimator

λPn (t) = pn(t)λn(t) (6)

where λn(t) is an estimator of λH(t) (e.g. the Watson and Leadbetter (1964a,b)
kernel estimator). Note that the estimator like the one in (6) is simply the
product of two estimators based on the iid observations at hand. Indeed pn(t)
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is based on (Ti, δi), i = 1, . . . , n and λn(t) is based on Ti, i = 1, . . . , n. Any
possible nonparametric estimators for p(t) and for λH(t) can be used to make
a product estimator like in (6). The asymptotic properties of such estimators
are easily derived from those of the two factors, see the forthcoming Ph.D.
Dissertation by López-de-Ullibarri for further details.
Some good features of the presmoothed Nelson-Aalen estimator, deÞned by

(5), are:

(i) ΛPn (·) has a jump at any of the observations, so that from a graphical point
of view ΛPn (·) provides more information on the local behaviour than the
classical Nelson-Aalen estimator.

(ii) Using a binary regression smoother to estimate p(·) means that we can
extrapolate the available information to better describe the tail behaviour.
This feature should be clear from the graphical performance of this esti-
mator.

(iii) The presmoothed Nelson-Aalen estimator has a smaller asymptotic vari-
ance than the Nelson-Aalen estimator. In this paper it will be shown that
this results in a better mean squared error performance, showing that
presmoothing is beneÞcial.

Using the Þrst equation in (2), expressions (4) and (5) and the approximation
e−x ' 1− x for x close to 0, we easily obtain the following two estimators for
1− F (t) = exp(−ΛF (t)), the survival function at t:

1− FKMn (t) =
Y
T(i)≤t

µ
1− δ[i]

n− i+ 1
¶

(7)

and

1− FPn (t) =
Y
T(i)≤t

µ
1− pn(T(i))

n− i+ 1
¶
. (8)

The estimator in (7) is the classical Kaplan-Meier estimator (see Kaplan and
Meier (1958)) while (8) gives the new presmoothed estimator proposed in this
paper. It is straightforward to show that, for t such that H(t) < 1,

1− FKMn (t) = exp(−ΛNAn (t)) +OP (n
−1)

and also that

1− FPn (t) = exp(−ΛPn (t)) +OP (n−1).

In this paper the following items on the presmoothed Nelson-Aalen estimator
and the presmoothed Kaplan-Meier estimator will be covered. In Section 2 we
give representations for ΛPn (t)−ΛF (t) and for FPn (t)−F (t) and, as an applica-
tion, we study their asymptotic distributional behaviour. The beneÞcial effect
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of presmoothing is demonstrated in Section 3. There we look at the asymptotic
mean squared error of the dominant part of the presmoothed Nelson-Aalen es-
timator and the presmoothed Kaplan-Meier estimator, and we show that these
AMSE�s are smaller than the corresponding expressions for the Nelson-Aalen
and the Kaplan-Meier estimators. Section 4 includes some proposal of a plug-in
bandwidth selector in this setup. The asymptotic results presented there for
this selector show the rate of convergence of this data driven bandwidth to its
populational counterpart. A small simulation study is included, in Section 5, to
show the considerable gain that may be attained, in terms of efficiency, by the
presmoothed estimator with plug-in bandwidth. Finally, Section 6 contains the
auxiliary lemmas and some of the proofs.

2 Asymptotic representations

Our results will require the following conditions.
On the kernel function, K:

(K.1) K is a non negative, symmetric, twice differentiable function of bounded
variation, with bounded second derivative. It also satisÞes

R L
−LK(x)dx = 1,

K has support in the interval [−L,L], for some L > 0 and K(L) = K0(L) =
K00(L) = 0.

On the conditional probability of uncensoring, p:
(P.1) p is Þve times differentiable in [0,∞), with continuous Þfth derivative.
(P.2) p (0) = 1 and ε = sup{t : p(x) = 1,∀x ∈ [0, t)} > 0.
On the distribution function H :

(H.1) There exists some t0 such that ε < t0 and H(t0) < 1, H is Þve times
differentiable in [0, t0], with Þfth continuous derivative and there exists some
δ > 0 such that H0(t) = h(t) > δ, ∀t ∈ [ε/2, t0].
Conditions (K.1), (P.1) and (H.1) are standard regularity conditions. The

degree of differentiability in (P.1) and (H.1) could be relaxed for the asymptotic
representations in this section. However, this is not the case for the rates of
the plug-in bandwidth that will be presented in Section 4. Condition (P.2)
is a technical one and may look rather surprising. It essentially states that a
lifetime cannot be censored by an arbitrary small number. There should exist
some positive lower bound for censoring times. This does not seem to be a
restrictive condition for real data applications.

2.1 Presmoothed Nelson-Aalen estimator

With Hn(s) = n−1
nX
i=1

1(Ti ≤ s), let bΛH(t) be the empirical estimator of ΛH(t):
bΛH(t) = Z t

0

dHn(s)

1−Hn(s−) .
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We then have that

ΛPn (t)− ΛF (t) =

Z t

0

p(s)d
³bΛH(s)− ΛH(s)´

+

Z t

0

(pn(s)− p(s))dΛH(s)

+

Z t

0

(pn(s)− p(s))d
³bΛH(s)− ΛH(s)´

:= (I) + (II) + (III).

Theorem 1 Assume (K.1), (H.1) and b = c0n−α + o(n−α) for some 1/4 <
α < 1/2 and some c0 > 0. Then

ΛPn (t)− ΛF (t) = ΛPn (t)− ΛF (t) + oP (n−1/2) (9)

with

ΛPn (t) = ΛF (t) +
1

n

nX
i=1

(g1(Ti)− g2(Ti) + g3(Ti, δi)) (10)

where

g1(Ti) =
p(t)

1−H(t)(1(Ti ≤ t)−H(t)) (11)

g2(Ti) =

Z t

0

1(Ti ≤ s)−H(s)
1−H(s) p0(s)ds (12)

g3(Ti, δi) =

Z t

0

Kb(s− Ti)(δi − p(s))
1−H(s) ds. (13)

The asymptotic normality of ΛPn (t) − ΛF (t) is an easy consequence of the
asymptotic representation in Theorem 1. For an explicit result we need a closed
formula for the asymptotic variance. Based on moment calculations, collected
in Lemma 2, we obtain in Theorem 3, a nice expression for the asymptotic
variance. This expression clearly shows the role played by presmoothing. We
need the following notations:

dK =

Z L

−L
v2K(v)dv K(v) =

Z v

−L
K(s)ds eK =

Z L

−L
vK(v)K(v)dv

(14)

α(t) =

Z t

0

1

2
p00(s)h(s) + p0(s)h0(s)

1−H(s) ds

=
1

2

·
p0(t)h(t)
1−H(t) +

Z t

0

p0(s)
½

h0(s)
1−H(s) −

h(s)2

(1−H(s))2
¾¸
ds

(15)

q(t) =
p(t)(1− p(t))h(t)
(1−H(t))2 . (16)
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Lemma 2 Assume (K.1) and (C.1). Then,

E[g3(T1, δ1)] = dKα(t)b
2 + o(b2) (17)

Var[g1(T1)] =
p(t)2H(t)

1−H(t) (18)

Var[g2(T1)] = 2

Z t

0

(p(t)− p(s)) H(s)

1−H(s)p
0(s)ds (19)

Var[g3(T1, δ1)] =

Z t

0

q(v)dv − 2bq(t)eK +O(b2) (20)

E[g1(T1)g2(T1)] = p(t)

Z t

0

H(s)

1−H(s)p
0(s)ds (21)

E[g1(T1)g3(T1, δ1)] = O(b
2) (22)

E[g2(T1)g3(T1, δ1)] = O(b
2). (23)

Theorem 3 Assume (K.1) and (C.1). Then

Var
³
ΛPn (t)− ΛF (t)

´
= n−1[γ(t)− 2eKbq(t) +O(b2)]

where

γ(t) =

Z t

0

dHu(s)

(1−H(s))2 . (24)

2.2 Presmoothed Kaplan-Meier estimator

To obtain an iid representation for the presmoothed Kaplan-Meier estimator,
we rely on the relation 1−FPn (t) = exp(−ΛPn (t))+OP (n−1). Therefore a second
order Taylor expansion yields

FPn (t)− F (t) = exp(−ΛF (t))− exp(−ΛPn (t)) +Op(n−1)

= (1− F (t))(ΛPn (t)− ΛF (t))
−1
2
(ΛPn (t)− ΛF (t))2 exp(−ηn(t)) +OP (n−1)

with ηn(t) a stochastic intermediate value between Λ
P
n (t) and ΛF (t). Moreover

it follows from Theorems 2.1 and 2.3 that ΛPn (t)− ΛF (t) = OP (n−1/2), so that

FPn (t)− F (t) = (1− F (t))(ΛPn − ΛF (t)) +OP (n−1).

We therefore have the following result.

Theorem 4 Assume (K.1), (H.1) and b = c0n−α + o(n−α), for some 1/4 <
α < 1/2 and some c0 > 0. Then,

FPn (t)− F (t) = FPn (t)− F (t) + oP (n−1/2)
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with

FPn (t) = F (t) + (1− F (t))
1

n

nX
i=1

(g1(Ti)− g2(Ti) + g3(Ti, δi))

and

Var
³
FPn (t)− F (t)

´
= n−1(1− F (t))2[γ(t)− 2eKbq(t) +O(b2)].

3 Mean squared error: beneÞcial effect of pre-
smoothing

In this section we show the beneÞcial effect of presmoothing. In fact we show
that the asymptotic mean squared errors (AMSE) of ΛPn (t) and FPn (t) are
smaller than the mean squared errors of the Nelson-Aalen estimator and of the
Kaplan-Meier estimator.
We illustrate this for the AMSE of ΛPn (t). This AMSE is deÞned as follows

AMSE
³
ΛPn (t)

´
= AV ar

³
ΛPn (t)

´
+
³
ABias

³
ΛPn (t)

´´2

where AV ar is the sum of the Þrst two order terms of the variance and ABias
is the dominant term of the bias of the linear approximation in the asymptotic
representation of Theorem 1. From Theorem 3 we have that

AV ar
³
ΛPn (t)

´
= n−1γ(t)− 2eKq(t)n−1b

where q(t), eK and γ(t) are given in (16), (14) and (24).
For the asymptotic bias we have from (17) in Lemma 2 that

ABias
³
ΛPn (t)

´
= dKα(t)b

2

where α(t) is given in (15).
We therefore have that

AMSE
³
ΛPn (t)

´
= n−1γ(t)− 2eKq(t)n−1b+ d2

Kα(t)
2b4. (25)

Thus, the asymptotic optimal bandwidth, bOPT (t) = argmin
h>0

AMSE
³
ΛPn (t)

´
,

is

bOPT (t) =

µ
eKq(t)

2d2
Kα(t)

2n

¶1/3

. (26)

For the asymptotically optimal bandwidth (26), AMSE
³
ΛPn (t)

´
becomes

n−1γ(t)− 3

24/3

µ
e4
Kq(t)

4

d2
Kα(t)

2

¶1/3

n−4/3.
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This expression shows that the version ΛPn (t) of the presmoothed Nelson-Aalen
estimator is more efficient than the classical Nelson-Aalen estimator. Indeed,
for the latter we have that

V ar(ΛNAn (t)) = n−1γ(t) +O
³
n−3/2

´
.

This makes clear that the second order term of the variance of the Nelson-
Aalen estimator is negligible with respect to the order n−4/3. Hence the second
order efficiency of ΛPn (t) with respect to Λ

NA
n (t) is shown. The validity of

the above expression for V ar(ΛNAn (t)) follows from the iid representation for
ΛNAn (t)−ΛF (t) together with the order of the moments of the remainder term
in there (see e.g. Lo, Mack and Wang (1989) or Gijbels and Wang (1993)).
Similar properties for ΛPn (t) are not easy to derive since the oP

¡
n−1/2

¢
term in (9) is not negligible enough to obtain such a result from our previous
discussion and Theorem 1. A deeper analysis of this term would be a rather
complicated task. However, the simulation results in Section 5 point out that
this second order efficiency is also present for ΛPn (t).

4 Plug-in bandwidth selection

Using the asymptotic expression (25), it is easy to obtain the following expres-
sion for the weighted asymptotic mean integrated squared error:

AMISEw
³
ΛPn (t)

´
= n−1

Z ∞

0

γ(t)w(t)dt− 2ekn−1b

Z ∞

0

q(t)w(t)dt

+d2
kb

4

Z ∞

0

α(t)2w(t)dt

where w is a positive weight function. Therefore, the optimal bandwidth, in the
sense of AMISEw

³
ΛPn (t)

´
, is

bOPT = argmin
b>0

AMISEw

³
ΛPn (t)

´
=

µ
ekQ

2d2
knA

¶1/3

where

Q =

Z ∞

0

q(t)w(t)dt

A =

Z ∞

0

α(t)2w(t)dt.

From now on, we will consider the following plug-in bandwidth selector of b

bb = Ã ek bQ
2d2
kn
bA
!1/3
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where

bQ = 1

n

nX
i=1

µ
1−Hn(Ti) + 1

n

¶−2

pn(Ti) (1− pn(Ti))w(Ti) (27)

bA = Z ∞

0

bα(t)2w(t)dt

bα(t) = tZ
0

µ
1−Hn(s) + 1

n

¶−1

(p00n(s)hn(s)/2 + p
0
n(s)h

0
n(s)) ds

and pn, p0n and p00n are the Nadaraya-Watson estimator of p and its Þrst and
second derivatives,

pn(t) =
1
n

P
Kg(t− Ti)δi

1
n

P
Kg(t− Ti)

=
ψn(t)

hn(t)
(28)

p0n(t) =
ψ0n(t)hn(t)− ψn(t)h0n(t)

hn(t)2
(29)

p00n(t) =
ψ00n(t)hn(t)2 − ψn(t)h00n(t)hn(t)− 2ψ0n(t)h0n(t)hn(t) + 2ψn(t)h0n(t)2

hn(t)3

(30)

where f(k) denotes the k-th derivative of f ,

ψ(k)
n (t) =

1

n

X
K(k)
g (t− Ti)δi

h(k)
n (t) =

1

n

X
K(k)
g (t− Ti)

K(k)
g (t) =

1

gk+1
K(k)

µ
t

g

¶
and the estimator p(k)

n (t), k = 1, 2, . . . , is the k-th derivative of pn(t). The
functions hn and h0nare the Parzen-Rosenblatt kernel estimators of the density
h and its Þrst derivative and Hn is the empirical distribution function of the Ti.
Typically, the effective calculation of bb requires the election of some pilot

bandwidths, g1 and g2, for the estimators bA and bQ, respectively. As a prelim-
inary step for the choice of the pilot bandwidths, some asymptotic expressions
for the mean squared errors of the dominant parts of bA and bQ will be obtained
in Subsection 6.2. The criterion to choose the pilot bandwidths g1 and g2 will
consist in minimizing the dominant part of those expressions.
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In the rest of this paper, we will make use of some further assumptions:
On the weight function w:

(W.1) w is non negative, with support within the interval (ε/2, t0) and twice
differentiable in [ε/2, t0], with continuous second derivative.

On the pilot bandwidths, g1 and g2:

(V.1) ng3
1

³
log 1

g1

´−3

→∞ and ng6
1→0.

(V.2) ng8/3
2 →∞ and ng4

2 → 0.

Our next result gives the rate of convergence of the plug-in bandwidth se-
lector when using the asymptotically optimal pilot bandwidths, as it will be
detailed in Subsection 6.2.

Theorem 5 Under conditions (K.1), (P.1), (P.2), (H.1), (W.1), (V.1) and
(V.2) and using the pilot bandwidths in (41) and (47) we have

bb− bOPT = OP ³n−11/15
´

and bb− bOPT
bOPT

= OP
³
n−2/5

´
.

Practical implementation of this plug-in bandwidth needs of selecting the
pilot bandwidths g1 and g2. To do this, we used equations (41) and (47) and
estimated the underlying functions H, h and p in (42), (43), (48) and (49) using
a lognormal parametric Þt for the Þrst two and a logistic Þt for the last one.

5 Simulations

Some simulations have been carried out in order to evaluate the practical per-
formance of the presmoothed Nelson-Aalen estimator with plug-in bandwidth
selector. To fulÞll condition (P.2), some shifted version of a Weibull distribu-
tion has been considered for the censoring time. For some ε > 0, we deÞne
C

d
= W ε (αG, βG), which means C − ε d

= W (αG, βG), while Y
d
= W (αF , βF ) ,

where W (α, β) denotes the Weibull distribution with shape parameter α and
scale parameter β, with density f(x) = βαxα−1 exp(−βxα), x > 0.
Table I collects the parameters used for these two distributions in the four

models considered here. The cumulative observable distribution function, H,
and the conditional probability of uncensoring, p, pertaining to these models
are plotted in Figure 1. The vertical dotted lines in this Figure indicate the left
and right endpoints of the support of the weight function, w, which has been
set to a constant within these limits. These endpoints have been selected to
meet the condition (W.1). For comparison reasons the unconditional censoring
probability for these models is very similar (between 0.32 and 0.34).
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[Table I about here]

[Figure 1 about here]

Given some estimator of the hazard function, Λn, we deÞne the weighted
mean integrated squared error as

MISEw(Λn) = E

·Z
(Λn (t)− Λ (t))2w (t) dt

¸
.

Using 500 samples of size n = 30, 200 and 500, the MISEw ratio:

MISEw(Λ
P
n )

MISEw(ΛNAn )

has been approximated by simulation for a grid in a wide range of possible band-
widths. These functions of the smoothing parameter are plotted in Figures 2�5
for the four models considered here. Values of the MISEw ratio below 1 indi-
cate that the presmoothed Nelson-Aalen estimator is better than the ordinary
Nelson-Aalen estimator for these bandwidths.

[Figure 2 about here]

[Figure 3 about here]

[Figure 4 about here]

[Figure 5 about here]

Figures 2�5 show that there are quite wide ranges of presmoothing param-
eters for which the new estimator is better than the classical Nelson-Aalen
estimator. The minimal MISEw ratio may be about 0.8 to 0.95, depending
on the model and the sample size. Typically, those optimal MISEw ratios get
closer to 1 as the sample size increases. Some special case is model 4, for which,
for any possible presmoothing factor in an extremely large range, the MISEw
ratio is smaller than 1. Figure 1 shows that, for model 3, the p function is
almost constant in the interval [0.6, 1.2] where almost all observed data fall, so
the Koziol-Green model nearly holds. This means that the ACL estimator of
Λ (see Abdushukurov (1987) and Cheng and Lin (1987)), that corresponds to

12



and inÞnitely large presmoothing parameter, is more efficient than the classical
Nelson-Aalen estimator.
In order to investigate the practical performance of the plug-in bandwidth

proposed in Section 4 we Þrst obtained this bandwidth selector, bb, for 500 sam-
ples of size n = 500 drawn from models 1-4 and computed a Parzen-Rosenblatt
kernel density estimation, using the Sheather-Jones bandwidth selector. These
curves, together with the optimal AMISEw bandwidth, bOPT , are plotted in
Figure 6. Although for models 1 and 3 bb presents a clear bias, it is a reasonable
selector for bOPT . The simulation results indicate that for model 1 the plug-in
selector is within 26% of deviation from the optimal bandwidth in 90% of the
cases. For model 3 the same statement is only valid within 100% of deviation.
This is not surprising since a large ßuctuation of the bandwidth around its op-
timal value gives a small loss in terms of MISEw (see the ßat shape of the
functions in Figure 4 around their minima).

[Figure 6 about here]

Similar empirical studies to those performed above for a range of presmooth-
ing parameters have been carried out for the presmoothing Nelson-Aalen estima-
tor with plug-in presmoothing parameter. TheMISEw ratio for the data-driven
presmoothed estimator, ΛP

n,b̂
, has been computed:

MISEw
³
ΛP
n,b̂

´
MISEw (ΛNAn )

.

Some Monte Carlo approximation of this quantity based on 500 samples has
been computed for models 1�4 and different sample sizes. These results are
collected in Table II. The Þgures in this table show that the presmoothed Nelson-
Aalen estimator with automatic plug-in bandwidth is about 5% to 12% more
efficient than the classical Nelson-Aalen estimator (in terms of MISEw) for
models 2�4. The results for model 1 are worse than for the other three. This is
possibly caused by the oversmoothing effect of the plug-in bandwidth that can
be observed in Figures 2 and 6.

[Table II about here]

6 Proofs

6.1 Proofs of the results of Section 2

Proof of Theorem 1
As to term (I) in (9), we have the well known iid representation

bΛH(s)− ΛH(s) = 1

n

nX
i=1

1(Ti ≤ s)−H(s)
1−H(s) + rn(s) (31)

13



where for t > 0 such that H(t) < 1:

sup
0≤s≤t

| rn(s) |= O(n−1 logn) a.s.

as n → ∞. This result follows from the more general representation in the
censored data case, due to Lo and Singh (1986). Using integration by parts
gives that

(I) =
1

n

nX
i=1

(g1(Ti)− g2(Ti)) +O(n
−1 logn) a.s.

with g1 and g2 as in (11) and (12).

For the term (II) in (9), we have, with hn(s) = n−1

nX
i=1

Kb(s− Ti):

pn(s)− p(s) =
n−1

nX
i=1

Kb(s− Ti)(δi − p(s))

h(s)
− (pn(s)− p(s))(hn(s)− h(s)) 1

h(s)
.

(32)

This gives that

(II) =
1

n

nX
i=1

g3(Ti, δi) + op

³
n−1/2

´
(33)

with g3 given by (13). The op
¡
n−1/2

¢
remainder term in (33) is obtained as

follows: ¯̄̄̄Z t

0

(pn(s)− p(s))(hn(s)− h(s)) 1

h(s)
dΛH(s)

¯̄̄̄

≤ t

1−H(t)
½
sup

0≤s≤t
| pn(s)− p(s) |

¾½
sup

0≤s≤t
| hn(s)− h(s) |

¾
. (34)

Under the given conditions, it follows from Lemma 1 and Theorem B in Mack
and Silverman (1982) that

sup
0≤s≤t

| pn(s)− p(s) |= Op
³
(nb)−1/2(log(1/b))1/2

´
and

sup
0≤s≤t

| hn(s)−E(hn(s)) |= Op
³
(nb)−1/2(log(1/b))1/2

´
.

By a standard Taylor expansion argument, it also follows that sup
0≤s≤t

| E(hn(s))−
h(s) |= Op

¡
b2
¢
. Therefore, the right hand side in (34) is op

¡
n−1/2

¢
.

14



For the term (III) in (9), we Þrst plug in representation (31), which yields

(III) =

Z t

0

(pn(s)− p(s))d
µ
Hn(s)−H(s)
1−H(s)

¶
+ o

¡
n−1 logn

¢
a.s.

=

Z t

0

pn(s)− p(s)
1−H(s) dHn(s)−

Z t

0

pn(s)− p(s)
1−H(s) dH(s)

+

Z t

0

(pn(s)− p(s))(Hn(s)−H(s))
(1−H(s))2 dH(s) + o(n−1 logn). (35)

The absolute value of the third term in the right hand side of (35) is bounded
above by

1

(1−H(t))2
½
sup

0≤s≤t
| pn(s)− p(s) |

¾½
sup

0≤s≤t
| Hn(s)−H(s) |

¾
= op

³
n−1/2

´

since Theorem A in Mack and Silverman (1982) gives that sup
0≤s≤t

| pn(s)−p(s) |=
op(1) and a classical empirical process result gives that sup

0≤s≤t
| Hn(s)−H(s) |=

Op
¡
n−1/2

¢
.

For the second term in the right hand side of (35), we have by (32) that it
equals

1

n

nX
i=1

Z t

0

Kb(s− Ti)(δi − p(s))
1−H(s) ds+ op

³
n−1/2

´
.

The Þrst term in (35) is equal to

1

n

nX
i=1

pn(Ti)− p(Ti)
1−H(Ti) 1(Ti ≤ t)

=
1

n2

nX
i,j=1

Kb(Ti − Tj)(δj − p(Ti))
(1−H(Ti))h(Ti) 1(Ti ≤ t) + op

³
n−1/2

´
by using representation (32) and the same bounds for sup

0≤s≤t
| pn(s)− p(s) | and

sup
0≤s≤t

| hn(s)− h(s) | as before. Introducing

ϕ(Ti, Tj , δj) =
Kb(Ti − Tj)(δj − p(Ti))
(1−H(Ti))h(Ti) 1(Ti ≤ t)

15



we have that

(III) =
1

n2

nX
i=1

nX
j=1

i6=j

ϕ(Ti, Tj , δj)

− 1

n

nX
i=1

Z t

0

Kb(s− Ti)(δi − p(s))
1−H(s) ds+ op

³
n−1/2

´

since
1

n2

nX
i=1

ϕ(Ti, Ti, δi) = Op

µ
1

n3/2b

¶
= op

³
n−1/2

´
, because it is

1

n2b
times a

sum of zero mean, iid random variables with Þnite variance. By symmetrization
of the kernel ϕ, i.e. by putting

ψ(Ti, δi, Tj , δj) =
1

2
(ϕ(Ti, Tj , δj) + ϕ(Tj , Ti, δi)),

we obtain that

(III) = Un − 1

n

nX
i=1

Z t

0

Kb(s− Ti)(δi − p(s))
1−H(s) ds+ op

³
n−1/2

´
(36)

where Un is the U-statistic with symmetric kernel ψ, i.e.

Un =

µ
n
2

¶−1 X
1≤i<j≤n

ψ(Ti, δi, Tj , δj).

For the Hajek projection of Un, we have

G(T1, δ1) = E[ψ(T1, δ1, T2, δ2) | T1, δ1]

=
1

2
{E(ϕ(T1, T2, δ2) | T1) +E(ϕ(T2, T1, δ1) | T1, δ1)}

:=
1

2
{G1(T1) +G2(T1, δ1)} .

We calculate

G1(t1) = E(ϕ(T1, T2, δ2) | T1 = t1)

= E

·
Kb(t1 − T2)[δ2 − p(t1)]
(1−H(t1))h(t1) 1{t1 ≤ t}

¸
=

1{t1 ≤ t}
(1−H(t1))h(t1)

Z
Kb(t1 − t2){E[δ2 | T2 = t2]− p(t1)}h(t2)dt2

=
1{t1 ≤ t}

(1−H(t1))h(t1)
Z
Kb(t1 − t2)[p(t2)− p(t1)]h(t2)dt2
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and

G2(t1, d1) = E(ϕ(T2, T1, δ1) | T1 = t1, δ1 = d1)

= E

·
Kb(T2 − t1)

(1−H(T2))h(T2)
[d1 − p(T2)]1{T2 ≤ t}

¸
=

Z
Kb(t2 − t1)d1 − p(t2)

1−H(t2) I(t2 ≤ t)dt2.

From U -statistic theory, it follows that

Un = −θn + 1

n

nX
i=1

G1(Ti) +
1

n

nX
i=1

G2(Ti, δi) + op
³
n−1/2

´
where

θn = E(ψ(T1, δ1, T2, δ2))

and, from (36),

(III) = −θn + 1

n

nX
i=1

G1(Ti) + op

³
n−1/2

´
.

To show that θn = O(b2), note that by Taylor expansion it is easy to see that
E[G1(T1)] = O(b

2), so that we only have to show that E[G2(T1, δ1)] = O(b
2).

Use p(T1) = E[δ1 | T1] to obtain, for h small enough,

E[G2(T1, δ1)] = −b
Z t−bL

0

p0(t1)
1−H(t1)

"Z L

−L
vK(v)dv

#
dH(t1)

−h
Z t+bL

t−bL

p0(t1)
1−H(t1)

"Z (t−t1)/b

−L
vK(v)dv

#
dH(t1) +O(b

2)

= O(b2)

Similarly, it follows thatE[G2
1(T1] = O(b2), so that we can conclude that (III) =

op
¡
n−1/2

¢
(since nb4 → 0).

Proof of Lemma 2
Using the fact that p(u) = E(δ1 | T1 = u), we have

E[g3(T1, δ1)] = E

·Z t

0

Kb(s− T1)(δ1 − p(s))
1−H(s) ds

¸
=

Z t

0

Z
Kb(s− u)(p(u)− p(s))

1−H(s) h(u)du ds

=

Z t

0

Z
K(v)(p(s− bv)− p(s))

1−H(s) h(s− bv)dv ds.

17



Under the smoothness conditions of (C), performing a Taylor expansion of p(s−
bv) and h(s − bv), and using that

Z L

−L
K(v)dv = 1 and

Z L

−L
vK(v)dv = 0, we

obtain

E[g3(T1, δ1)][= dKα(t)b
2 + o(b2)

with dK and α(t) given in (14) and (15).
The derivation of (18) and (19) is straightforward. For Var[g3(T1, δ1)] we

have the following:

E[g2
3(T1, δ1)]

= E

·ZZ
K(u1)[δ1 − p(T1 + bu1)]K(u2)[δ1 − p(T1 + bu2)]

(1−H(T1 + bu1))(1−H(T1 + bu2))

× 1{T1 ≤ (t− bu1) ∧ (t− bu2)}du1du2

i
=

ZZZ
K(u1)K(u2){p(t1)− p(t1)[p(t1 + bu1) + p(t1 + bu2)] + p(t1 + bu1)p(t1 + bu2)}

(1−H(t1 + bu1))(1−H(t1 + bu2))

×1{t1 ≤ t− b(u1 ∨ u2)}dH(t1)du1du2

=

ZZZ
p(t1)(1− p(t1))h(t1)

(1−H(t1))2 1{t1 ≤ t− b(u1 ∨ u2)}K(u1)K(u2)du1du2 +O(b
2)

=

ZZ
Q(t− b(u1 ∨ u2))K(u1)K(u2)du1du2 +O(b

2)

where Q(s) =
Z s

0

q(v)dv. NowZ Z
Q(t− b(u1 ∨ u2))K(u1)K(u2)du1du2

= 2

Z L

−L

Z u2

−L
Q(t− bu2)K(u1)K(u2)du1du2

= 2

Z L

−L
Q(t− bu2)K(u2)K(u2)du2

= 2Q(t)

Z L

−L
K(u2)K(u2)du2 − 2bq(t)

Z L

−L
u2K(u2)K(u2)du2 +O(b

2)

= Q(t)K2(u2)
¯̄L
−L − 2bq(t)eK +O(b2)

=

Z t

0

p(v)(1− p(v))
(1−H(v))2 dH(v)− 2bq(t)eK +O(b2).

The derivation of (21) is straightforward. For (22), we have

E[g1(T1)g3(T1, δ1)] = p(t)

Z t

0

Z t

0

Kh(s− u)(p(u)− p(s))
1−H(s) h(u)duds

18



and this is O(b2) by Taylor expansion arguments. Similarly for (23).

Proof of Theorem 3. From expression (10) in Theorem 1 it follows that

nVar
³
ΛPn (t)− ΛF (t)

´
= Var[g1(T1)] +Var[g2(T1)]

+Var[g3(T1, δ1)]− 2Cov(g1(T1), g2(T1))

+2Cov(g1(T1), g3(T1, δ1))− 2Cov(g2(T1), g3(T1, δ1)).

Now use the expressions in Lemma 2 and some extra algebra. ¤

6.2 Auxiliary results for Section 4

Let us mention that there exist similar expressions to (28), (29) and (30) but
for populational quantities. Indeed,

p(t) =
ψ(t)

h(t)

p0(t) =
ψ0(t)h(t)− ψ(t)h0(t)

h(t)2
(37)

p00(t) =
ψ00(t)h(t)2 − ψ(t)h00(t)h(t)− 2ψ0(t)h0(t)h(t) + 2ψ(t)h0(t)2

h(t)3
(38)

where h is the density function of the observed lifetime and ψ = ph.
Assumption (P.2), stated in Section 2, warranties that for any t in the in-

terval [0, ε/2] there exists some (common) value for the bandwidth used in the
estimators p00n(s) and p0n(s) in bα(t) such that for bandwidths smaller than that
value, bα(t) = 0, with probability 1. For this reason when studying the asymp-
totic behaviour of bA we will consider its asymptotic equivalent term
bAε/2 =

Z ∞

ε0

µZ t

ε0

¡
1−Hn(s) + n−1

¢−1
(p00n(s)hn(s)/2 + p

0
n(s)h

0
n(s))

¶2

dsw(t)dt

where ε0 = ε
2 .

In the rest of this subsection some lemmas and theorems useful to prove
Theorem 5 will be stated. The proofs of these, as well as of some auxiliary
results for them, are omitted here. They can be found in the Ph.D. Dissertation
of López-de-Ullibarri and in the technical report by Cao, López-de-Ullibarri,
Janssen and Veraverbeke (2003).
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Lemma 6 Under conditions (K.1), (H.1), (W.1) and (V.1),

bAε/2 = bA1 + oP

³ bA1

´
where

bA1 =
1

4

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

× ¡ψ00n(r)− pn(r)h00n(r)¢ ¡ψ00n(s)− pn(s)h00n(s)¢w(t)drdsdt. (39)

The term bA1 has still to be linearized, since the estimator pn has a ran-
dom denominator. To obtain such a linearization the expression ψ00n − pnh00n is
factorized as follows

ψ00n − pnh00n = ψ00 − ph00 + (ψ00n − ψ00)− p(h00n − h00)
−(ψn − ψ)h00h−1 + p(hn − h)h00h−1

+(pn − p)((hn − h)h00h−1 − (h00n − h00)) (40)

where we have used the following relation

pn − p = (ψn − ψ)h−1 − p(hn − h)h−1 − (pn − p)(hn − h)h−1.

Substituting (40) in expression (39) we obtain

bA1 =
1

4

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

× ¡ψ00(r)− p(r)h00(r) + (ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))
−(ψn(r)− ψ(r))h00(r)h(r)−1 + p(r)(hn(r)− h(r))h00(r)h(r)−1

+(pn(r)− p(r))((hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r)))
¢

× ¡ψ00(s)− p(s)h00(s) + (ψ00n(s)− ψ00(s))− p(s)(h00n(s)− h00(s))
−(ψn(s)− ψ(s))h00(s)h(s)−1 + p(s)(hn(s)− h(s))h00(s)h(s)−1

+(pn(s)− p(s))((hn(s)− h(s))h00(s)h(s)−1 − (h00n(s)− h00(s)))
¢
w(t)drdsdt.

Now, using (37) and (38)

A =

Z ∞

0

µZ t

0

(1−H(s))−1 (p00(s)h(s)/2 + p0(s)h0(s)) ds
¶2

w(t)dt

=
1

4

Z ∞

0

µZ t

0

(1−H(s))−1
¡
ψ00(s)− p(s)h00(s)¢ ds¶2

w(t)dt

=
1

4

Z ∞

0

Z t

0

Z t

0

(1−H(r))−1(1−H(s))−1

× ¡ψ00(r)− p(r)h00(r)¢ ¡ψ00(s)− p(s)h00(s)¢w(t)drdsdt
20



which implies

bA1 = A+

Z ∞

ε0

Z t

ε0
(1−H(r))−1

¡
(ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))

−(ψn(r)− ψ(r))h00(r)h(r)−1 + p(r)(hn(r)− h(r))h00(r)h(r)−1
¢
α(t)w(t)drdt

+
1

4

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

× ¡(ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))
−(ψn(r)− ψ(r))h00(r)h(r)−1 + p(r)(hn(r)− h(r))h00(r)h(r)−1

¢
× ¡(ψ00n(s)− ψ00(s))− p(s)(h00n(s)− h00(s))
−(ψn(s)− ψ(s))h00(s)h(s)−1 + p(s)(hn(s)− h(s))h00(s)h(s)−1

¢
w(t)drdsdt

+

Z ∞

ε0

Z t

ε0
(1−H(r))−1(pn(r)− p(r))

× ¡(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))
¢
α(t)w(t)drdt

+
1

2

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

× ¡(ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))
−(ψn(r)− ψ(r))h00(r)h(r)−1 + p(r)(hn(r)− h(r))h00(r)h(r)−1

¢
×(pn(s)− p(s))

¡
(hn(s)− h(s))h00(s)h(s)−1 − (h00n(s)− h00(s))

¢
w(t)drdsdt

+
1

4

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

×(pn(r)− p(r))
¡
(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))

¢
×(pn(s)− p(s))

¡
(hn(s)− h(s))h00(s)h(s)−1 − (h00n(s)− h00(s))

¢
w(t)drdsdt.

Repeating the linearization of the second but last summand,Z ∞

ε0

Z t

ε0
(1−H(r))−1(pn(r)− p(r))

× ¡(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))
¢
α(t)w(t)drdt

=

Z ∞

ε0

Z t

ε0
(1−H(r))−1

¡
(ψn(r)− ψ(r))h(r)−1 − p(r)(hn(r)− h(r))h(r)−1

¢
× ¡(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))

¢
α(t)w(t)drdt

−
Z ∞

ε0

Z t

ε0
(1−H(r))−1(pn(r)− p(r))(hn(r)− h(r))

× ¡(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))
¢
α(t)w(t)drdt.

DeÞne

bA11 =

Z ∞

ε0

Z t

ε0
(1−H(r))−1

¡
(ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))

−h00(r)h(r)−1 ((ψn(r)− ψ(r))− p(r)(hn(r)− h(r)))
¢
α(t)w(t)drdt
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bA12 =
1

4

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

× ¡(ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))
−h00(r)h(r)−1 ((ψn(r)− ψ(r))− p(r)(hn(r)− h(r)))

¢
× ¡(ψ00n(s)− ψ00(s))− p(s)(h00n(s)− h00(s))
−h00(s)h(s)−1 ((ψn(s)− ψ(s))− p(s)(hn(s)− h(s)))

¢
w(t)drdsdt

bA13 =

Z ∞

ε0

Z t

ε0
(1−H(r))−1h(r)−1 ((ψn(r)− ψ(r))− p(r)(hn(r)− h(r)))

× ¡(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))
¢
α(t)w(t)drdt

and

bA14 =
1

2

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

× ¡(ψ00n(r)− ψ00(r))− p(r)(h00n(r)− h00(r))
−h00(r)h(r)−1 ((ψn(r)− ψ(r))− p(r)(hn(r)− h(r)))

¢
×(pn(s)− p(s))

¡
(hn(s)− h(s))h00(s)h(s)−1 − (h00n(s)− h00(s))

¢
w(t)drdsdt

−
Z ∞

ε0

Z t

ε0
(1−H(r))−1(pn(r)− p(r))(hn(r)− h(r))

× ¡(hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r))
¢
α(t)w(t)drdt

+
1

4

Z ∞

ε0

Z t

ε0

Z t

ε0
(1−H(r))−1(1−H(s))−1

×(pn(r)− p(r))((hn(r)− h(r))h00(r)h(r)−1 − (h00n(r)− h00(r)))
×(pn(s)− p(s))((hn(s)− h(s))h00(s)h(s)−1 − (h00n(s)− h00(s)))w(t)drdsdt

to obtain the representationbA1 −A = bA11 + bA12 + bA13 + bA14.

Using a more compact notation, deÞning eA1 = bA1 − bA14, it is straightforward
to check that bA1 −A = eA1 −A+ bA14.

Now, the main result for mean squared error of eA1 can be stated.

Theorem 7 Under conditions (K.1), (P.1), (P.2), (H.1), (W.1) and (V.1),

MSE
³ eA1

´
= AMSE

³ eA1

´
+O

¡
g6

1

¢
+ o

¡
n−1g−1

1

¢
+ o

¡
n−2g−6

1

¢
where

AMSE
³ eA1

´
=
¡
C1g

2
1 +C2n

−1g−3
1

¢2
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and, thus, the bandwidth that minimizes AMSE
³ eA1

´
is

g1,AMSE = Cn
−1/5 (41)

where

C =


³
−C2

C1

´1/5

, if C1 < 0³
3C2

2C1

´1/5

, if C1 > 0

C1 =
1

2
dK

Z ∞

ε

Z t

ε

(1−H(r))−1
³
p(4)(r)h(r) + 4p(3)(r)h0(r) + 5p00(r)h00(r)

+4p0(r)h(3)(r)− 2p0(r)h(r)−1h0(r)h00(r)
´
αw(t)drdt (42)

and

C2 =
1

4
cK0

Z ∞

ε

(1−H(x))−2 (1− p(x)) p(x)h(x)w(x)dx. (43)

The term bA14 can be proved to be negligible as stated in the following lemma.

Lemma 8 Under the conditions (K.1), (P.1), (P.2), (H.1), (W.1) and (V.1),
we have

bA14 = oP
¡
n−1g−3

1

¢
.

It remains to study the estimator of Q proposed in (27). First of all let us
state some result that gives its dominant term.

Lemma 9 Under conditions (K.1), (H.1), (W.1).and (V.2), it holds

bQ = bQ1 + oP

³ bQ1

´
where

bQ1 =
1

n

nX
i=1

(1−H(Ti))−2 pn(Ti) (1− pn(Ti))w(Ti).

For the term bQ1, the representation

pn (1− pn) = p (1− p) + (pn − p) (1− 2p)− (pn − p)2
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gives

bQ1 =
1

n

nX
i=1

p(Ti) (1− p(Ti))w(Ti)

+
1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti)) (1− 2p(Ti))w(Ti)

− 1
n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti))2 w(Ti) (44)

The last two summands of (44) can be easily linearized using (32):

1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti)) (1− 2p(Ti))w(Ti)

=
1

n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti)) (1− 2p(Ti))h(Ti)−1w(Ti)

− 1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti)) (hn(Ti)− h(Ti)) (1− 2p(Ti))h(Ti)−1w(Ti)

(45)

and

1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti))2w(Ti)

=
1

n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti))2h(Ti)−2w(Ti)

− 2

n

nX
i=1

(ψn(Ti)− p(Ti)hn(Ti)) (pn(Ti)− p(Ti))

× (hn(Ti)− h(Ti)) (1−H(Ti))−2 h(Ti)
−2w(Ti)

+
1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti))2 (hn(Ti)− h(Ti))2h(Ti)−2w(Ti). (46)

The same procedure is repeated for the second summand of (45), in order to
obtain a linearized term with two factors of the type (ψn − phn) or (hn − h), as
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in the Þrst summand of (46),

1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti)) (hn(Ti)− h(Ti)) (1− 2p(Ti))h(Ti)−1w(Ti)

=
1

n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti))(hn(Ti)− h(Ti)) (1− 2p(Ti))h(Ti)−2w(Ti)

− 1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti)) (hn(Ti)− h(Ti))2 (1− 2p(Ti))h(Ti)−2w(Ti).

DeÞne

Q11 =
1

n

nX
i=1

(1−H(Ti))−2 p(Ti) (1− p(Ti))w(Ti)

bQ12 =
1

n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti)) (1− 2p(Ti))h(Ti)−1w(Ti)

bQ13 = − 1
n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti))2h(Ti)−2w(Ti)

− 1
n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti))(hn(Ti)− h(Ti))

× (1− 2p(Ti))h(Ti)−2w(Ti)

and

bQ14 =
1

n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti)) (hn(Ti)− h(Ti))2 (1− 2p(Ti))h(Ti)−2w(Ti)

+
2

n

nX
i=1

(1−H(Ti))−2 (ψn(Ti)− p(Ti)hn(Ti)) (pn(Ti)− p(Ti))

×(hn(Ti)− h(Ti))h(Ti)−2w(Ti)

− 1
n

nX
i=1

(1−H(Ti))−2 (pn(Ti)− p(Ti))2 (hn(Ti)− h(Ti))2h(Ti)−2w(Ti)

to obtain the representationbQ1 −Q = Q11 −Q+ bQ12 + bQ13 + bQ14,

or, equivalently, deÞning eQ1 = bQ1 − bQ14,bQ1 −Q = eQ1 −Q+ bQ14.

Now, the mean squared error of eQ1 is given in the next result.
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Theorem 10 Under conditions (K.1), (P.1), (H.1), (W.1) and (V.2),

MSE
³ eQ1

´
= AMSE

³ eQ1

´
+O

¡
g6

2

¢
+ o

¡
n−1g−1

2

¢
+ o

¡
n−2g−6

2

¢
where

AMSE
³ eQ1

´
=
¡
D1g

2
2 +D2n

−1g−1
2

¢2

and the smoothing parameter that minimizes AMSE
³ eQ1

´
is

g2,AMSE = Dn
−1/3 (47)

where

D =


³
D2

2D1

´1/3

, if D1 < 0³
−D2

D1

´1/3

, if D1 > 0

D1 = dK

Z ∞

ε0
(1−H(x))−2 (1− 2p(x)) (p0(x)h0(x) + 1

2
p00(x)h(x))w(x)dx (48)

and

D2 = −cK
Z ∞

ε0
(1−H(x))−2 p(x) (1− p(x))w(x)dx. (49)

The term bQ14 is proved to be negligible in the following result.

Lemma 11 Under conditions (K.1), (P.1), (H.1), (W.1).and (V.2),

bQ14 = OP

³
n−3/2g

−3/2
2 log (1/g2)

3/2
´
.

7 Acknowledgments

Research partly supported by the MCyT Grant BFM2002-00265 (European
FEDER support included) and XUGA Grant PGIDT00PXI10501PN for the
Þrst two authors and by the International ScientiÞc and Technological Cooper-
ation Grant (BIL 00/28, Flemish Community, Belgium) and the Interuniversity
Attraction Poles Research Network P5/24 of the Belgian State for the last two
authors.

References

[1] Aalen, O. O.(1978). Nonparametric inference for a family of counting pro-
cesses. Ann. Statist., 6, 701-726.

26



[2] Abdushukurov, A. A. (1987). Estimation of the probability density and
intensity function of the Koziol-Green model of random censoring. Sankhya
Ser. A, 48, 150-168.

[3] Cao, R., López-de-Ullibarri, I., Janssen, P. and Veraverbeke, N. (2003).
Presmoothed Kaplan-Meier and Nelson-Aalen estimators. Technical Report
#03-01, Department of Statistics and Operations Research, University of
Santiago de Compostela. [www http://eio.usc.es/pub/reports.html]

[4] Cheng, P. E. and Lin, G. D. (1987). Maximum likelihood estimation of
a survival function under the Koziol-Green proportional hazards model.
Statist. Probab. Lett., 5, 75-80.

[5] Dikta, G. (1998). On semiparametric random censorship models. J. Statist.
Plann. Inference, 66, 253-279.

[6] Gijbels, I. and Wang, J. L. (1993). Strong representations of the survival
function for truncated and censored data with applications. J. Multivariate
Anal., 47, 210-229.

[7] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation for incom-
plete observations. J. Amer. Statist. Assoc., 53, 457-481.

[8] Koziol, J. A. and Green, S. B. (1976). A Cramér-von Mises statistic for
randomly censored data. Biometrika, 63, 465�474.

[9] Lo, S. H., and Singh, K. (1986). The product-limit estimator and the boot-
strap: some asymptotic representations. Probab. Theory Rel. Fields, 71,
455-465.

[10] Lo, S. H., Mack, Y. P. and Wang, J. L. (1989). Density and hazard rate
estimation for censored data via strong representation of the Kaplan-Meier
estimator. Probab. Theory Rel. Fields, 80, 461-473.

[11] Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform con-
sistency of kernel regression estimates. Z. Wahrscheinlichkeitstheorie verw.
Gebiete, 61, 405-415.

[12] Nelson, W. (1972). Theory and applications for hazard plotting for censored
failure data. Technometrics, 14, 945-965.

[13] Watson, G. S. and Leadbetter, M. R. (1964a). Hazard analysis I.
Biometrika, 51, 175-184.

[14] Watson, G. S. and Leadbetter, M. R. (1964b). Hazard analysis II. Sankhya
Ser. A, 26, 101-116.

[15] Ziegler, S. (1995). Ein modifizierter Kaplan-Meier Schätzer. Diplomarbeit,
University of Gießen.

27



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model  1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model  2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model  3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model  4

Figure 1. Functions H (thin line) and p (thick line) for models 1�4.
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Figure 2. MISEw ratio of ΛPn with respect to Λ
NA
n for n = 30 (thin line),

n = 200 (medium line) and n = 500 (thick line) for model 1.
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Figure 3. MISEw ratio of ΛPn with respect to Λ
NA
n for n = 30 (thin line),

n = 200 (medium line) and n = 500 (thick line) for model 2.
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Figure 4. MISEw ratio of ΛPn with respect to Λ
NA
n for n = 30 (thin line),

n = 200 (medium line) and n = 500 (thick line) for model 3.
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Figure 5. MISEw ratio of ΛPn with respect to Λ
NA
n for n = 30 (thin line),

n = 200 (medium line) and n = 500 (thick line) for model 4.
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Figure 6. Kernel estimation of the density of the plug-in bandwidth selector, �b,
for models 1-4 (solid line) and bOPT bandwidth (dotted vertical line).
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Table I. Parameters for the distribution of the lifetime (W (αF , βF )) and the
censoring variable (W ε (αG, βG)).

Model αF βF αG βG ε
1 3 1 7 1 0.1
2 6 1 7 1 0.1
3 8 1 7 1 0.1
4 10 1 7 1 0.1

Table II. MISEw ratio of the presmoothed Nelson-Aalen estimator with
plug-in bandwidth and the classical Nelson-Aalen estimator.

Model n = 30 n = 200 n = 500
1 1.086 1.032 1.015
2 0.931 0.951 0.967
3 0.877 0.871 0.887
4 0.854 0.906 0.948
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