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SUMMARY. In many epidemiological studies time to event data are clustered
and the physiological relationship between (time dependent) covariates and the log
hazard is often not linear as assumed in the Cox model. Introducing frailties in
the Cox model can account for the clustering of the data and smoothing splines
can be used to describe nonlinear relations. These two extensions of the Cox model
are introduced jointly and it is shown how penalized partial likelihood techniques
can be used to fit the extended model. We demonstrate the need for such a model
to study the relation between the physiological covariates milk ureum and protein
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concentration and the log hazard of first insemination in dairy cows, with the farms

as clusters.

KEY WORDS: Penalized partial likelihood; frailty model; smoothing splines; time

to first insemination; dairy cows.

1 Introduction

One of the essential variables in maximizing the milk production in a dairy farm is
the intercalving time (Dijkhuizen et al., 1997). A long intercalving time corresponds
to low milk production at the end of the lactation. Since the widespread use of
artificial insemination, the time to first insemination has been recognized as the
most important variable influencing the intercalving time of a cow (Ferguson and
Galligan, 1999). A cow is inseminated when it shows signs of being receptive (often
based on heat detection). It is thus important to study whether particular milk
parameters that are followed up on a regular basis can be used to predict time to
first insemination in order to track down fertility problems so that remedial measures
can be taken. Two such covariates, the milk ureum and protein concentration, are
investigated here.

A standard way to study the relation between the time to first insemination (possibly
censored) and milk ureum or protein concentration (time dependent covariates) is
to model the log hazard as the sum of a baseline log hazard and a linear term in

the covariate; this is the Cox model (Cox, 1972). The assumption that the log



hazard depends on the covariate in a linear way is often not true when investigating
physiological phenomena. It is therefore important to test the linearity assumption
and, if instrumental, to allow for a more complex dependence of the log hazard
on the covariate through a function g(.). One such approach is to define g(.) as a
smoothing spline. A further extension of the Cox model is obtained by taking into
account the hierarchical (clustered) structure of the data, e.g., in our study dairy
cows are nested within farms. This clustering can be taken into account by adding
a random effect as extra term. Note that for g(z) = oz, the latter model is the
shared frailty model (Klein, 1992). The farm is taken to be a random effect rather
than a fixed effect because the individual farm is not of interest by itself; interest
is rather in the heterogeneity between farms. Furthermore, introducing many fixed
effects in a model might lead to convergence problems, especially if there is little
variation in the covariates between farms (McGilchrist and Aisbett, 1991).

An estimate of the risk parameter (the regression coefficient ;) in the Cox model
is the maximizer of the partial likelihood. To estimate the parameters in the Cox
model extended with the smoothing spline, penalized partial likelihood methodology
is used as estimation tool (Gray, 1992). For the shared frailty model with a gamma
distributed frailty, estimates of the parameters can be obtained by the use of the EM
algorithm. An alternative and elegant estimation tool is penalized partial likelihood
maximization. See Therneau et al. (2003) for a review and Therneau and Grambsch
(2000) for a detailed discussion.

In this paper we consider the extension of the Cox model where the dependence



of the log hazard on the covariate is modeled as a spline function and where we
allow for frailties. It will be discussed how the parameters in this model can be
estimated using penalized partial likelihood methods. Details on specific penalized
partial likelihood features for frailties and smoothing splines will be given.

For the study on insemination in dairy cows it is shown that it is essential to include
frailties and smoothing splines in one single model to arrive at a valid statistical
analysis of the data.

Finally, note that penalized partial likelihood methods have a long history in models
with normally distributed error terms: see Henderson (1953) for hierarchical models
and Wegman and Wright (1983) for smoothing splines. Penalized partial likelihood

methods for (censored) survival data are more recent (Gray, 1992).

2 The ordinary Cox model and its two extensions

We first introduce the ordinary Cox model with the corresponding partial likelihood
for our data example. The data consist of cows clustered in different farms. A cow
is followed-up for several time varying milk covariates and the objective is to model
the time to first insemination as a function of these time varying covariates.

The most appropriate model to describe time to event data with time varying cova-

riates is the Cox model

hij(t) = ho(t) exp{Boz;;(t)} (1)



where h;;(t) is the hazard rate at time ¢ for cow j from farm 4, h(t) is the unspecified
baseline hazard at time ¢, z;;(t) is the value for the covariate at time ¢ for cow j
from farm ¢ and ([ is the linear change of the log hazard rate with one unit change
in the covariate.

The relevant information for an individual cow j (j = 1,... ,n;) from farm ¢ (i =

1,...,n) is contained in the vector

{tij, 0ij» a5 (Eign), - -+ 5 i (biguy, )}
with ¢;; the time to first insemination or censoring, d;; the censoring indicator and
zii(tijn), - - - ,x,-j(tijlij) the values for the covariates recorded at times #;;1,... , ;-
As the covariate is only determined once a month, its value at a particular time-
point ¢, z;;(t), is determined by linear interpolation based on the measurements
immediately before and after time t.

An estimate for the parameter of interest, 3y, can be found by maximizing the partial

likelihood

ﬁ ﬁ exp{fo w;(ti;)}

il BDY exp{ Bozqs(tij)}
R(t;;)
where R(t;;) denotes summation over all (g, s) indices for which ¢,, > t;;, i.e. the
sum over all animals in the risk set at time ¢;;.
Up to now, it has been assumed that the effect of the time varying covariates on

the hazard of first insemination is linear on the log scale. In practice, however,



such relationships are often not linear and therefore it is worthwhile to test for
nonlinearity and, in the case of nonlinearity, to be able to depict the evolution of the
hazard of first insemination as a function of the milk ureum or protein concentration.
Thus the linear relationship of the time varying covariate, described by [Byz;;(t) is

replaced by a flexible function g{z;;(¢)} resulting in

hij(t) = ho(t) exp [g{i; (£)}] - (2)

In section 3, one particular model with such a flexible function approach that can
be fitted by penalized partial likelihood will be given.

A further extension of the Cox model is needed as cows are clustered within farms.
The clustering can be accounted for by adding the farm as a frailty factor leading

to

hij(t) = ho(t)u; exp{Bowi;(t) } (3)

where w; is the frailty for farm ¢ assumed to be a realization of a frailty density.

Here the one parameter gamma density

w exp(3)

fo(u) = Q%F(%)

is used for its mathematical convenience.



This extended model thus contains one more parameter, 6, the variance of the
frailties, describing the heterogeneity between farms. In section 4, the penalized
partial likelihood approach to fit this model will be described in detail.

The final model combines these two extensions in one model

hij(t) = ho(t)u; exp [g{z;(t)}] . (4)

It will be shown in section 5 how penalized partial likelihood can be used to fit this
model; and in section 6 the relevance of this model will be demonstrated for the

milk production case study.

3 Penalized partial likelihood for smoothing splines

As discussed in Sleeper and Harrington (1990) and Gray (1992) a spline function
is a natural choice for approximating the covariate transformation g{z;;(¢t)}. More
precisely, with By(z), ... , Bxi4(x) the cubic B-spline basis for the space of the cubic

splines with K prespecified knots, we take

K+2

g(x) = Box + 2_: BB ().

We only include K + 2 (of the K + 4) basis splines because the constant term
can be absorbed in the baseline hazard and because the linear term is specified
separately. Any of the two B-spline functions can be dropped, provided the resulting

parameterization is of full rank.



Sleeper and Harrington (1990) use the partial likelihood to estimate the parameters.
Since often interest is in alternatives that deviate from the linear term in a smooth
way, Gray (1992) subtracts the penalty term A [{g”(z)}?dz () times the integrated

curvature of g), i.e., he considers the penalized partial likelihood

65,08) =1og T T1 |=2 B8l |y flgepa: )

iZ1jo1 | 2 exp [9{2gs(ti5)}]
R(ti;)

with B = (B, . .. , Bx+2) the parameters defining the function g.

The idea is that we decrease the likelihood by subtracting the term that accounts
for the roughness of the function g. The extra factor A is a tuning parameter for
the penalty we impose; it governs the trade-off between the likelihood term and the
penalty term. For a fixed value of the smoothing parameter A the penalized partial
likelihood can be maximized to obtain parameter estimates.

The smoothing parameter A can be selected by the user, but it is more appropriate
to rely on methods that automatically select the value of the smoothing parameter,
such as cross-validation (Verweij and van Houwelingen, 1993) or the minimisation
of Akaike’s Information Criterion (AIC) (Akaike, 1973). A corrected AIC criterion

(Hurvich et al., 1998) is used in the example to determine the smoothing parameter.

4 Penalized partial likelihood for frailty models

The addition of frailties to the Cox model leads to unobserved entities in the model
which also prevail in the partial likelihood. It is however assumed that these frailties
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come from a gamma density with mean equal to 1 and unknown heterogeneity
parameter 6. Therefore, a penalty is added to the partial likelihood that decreases
with the distance of the frailty from one, the mean of the frailty density.

The penalty term on the log scale in the case of the gamma density is given by

- YZ; log{ fu (ui)}-

The penalized partial likelihood for the frailty model is then given (McGilchrist,

1993) by

r P nni u; expifo w45(ti;) }
Ppl(ﬁ(%u? ) 0g zl_Iljl_‘[l Z ulep{ﬁoxqs(tij)}

tij

3 log{ fo(u)}

(6)
For fixed values of the heterogeneity parameter #, maximization of the penalized
partial likelihood criterion leads to the same parameter estimates for the fixed effects
[ and the frailties u; as the EM-algorithm (Therneau et al., 2003). For a particular
value of 0, estimates for the fixed effects, frailties and baseline hazards can thus be
obtained by maximizing the penalized partial likelihood.
To make clear that we keep 6 fixed in (80, u,0), we write £}(Go,w | 0); we
further use Bg and @’ to denote the values of 3y and w that maximize, for the given
value of 6, Kpil(ﬁo, u | ). We now consider the profile penalized partial likelihood
£p§1(ﬁg .4’ | 0) as a function of #. From the discussion in section 6 it will be seen

that the estimate of 6 obtained from the EM-algorithm can not be obtained by
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maximizing the profile penalized partial likelihood. The profile penalized partial
likelihood is indeed increasing with increasing values of 6.

A way to obtain an estimate for 6 that corresponds with the EM-estimate is to
replace the profile penalized partial likelihood by the profile marginal likelihood of 6
and to estimate # as the argument that maximizes this profile marginal likelihood.
The marginal likelihood is obtained by integrating out the frailties from the joint
density of the observed event/censoring time and the frailties (Klein, 1992) and is

of form

Cbeg (0,10(), B0) = >

=1

1+60>" Hy(tiy)

=1

D,logf —logI' (1/0) +logT'(1/6 + D;)

+ Z 0ij{Bowj(tij) + log ho(tij)}

=1

—(1/6 + D;)log

with D; the number of events at farm ¢ and H;;(.) the cumulative hazard for animal
j in farm i.

To arrive at the profile marginal likelihood we replace [y, ho(.) and H,;(.) in this
general expression for the marginal likelihood by their estimates Bg, ﬁg() and ﬁfj()
In terms of the estimates ﬁg and @’ we can give explicit expressions for the estimated
baseline hazard and cumulative baseline hazard. With e the total number of ordered
distinct event times #(;) < ... < t() and with d) the number of events at time

twy, k =1,... e, define (as in Duchateau et al. (2002))
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~ d k)
i (ta) = - . (7)
Z ’&2 eXp{ﬂgmqs (t(k))}

R(t(x))

An estimate for the cumulative hazard H,;(t;;) is

ﬁfj(ti]’): Z iLS@(l))eXp{ﬂO-%’j“(l))}-

tay<tij

The approach described above has been implemented in the Splus function ’coxph’
(Therneau and Grambsch, 2000).

Remark. The penalty term for the frailty model and the smoothing splines re-
semble each other. The penalty term for the smoothing splines consists of a tuning
parameter and the parameters that define the function g(z); that vector B also oc-
curs in the partial likelihood part. Similarly, the penalty term for the frailty model
contains the parameter 6 and the frailties which also occur in the partial likelihood
part. Neither the tuning parameter nor 6 occur in the partial likelihood term. As
compared however with the penalized partial likelihood for smoothing splines, where
A can be chosen by the user, this is not the case for the frailty model as 6 itself is

also a parameter that needs to be estimated from the data.

5 Smoothing splines and frailty models combined

In the two previous sections, smoothing splines and frailties in the context of the
Cox model are dealt with separately. It is necessary when studying nonlinear re-
lationships in clustered survival data to combine smoothing splines and frailties as
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presented in model (4). For such models parameter estimates can be obtained by an
iterative procedure. The following conditional likelihoods are needed in the iterative
procedure.
The penalized partial likelihood for smoothing splines as in (5), but with the frailties
u as fixed offset term

dij

n 7

s o u; exp [g{zi; (i) }] B V2
gPpl (16 | U) =1 g 1:1—[1};[1 R(tZ.)ulep [Q{Jqu(tzg)}] )\/{g ( )} d

(8)

and the penalized partial likelihood for a particular value of 6 as in (6), but with

g(x) as fixed offset term

0;5
F _ S | uiexp [gfa(ti) ] S .
Copl (w6,B) =log 11_[1g11 R(Xt‘:.) uq exp [g{zqs(tij) }] N ;bg{ﬁ](ua}'

(9)

Finally, we will use the marginal likelihood with g(x) and ho(.) as fixed offset term

n

anarg (0,ho(.),B) =>_ [Di logf —logI' (1/0) 4+ logT" (1/6 + D)

=1

—(1/0 + D;)log + i@j [g{ws;(ti;) } +logho(tsy)]| - (10)

=1

=1

The iterative procedure based on these conditional likelihoods then goes as follows:

1. Initialize u' = (uj,... ,ul) with u} =1,i =1,... ;n and set 7 = 1 (r counts

the iteration steps).
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2. Maximize the penalized partial likelihood (8) inserting u” as fixed offset term

and obtain 3" for the smoothing splines, i.e., 3" = arg max Kpspl (B | u"). Insert

these values in g(z) to obtain the estimate ¢g"(x) at the r*® iteration step.

3. Now use ¢"(z) as fixed offset term to find estimates for # and w. This step
itself consists of an outer and an inner loop.
Outer loop Take a grid G of 6 values.

Inner loop

Take ¢"(x) (or equivalently ") and fix a 0 from G.

Obtain u’" = argmax () (u | 6,8").

Use u’” and B to obtain hy"(.) from (7) now using

g"(x) rather than fyz.

Calculate £.F (6, hg”(.), ,8”).

marg

marg ppl

Let 0" = arg max (6,h67(.),8") and let u™*! = argmax (5, (u | 67, 8").

4. Check whether the algorithm has converged. If not, increase the iteration step

with 1, » =+ 1 and go back to step 2.

Note. In practice, the grid search is replaced by a golden section search.
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6 Example

6.1 Data

The data used for this study are extracted from the database of the regional Dairy
Herd Improvement Association which includes the official recording system and ar-
tificial insemination (AI) service programme. In total, 7973 cows from 181 dairy
farms are considered. The median number of cows per farm equals 41 cows. Days
to first insemination from parturition for those cows that were inseminated were
recorded. No first insemination date was recorded for 1287 cows which were con-
sidered to be censored at the last follow-up day. Furthermore, milk protein and
ureum concentrations were determined monthly. We investigate the effect of these
two covariates separately because the objective is to assess whether any of these two
covariates can be used to predict a delay in time to first insemination and thus to
detect fertility problems. The extension of the methods described above to the case

of more covariates is straightforward.

6.2 Why frailties: the ureum concentration

A frailty model with smoothing splines for the time varying ureum concentration
is fitted to the time to first insemination data. The test for nonlinearity iss not
significant (p=0.43), so that only the linear effect of the ureum concentration on the
log hazard of first insemination is further considered.

The estimated hazard ratio within one farm is equal to 0.949 (95% CI: [0.915;0.985])
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with lower ureum concentration having significantly higher hazard of first insemina-
tion (p=0.0057). The heterogeneity parameter 6 is equal to 0.334. Fitting a basic
Cox regression model without frailties for the farm effect leads to a hazard ratio equal
t0 0.973 (95% CI: [0.943;1.005]) with no significant effect of ureum concentration on
the hazard of first insemination (p=0.094).

In order to understand the reason for the different results of the two models, the log
hazard ratio, (3;, is estimated separately for each farm and depicted as a function
of the log of the predicted farm frailty, log(a;) (Figure 1a). There are several farms
for which the frailty is substantially smaller than the mean of the frailty density
function. The log hazard ratio of 6 of these farms is exactly equal to 0 as no
inseminations at all were taking place in these farms. Therefore the log hazard ratio
is estimated to be 0 (since all ¢;; = 0) as obviously no relationship can be found in
the case no events take place.

For each of the farms, the mean ureum concentration is calculated as

ni i

The 6 farms without any inseminations have either average values for the mean
ureum concentration, or are below the average overall ureum concentration (Figure
1b). Both the simple Cox model and the frailty model predict that cows with low
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ureum concentration have higher hazard of first insemination but the farms with
no inseminations at all and low to average mean ureum concentration contradict
this global relationship. The frailty model corrects for this by assigning a large
negative value for the log frailty and thus all cows of these farms have low hazard.
This obviously does not happen in the simple Cox model without frailties, so that
these cows will contradict the overall relationship between ureum concentration and
hazard of first insemination. Because of this, the overall hazard ratio in the basic
Cox model is closer to 1 and no longer significant.

We now study the behavior of the two terms of the penalized partial likelihood
separately. As discussed in section 4, the profile penalized partial likelihood for ¢
increases with increasing values of 6 (Figure 2). Obviously, the partial likelihood
part alone increases and the penalty term increases with increasing values of 6. For
small values of 6, the penalty term becomes negative leading to a larger value for
the penalized partial likelihood than for the partial likelihood term alone. This is
due to the fact that all frailty terms are close to the mean of a density function with
small variance, and therefore most of the contributions from the density function
are larger than 1 and the logarithm thus positive.

Secondly, we further study the behavior of the profile marginal likelihood for 6, for
which the maximum leads to the estimate of §. Statistical inference thus needs to
be based on the marginal likelihood. Andersen et al. (1997) determined the vari-
ance of 6 using the Hessian of the marginal likelihood including as parameters the

functions ho(.) as defined in (7). For large datasets as in our case this procedure is
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computationally intensive as the number of parameters corresponds to the number
of different event times plus the number of fixed effects plus 1 for #. Furthermore,
the variance is in many cases not a useful parameter to derive confidence intervals
as especially in the neighborhood of 0 the marginal likelihood can be rather skewed.
Therefore, we believe it is a better procedure to use the profile marginal likelihood to
determine confidence intervals. For instance, when approximating the profile mar-
ginal likelihood by X%, we need to take those two values of 6 for which the marginal
profile likelihood lies 1.92 units below the maximum profile likelihood value for the
95% confidence interval (Morgan, 1992). In our data example, this corresponds to

the interval [0.253;0.410] (see Figure 3).

6.3 Why smoothing splines: the protein concentration

The frailty model with time varying milk protein concentration as a linear fixed
effect leads to an estimated hazard ratio equal to 1.51 (95% CI: [1.39;1.65]), which
is significantly different from 1 (p<0.0001) and 6 is estimated to be 0.319. The
non-linear terms, however, are also significantly different from 0 at the log hazard
scale (p<0.0001) and can thus not be eliminated from the model. The cubic spline
relationship between the milk protein concentration and the log hazard function is
shown in Figure 4 for three different values of A\ (A = 0.2,0.4,0.725) with A = 0.725
the smoothing parameter value that maximizes the AIC. The log hazard of a parti-
cular protein concentration x is expressed relative to the mean protein concentration

Z over all protein concentration measurements of the different cows in the different
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farms

m%} ~ log{h(z)} — log{h(z)}

Whatever the value of A\, a linear increase is apparent in the range of the lower milk
protein concentrations below 3.2 %. For higher milk protein concentrations, however,
the linear relationship no longer holds. There seems to be an optimal milk protein
concentration value around 3.6%. For lower and higher protein concentrations,
the hazard decreases. When fitting only a linear relationship, a large hazard ratio
significantly different from 1 is found. This is due to the fact that most milk protein
concentrations measured are on the low side and in the range where the linear
relationship holds. As can be read from the left panel of Figure 4, 90% of the

observed protein concentrations were below 3.6%.

7 Conclusions

When investigating physiological relationships in clustered time to event data, it
is important to model the clustering and simultaneously allow for flexible, non-
linear effects of the covariates on the log hazard. This can be done in the frailty
model framework with smoothing splines. The model fitting is partially based on
the maximization of the penalized partial likelihood. However, penalized partial
likelihood in the context of the frailty model can not be used to find estimates of 6,
the variance of the frailties. The penalized partial likelihood is rather a technique to
find estimates for the fixed effects and frailties given a particular value of 6. Instead,
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estimation of € is based on the profile marginal likelihood. Furthermore, profiling
the marginal likelihood for 6 is also an easy and adequate technique to derive the

95% confidence interval for 6.
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Figure 1: The relationship between the log of the predicted farm frailty and the
within farm log hazard ratio for the ureum concentration (a) and the mean farm
ureum concentration (b). The dashed line corresponds to the overall mean ureum

concentration. Triangles represent farms with log hazard ratio equal to 0.
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Figure 2: Profile penalized partial likelihood for €, with the solid line the penalized
partial likelihood, the dashed line the partial likelihood part alone in (a) and the

penalty term in (b).
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Figure 3: Profile marginal likelihood for § with the 95% confidence interval based

on the profile marginal likelihood.
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Figure 4: The relationship between the protein concentration and the relative log
hazard (relative to the log hazard of the mean protein concentration). The left panel

shows the density function of the milk protein concentrations in the data set.

Protein (%)

0.5

Relative log hazar d

26



