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1. A wavelet-based model for locally stationary processes

1.1. Introduction

It is a common observation that many time series in the applied sciences, such

as seismological, meteorological, economical or biomedical data, are not covariance

stationary and show a time-varying second-order structure. That is, variance and

covariance can change over time. For instance, the baby heart rate data in Figure 1

or the tremor data in Figure 2 are likely to have an inhomogeneous second-order

structure. Over the past decade a variety of models that control deviation from

second-order stationarity have been proposed in the literature5,6,10,9, among which

models of local stationarity have proven useful in order to develop a consistent

theory of estimation of the model quantities3. Roughly speaking the change over

time of a covariance which behaves locally as stationary is supposed to be slow, or

at least can be controlled by some usual regularity condition (such as the existence

of bounded derivatives as a function of time). This is obviously a generalisation of

the idea of piecewise stationary processes, the most straightforward model of local

stationarity.

Among these models of local stationarity, Nason, von Sachs and Kroisandt14

(hereafter NvSK14) proposed a wavelet-based model of local stationarity for zero-

mean processes with a time-varying covariance. Wavelets are known to well describe

structure which is localised over time and (resolution) scale (such as the changing

oscillatory behaviour of the baby EEG over certain time scales). The core of the

NvSK14 model of locally stationary wavelet (LSW) processes is a wavelet-type rep-

resentation of the time-varying covariance, by introducing so-called autocorrelation

wavelets. The coefficients of this representation are called evolutionary wavelet spec-

trum (EWS), their change over time controls the localised deviation from station-

arity. This model has already proved useful in a variety of situations for modelling

and analysing meteorological data4, solar irradiance20 or climate reconstruction15

to name but a few.

In this article we use an extension of the definition of LSW processes which is due

to Van Bellegem and von Sachs18, cited hereafter as VBvS18. This generalisation

allows to include a less smoothly over time varying covariance structure by imposing

a very mild regularity condition (of bounded total variation) on the time-change.

In VBvS18 a test of significance for the coefficients of the wavelet periodogram

has been developped. With this approach a pointwise adaptive estimator of the

EWS has been constructed, following the method of local adaptivity of Lepski

and Spokoiny7,8. The practical use of this theory leads to a set of non trivial new

questions which are addressed in this paper. We develop (almost) fully data driven

algorithms for the test of sparsity and the pointwise adaptive estimator of the EWS,

and study its performance on some simulated examples. We further illustrate the

procedures on the Baby Heart Rate data (Figure 1) and provide finally a further

application of our methodology, a new test of stationarity of a given time series.

This is also illustrated by means of application to the Tremor data (Figure 2).
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Fig. 1. ECG recording of a 66-day-old infant. Series is sampled at 1/16 Hz and is recorded from
21:17:59 to 06:27:18, T = 2048 observations. (Data courtesy Institute of Child Health, Royal
Hospital for Sick Children, Bristol, and Guy P. Nason)
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Fig. 2. Tremor data, T = 3072 data (Data courtesy Cognitive Neuroscience Laboratory of the
University of Quebec, Anne Beuter and Roderick Edwards).



4 S. Van Bellegem, R. von Sachs

1.2. The LSW model

We now cite the definition of our model from VBvS18.

Definition 1.1. A sequence of doubly-indexed stochastic processes Xt,T (t =

0, . . . , T − 1, T > 0) with mean zero is in the class of locally stationary wavelet

processes (LSW processes) if there exists a representation in the mean-square sense

Xt,T =

−1
∑

j=−∞

T−1
∑

k=0

wjk;T ψjk(t) ξjk , (1.1)

where {ψjk(t) = ψj0(t − k)}jk with j < 0 is a discrete non-decimated family of

wavelets based on a mother wavelet ψ(t) of compact support, and such that:

(1) ξjk is a Gaussian orthonormal increment sequence with Eξjk = 0 and

Cov (ξjk , ξ`m) = δj` δkm for all j, `, k,m, where δj` = 1 if j = ` and 0 if

not;

(2) For each j = −1,−2,−3, . . ., there exists a function Wj(z) on (0, 1) possessing

the following properties:

(a)
∑−1

j=−∞ |Wj(z)|
2
<∞ uniformly in z ∈ (0, 1),

(b) There exists a sequence of constants Cj such that for each T

sup
k=0,...,T−1

∣

∣

∣

∣

wjk;T −Wj

(

k

T

)∣

∣

∣

∣

6
Cj

T
, (1.2)

(c) W 2
j (z) is bounded by Lj in the total variation norm, i.e.

TV[0,1]

(

W 2
j

)

6 Lj , (1.3)

where

TV[0,1](f) := sup

{

I
∑

i=1

|f(ai) − f(ai−1)| : 0 < a0 < . . . < aI < 1, I ∈ N

}

.

(d) The constants Cj and Lj are such that

−1
∑

j=−∞

Nj(NjLj + Cj) 6 ρ <∞ (1.4)

where Nj = | suppψj0| = (2−j − 1)(N−1 − 1) + 1.

LSW processes use wavelets to decompose a stochastic process with respect to

an orthogonal increment process in the time-scale plane. (Gaussianity of the process

is only assumed here for sake of convenience for the subsequent theory of testing.)

Moreover, NvSK14 and VBvS18 developped a theory which ensures the existence of

a unique wavelet spectrum. This property is a consequence of the local stationarity

setting which introduces a rescaled time z = t/T ∈ (0, 1) on which Wj(z) is defined.

The rescaled time permits increasing amounts of data about the local structure

of Wj(z) to be collected as the observed time T tends to infinity. Even though
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LSW processes are not uniquely determined by the sequence {wjk;T }, the model

allows to identify (asymptotically) the model coefficients determined by uniquely

defined Wj(z). Then, the evolutionary wavelet spectrum (EWS) of an LSW process

{Xt,T}t=0,...,T−1, with respect to ψ, is given by

Sj(z) = |Wj(z)|
2
, z ∈ (0, 1) (1.5)

and is such that, by definition of the process, Sj(z) = limT→∞ |wj,[zT ];T |
2 for all

z ∈ (0, 1), and by Definition 1.1,
∑−1

j=−∞ Sj(z) <∞ uniformly in z ∈ (0, 1).

The evolutionary wavelet spectrum Sj(z) is related to the time-depending auto-

correlation function of the LSW process. Observe that the autocovariance function

of an LSW process can be written as

cX,T (z, τ) = Cov
(

X[zT ],T , X[zT ]+τ,T

)

for z ∈ (0, 1) and τ in Z, and where [ · ] denotes the integer part of a real number.

The next result shows that this autocovariance converges asymptotically to a local

autocovariance defined by

cX (z, τ) =

−1
∑

j=−∞

Sj(z)Ψj (τ) (1.7)

where Ψj(τ) is the autocorrelation wavelet function defined as follows.

Definition 1.2. Set

Ψj(τ) =

∞
∑

k=−∞

ψjk(0)ψjk(τ) ,

where τ ∈ Z and j = −1,−2,−3, . . .. The function Ψj is called the discrete auto-

correlation wavelet function at scale j (ACW in short).

Obviously the ACW inherits localisation properties from wavelets. However, it

is symmetric about τ = 0, that is Ψj(τ) = Ψj(−τ) for all scales j and for all τ .

We now observe (from VBvS18) the announced property.

Proposition 1.1. Under the assumptions of Definition 1.1, if T → ∞

∞
∑

τ=−∞

∫ 1

0

dz |cX,T (z, τ) − cX (z, τ)| = O
(

T−1
)

for all LSW process.

We further observe that equation (1.7) is a multiscale decomposition of the

autocovariance structure of the process over time: The larger the wavelet spectrum

Sj(z) is at a particular scale j and point z in the rescaled time, the more dominant

is the contribution of scale j in the variance at time z. Thus, the evolutionary

wavelet spectrum describes the distribution of the (co)variance at a particular scale

and time location.



6 S. Van Bellegem, R. von Sachs

We finally note that an LWS process is a (second-order) stationary process if its

EWS Sj(z) does not depend on time z, for all scales j. We will exploit this crucial

property in our development of a test of stationarity in Section 3.2 further below.

2. The adaptive estimation procedure

In this section we first recall from NvSK14 a preliminary estimator of the EWS which

serves as the basis to construct the adaptive estimator of VBvS18. It is basically

a wavelet scalogram (called “wavelet periodogram” here, because of its statistical

similarities to the classical Fourier-based periodogram). This preliminary estimator,

based on the non-decimated and hence highly redundant wavelet transform, does

not only need a bias-correction, but it is not a consistent estimator and needs to

be smoothed (scale by scale) as a function of time. We explain how to use the

theory of Lepski and Spokoiny8 to adaptively smooth the wavelet periodogram by

some local average over an interval in time (“histogram”) using as key result an

exponential inequality on this histogram. The basic idea is to test on homogeneity

along this interval in time, increasing its length as long as the test does not reject

the null hypothesis of homogeneity over time. As genuinely original contribution

of this paper, we derive the concrete adaptive procedure and apply our algorithm

to estimate the EWS of some simulated examples. The following Section 3 derives,

as applications of this adaptive procedure, the test of significance and the test of

stationarity, the second part of our newly developped material.

2.1. Wavelet periodogram

The wavelet periodogram Ij;T (z), a preliminary estimator of the EWS, is con-

structed by taking the squared empirical coefficients from the non-decimated trans-

form of our process data Xt,T , t = 1, . . . , T . As the EWS, it is defined, for each

fixed scale j, as a function of rescaled time:

Ij;T

(

k

T

)

=

(

T−1
∑

t=0

Xt,Tψjk(t)

)2

j = −1, . . . ,−[log2 T ]; k = 0, . . . , T − 1 .

Some asymptotic properties of this estimator have been studied by NvSK14 who

showed that the wavelet periodogram is not an asymptotic unbiased estimator of

the wavelet spectrum. Indeed, Proposition 4 of NvSK14 states that, for all fixed

scales j < 0,

E[I`;T (z)] =

−1
∑

`=−[log
2

T ]

Aj` Sj(z) + O
(

T−1
)

, (2.11)

uniformly in z ∈ (0, 1), where the matrix A is the Gram matrix of inner products

of the autocorrelation wavelets:

Aj` =
∑

τ

Ψj(τ)Ψ`(τ). (2.12)
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Equation (2.11) motivates the definition of a corrected wavelet periodogram

(CWP)

Lj;T

(

k

T

)

=
−1
∑

`=−[log
2

T ]

A−1
j`

(

T−1
∑

t=0

Xt,Tψ`k(t)

)2

(2.13)

as a preliminary estimator of the EWS. However, this CWP is not a consistent

estimator of the EWS (its asymptotic variance is proportional to S2
j (z)) and needs

(pointwise) smoothing over time.

Remark 2.1. Invertibility of this matrix A has been established in NvSK14 when

{Ψj} is constructed using Haar or Shannon wavelets. If other compactly supported

wavelets are used, numerical results suggest that the invertibility of A still holds,

but a complete proof of this result has not been established yet.

2.2. The key result

In order to estimate Sj(z0) at a fixed point z0, we proceed as follows. Our con-

struction of local averages over time of the CWP Lj;T (z) for a fixed scale j is a

histogram over a given segment in time R = (s1, s2) ⊆ (0, 1) containing the fixed

time point z0:

Qj,R;T = |RT |−1
∑

k∈RT

Lj;T

(

k

T

)

, (2.14)

where k ∈ RT means k/T ∈ R. Obviously this is a natural estimator of the

analogous theoretical quantity, the averaged wavelet spectrum

Qj,R = |R|−1

∫

R

dz Sj(z) . (2.15)

Some important statistical properties of Qj,R;T have been studied in VBvS18 under

a set of assumptions that we recall now.

(A.1) The autocovariance function cX,T and the local autocovariance function cX
of the LSW process are such that

‖cX,T ‖1,∞ :=

∞
∑

τ=−∞

sup
t=0,...,T−1

∣

∣

∣
cX,T

(

t

T
, τ

)

∣

∣

∣

is uniformly bounded in T , and

‖cX‖1,∞ :=

∞
∑

τ=−∞

sup
z∈(0,1)

|cX (z, τ)| <∞.

(A.2) There exists ε > 0 such that, for all z ∈ (0, 1),
∑−1

j=−∞ Sj(z) > ε.

(A.3) The evolutionary wavelet spectrum Sj(z) defined in (1.5) is such that

−[log
2
(T )]−1
∑

`=−∞

sup
z∈(0,1)

S`(z) = O
(

T−1
)

.
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Assumption A.1 guarantees uniform absolute summability of the autocovariance

of the process (which is a classical short memory property). Moreover, as the sum

over scales of Sj(z) is the local variance of the process at time [zT ], Assumption A.2

imposes that the local variance of the process is nowhere zero. The last assumption

A.3 is necessary in order to control the difference between the EWS and the CWP

at lower scales. Recall that our definition of the LSW processes involves the scales

j = −1 up to −∞, while the CWP is defined for scales j = −1 to j = −[logT ] only.

Under these assumptions, VBvS18 show that Qj,R;T is an asymptotically un-

biased and consistent estimator of Qj,R. Obviously, in order to estimate the EWS

Sj(z0) at the point z0, the question arises how to choose the best interval R around

z0 in (2.14). We choose this interval by a method, related to the pointwise adap-

tive estimation theory of Lepski7, such that the EWS at scale j is nearly constant

around z0. In other words, the method aims to find an interval around z0 where the

EWS is homogeneous. We recall this well-known concept of homogeneity according

to Lepski7, calling Sj(z) homogeneous on R if

b(R) := sup
z∈R

|Sj(z) −Qj,R| ≤ Cj σj,R,T log2
2(T ) ,

with some constant Cj and with σ2
j,R,T denoting the variance of Qj,R;T . This in-

equality expresses that, on R, we cannot detect a variation of the EWS that is

smaller than the natural variation of the estimator multiplied by log2
2 T . The need

of such a log term is well-known from the theory of Lepski7 on pointwise adaptive

estimation in the iid setting.

Now we precise the basic idea of the procedure for concretely choosing R as

follows. Suppose that Sj(z0) is well approximated by the averaged spectrum Qj,U

for a given interval U containing the reference point z0. We then consider a second

interval R containing U and we test if Qj,R differs significantly from Qj,U . If so,

then we reject the hypothesis of homogeneity of the wavelet spectrum Sj(z) on

z ∈ R. Finally, the adaptive estimator corresponds to the largest interval R such

that the hypothesis of homogeneity is not rejected.

A detailed description of the algorithm is presented in the next section. As we

explained above, the key point of the procedure is to test if Qj,R differs significantly

from Qj,U , where R is an interval containing z0 and U is a subset of R. Let us now

explain how we can test this hypothesis.

The standardised test statistic we use is

TT (R,U) :=
|Qj,R;T −Qj,U ;T |

log2
2(T )

√

Var |Qj,R;T −Qj,U ;T |
.

Again, observe that the standardisation of the test statistic contains a log2
2(T ) term.

This is in accordance with the standard theory of pointwise adaptive estimation in

the iid setting, from which it is known that the loss of a minimax estimator, being

normalised, will not be asymptotically degenerated2,7.

The key result for the estimation gives an upper bound for the deviation of this

statistic. Under the hypothesis of homogeneity, i.e. when the difference |Qj,R−Qj,U |
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is small, we can show (VBvS18) that

Pr(TT (R,U) > η) 6 g(R,U , η) , (2.21)

where g is given by

g(R,U , η) := exp

{

−
1

8
·

η2k2
T

1 + c · 2j/2ηkT (|R|−1 + |U|−1)σ−1
R,UT

−1/2)

}

with kT = log2
2 T and σR,U =

√

Var |Qj,R;T −Qj,U ;T |. In the definition of g, c is a

constant depending on ‖cX‖1,∞, on ρ (given in Definition 1.1) and on the wavelet

ψ.

This key result allows to test the homogeneity of the spectrum, as explained in

the next section.

2.3. The adaptive procedure

In this section, we give the algorithm which selects the interval of homogeneity

around a given point z0, at a fixed scale j < 0.

We first choose a set Λ of interval-candidates R. Then, for each candidate R,

we apply the homogeneity test with respect to a given set ℘(R) of subintervals U

of R.

Initialization. Select the smallest interval R in Λ.

Iteration. Select the next interval R and calculate the corresponding estimate

TT (R,U). Calculate an estimator and the estimated variance σ̃2
R,U ,T of its vari-

ance σ2
R,U , following the description of the next subsection 2.4.

Testing homogeneity. Reject R if there exists one U ∈ ℘(R) such that

g (R,U , TT (R,U)) > g0 .

Loop. If R is not rejected, then iterate using a larger interval. Otherwise, select

the latest non rejected interval.

This procedure requires the preselection of the sets Λ and ℘(R), but also the

choice of a constant g0. These are discussed in the following remarks.

Remark 2.2 (Choice of Λ and ℘(R)). Several propositions have been proposed

in the literature for choosing these two sets Λ and ℘(R) 11,17. In our computations,

we use the following sets. For each scale j < 0, the CWP (2.13) is evaluated on a grid

k/T , k = 0, . . . , T −1 in time. We define the set K = {iT/K, T : i = 0, . . . , (K−1)}

which depends on a constant K, the choice of which we discuss below. Then we

choose the set Λ as

Λ = {[r0/T, r1/T ] : r0, r1 ∈ K and r0 < [z0T ] < r1} .

Next, for every interval R = [rm/T, rn/T ] in Λ, we define the set ℘(R) of subin-

tervals U by taking all smaller subintervals [rk/T, rn/T ] with the right end point

rn/T and similarly all smaller intervals [rm/T, r`/T ] with the left end-point rm/T :

℘(R) = {U = [rk/T, rn/T ] or U = [rm/T, r`/T ] : m < `, k < n}
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if R = [rm/T, rn/T ].

Remark 2.3 (Choice of g0 and K). This procedure requires the choice of a

constant g0 (specifying the level of the test), as well as the parameter K which

defines the set of subintervals in the test of homogeneity. Note that these two

parameters K and g0 are global, in the sense that they do not depend on the

time point z0 where we are testing the homogeneity. They no longer depend on R

or U , and they are fixed by the model only. They can be chosen following some

preliminary study of the CWP. In a different context, Mercurio and Spokoiny11

propose to select these nuisance parameters by minimisation of the mean square

prediction error. This could also be possible in our context, since the prediction

theory of LSW processes has been recently developped4.

2.4. Preliminary estimation of the variance

The computation of the test statistics TT needs the preliminary estimation of the

unknown variance σ2
R,U = Var |Qj,R;T − Qj,U ;T |. A straightforward computation

shows that this variance may be decomposed as follows:

σ2
R,U = 2‖U ′

R,UΣT ‖
2
2

where ‖ · ‖2 denotes the Euclidean norm of a matrix, UR,U is a known matrix

depending only on the intervals R,U , scale j and wavelet ψ, and ΣT is the covariance

matrix of the LSW process (X0,T , . . . , XT−1,T )′. This covariance matrix is of course

unknown in practice since it depends on the unknown EWS. If σs,s+u denotes the

entry (s, s+ u) of the matrix ΣT , VBvS18 have proposed to estimate σs,s+u by the

plug-in estimator

σ̃s,s+u =

−1
∑

j=−[log
2

T ]

Qj,RT (s);T Ψj(u)I|u|6MT
(2.27)

where RT (s) denotes an interval RT that contains the time point s/T . The length

of this interval depends on T such that it shrinks to zero when T tends to infinity.

An appropriate theoretical rate is |RT | ∼ log−3
2 T . In the estimator (2.27), we note

also that the indicator I{|u| 6 MT } sets to zero all σ̃s,s+u with |u| > MT . This is

in accordance with the short-memory property stated in Assumption (A.1) above.

An appropriate rate for MT is logα
2 T with α > 0.

VBvS18 showed that the convergence in probability of the resulting estimator

σ̃2
R,U ,T is fast enough to ensure that the exponential inequality (2.21) is a correct

approximation which can be used to construct the test of homogeneity. However,

the theoretical rates proposed in VBvS18 for |RT | and MT are derived from an

asymptotic theory, and they are not directly useful for practical purposes.

As a matter of fact, an intensive simulation study shows that, even if the choice

of |RT | andMT is important for the preliminary estimation of the covariance matrix

ΣT , their impact on the quality of the test of homogeneity is limited. In practice,
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we recommend to set |RT | = [log2 T ]. In our applications, we use the following

rule for the choice of MT . We start with a large value for MT (around 10) and

examine the decreasing (or increasing) of the off-diagonals of the covariance matrix.

Very often, in our applications, the behaviour of these off-diagonals starts with an

abrupt decreasing, sometimes followed by an increasing trend. When this behaviour

is observed in several off-diagonals of the matrix, we recommand to clip the matrix

just before the abrupt decreasing. This procedure has been followed for choosing

MT in the numerical studies below.

We end this section by mentioning that the pre-estimation of the variance is

not computationaly expensive. The key point here is that we only need to estimate

the covariance matrix ΣT by Σ̃T of the whole process and to store it. Then the

estimated variance of TT (R,U) is obtained by computing 2‖U ′
R,UΣ̃T ‖

2
2, where the

matrix UR,U is purely deterministic.

An exhaustive study of the impact of the preliminary estimator on the results

of the test is out of the scope of this article, but can be found in Van Bellegem19.

2.5. Simulated example

To illustrate the pointwise adaptive estimation procedure, we consider a simulated

process of length T = 500 with theoretical spectrum given in Figure 3(a). This

process has two active scales on j = −1 and −4. The scale j = −4 is active only

from the middle of the time series, while the scale j = −1 is active at each time

point, but with a breakpoint occuring at time point 2T/3.

In the following, we have applied the pointwise estimator on 19 equidistant

time points to furnish the estimation on (a grid of) the whole scale j = −1. In

this situation it may happen that some homogeneity tests are computed several

times for the same intervals R and U , e.g. if we estimate the EWS at two points

included in one true interval of homogeneity. For computational efficiency we store

the results of all tests of homogeneity for each R and U , such that each test is

computed only once.

The results presented in Figure 4 correspond to the following choices of pa-

rameters: K = 20, g0 = 0.4. In this simulation, these two parameters are chosen

by hand, but the result is robust to this choice. Note that here we estimate the

variances using (2.27) by taking |RT | = [log2(500)] and MT = 1. The above figure

plots the true EWS at scale j = −1 (solid line) together with our estimators at 19

equidistant time points (dots). The constancy of the EWS on (0, 2/3) and (2/3, 1) is

well detected by the estimator, except at one time point near the breakpoint. If we

consider the CWP at scale j = −1, see Figure 3(d), one may observe that the CWP

has a short period with lower amplitudes before the time break. We believe that

the single bad pointwise estimator comes from this phenomenon. Once again, it is

important to note that the CWP is a highly variable quantity, and our estimation

is provided with only 500 data.

In the estimation plotted in Figure 4, all the pointwise estimators near the value
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Fig. 3. The ghaar process uses the spectrum in (a) with nondecimated Haar wavelets and Gaussian
increments in the Definition of the locally stationary wavelet process.

1 of the EWS on (0, 2/3) select the same interval of homogeneity R̃, as expected.

This interval is showed together with the original time series at the bottom of Figure

4. Similarly, the estimators near 0.25, the value of the EWS constant on (2/3, 1),

select the same interval of homogeneity, which is plotted in the second plot.

3. Further applications of the adaptive procedure

3.1. Test of local significance

As motivated in our real examples below, it is of interest to be able to decide,

perhaps even before estimating the EWS, for the regions in the time-scale where

the EWS needs to be modelled to be different from zero. This can be done by the

test of homogeneity by choosing as null hypothesis Qj,R = 0 for the specific interval

R on the specific scale j of interest.

The null hypothesis of this test is

H0 : E(Qj,R;T ) = 0 for a fixed scale j < 0 and for all z ∈ R.
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Fig. 4. Above is the result of the pointwise adaptive estimator at scale j = −1 for the ghaar

process (the solid line is the true spectrum, and the dots are the pointwise adaptive estimators).
The estimation is obtained from the realisation of the process plotted at the bottom. The two
horizontal lines on the time series correspond to some intervals of homogeneity selected by the
adaptive procedure (see text).

The test statistic here is

QT (R) =
Qj,R;T

√

VarQj,R;T

and the test is now be based on the inequality

Pr
(

QT (R) > η
∣

∣H0

)

6 h(R, η)

where

h(R, η) := exp

{

−
1

8
·

η2

1 + c · 2j/2η2j/2|R|−1(T VarQj,R;T )−1/2

}

(3.31)

which is derived similarly to the exponential inequality (2.21).

3.2. Test of stationarity

A final application of the previous theory is given by a new test of covariance

stationarity for time series.
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A covariance stationary process is characterised by an EWS which is constant

over time, i.e. Sj(z) = Sj for each scale j (see Section 1.2). The key idea for the

test of stationarity is to test if the EWS is constant over time at each scale or not.

With this idea, testing the stationarity of a time series is equivalement to test the

homogeneity of the EWS at each scale over R = (0, 1). This procedure is illustrated

in the real data example of Section 4.2.

4. Application on real data

4.1. Baby heart rate

In this study of a first real data example, we illustrate the possibility to combine the

proposed test of local significance and the pointwise adaptive estimator although

they are originally devoted to different statistical problems. The key idea is to test

the significance of some whole scales over the whole time, before performing the

estimation procedure on the scales which are significantly different from zero.

Rescaled Time
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0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
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-3

-1

Fig. 5. Corrected wavelet periodogram (CWP) of the data, computed with Haar wavelets.

Our study concerns a heart rate (electrocardiogram (ECG)) recording of a 66-

day-old infant. Figure 1 plots the series, sampled at 1/16 Hz and recorded from

21:17:59 to 06:27:18 (T = 2048 observations). This series is considered in previous

studies13,14 as a motivating example for the exploratory analysis using the LSW

model and may be obtained from the web12. First of all, it is unlikely that this
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time series will be a stationary time series. The heart rate varies considerably over

time and changes significantly between periods of sleep and waking. These changes

are of a big interest for the paediatricians. These are related to other variables

of interest which are not easily observable nor easy to quantify. For instance, the

paediatricians are interessed to measure the sleep states (quiet, active, awake,...)

using some objective measures, and the question is how the heart rate may be used

as a tool for measuring the sleep state. We shall come back later to this question

of the link between the ECG and the sleep states.

The approach using the LSW model leads to a multiscale representation of the

nonstationary process. Figure 5 shows the CWP of the heart rate, computed with

nondecimated Haar wavelets. The CWP is not smoothed and highly variable, and

our goal now is to extract some useful information from it.

As a first step, we need a pre-estimator of ΣT and, for this, need to choose an

appropriate parameter MT and segment RT . From the conclusions of Section 2.4

above, we choose RT (z) centered in z and of length [log2 T ]. The selection of MT is

provided as described in Section 2.4. We first compute Σ̃T with MT = 10 and then

analyse the behaviour of its off-diagonals. Figure 6 shows the values of 10 different

off-diagonals, that is we superimpose σ̃s,s+u for u = 0, . . . , 10 and for 10 different s.

This shows a similar behaviour between the off-diagonals, which decrease quickly

to MT = 2 then vary slowly. We then choose MT = 2 in the pre-estimation of Σ̃T .

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

Fig. 6. Ten off-diagonals of the estimated matrix Σ̃T .

To start the analysis, we want to detect if some scales of the CWP are not
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Scale Qj,R;T σ̃2
j,R;T approximated p-value

-1 31.66 12.01 1.68 · 10−4

-2 9.71 22.50 0.60

-3 9.31 101.98 0.90

-4 19.69 104.83 0.63

-5 17.25 66.95 0.57

-6 20.14 35.90 0.24

-7 44.66 18.08 1.44 · 10−6

-8 3.67 8.79 0.83

-9 33.53 4.07 5.77 · 10−15

-10 17.56 1.69 5.66 · 10−10

Table 1. Results of the test of sparsity over R = (0, 1) performed at each scale j between −1 and
−10 for the heart rate data.

significant. For this, we apply our test of significance over R = (0, 1) at each scale.

The results of the test are given in Table 1. From this table, we conclude that the

only active scales of the data are given by j = −1,−7,−9 and −10, and the other

scales are not significantly different from zero. To our knowledge, such conclusion is

new for these data, and also very helpful since it indicates that the analysis should

focus on 4 active scales only.

Fig. 7. Pointwise adaptive estimator performed at scale j = −1 for the baby ECG. The estimator
is computed at 100 different points, and we line up two consecutive points. (a) is the scale −1 of
the CWP, and (b) is the estimator based on (a).

We now focus on the significant scale j = −1 and apply our estimation proce-

dure. The results are given in Figure 7. In our estimation, we estimate the EWS

at K = 100 points. In the estimation procedure, we also set g0 = 0.95, which is

quite large. In terms of homogeneity tests, this means that we perhaps reject the
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homogeneity assumption very often. In our opinion, this is in fact very sensible,

because this error (Type I error) is not as serious as the complementary type II

error. Indeed, for the pointwise estimation, it is not such a problem if the homo-

geneity interval is too small, since the corresponding histogram will not differ too

much from the histogram based on a possible larger truly homogeneous interval. In

contrast, if we choose a too large interval, for instance if we choose an interval which

contains some discontinuity, then the estimator will be significantly different. Once

again, it could be possible to select g0 automatically by minimisation of a criterion

such as the mean square prediction error.
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Fig. 8. Pointwise adaptive estimator of the EWS at scale j = −1 together with the sleep states
(A, quiet sleep; B, state between A and C; C, active sleep; D, awake).

Simultaneously to the ECG recording, some experts on the analysis of brain-

waves and eye movements recorded the sleep states of the infant. These states are

recorded independently of the ECG. They are plotted in Figure 8 together with

our estimator of the EWS at scale j = −1. The observers classifies the sleep states

as quiet sleep (A), between quite and active sleep (B), active sleep (C) and awake

(D).

It is clear that there is some relationship between our estimator and the sleep

states. In particular, periods of activity occur whilst the estimate of S−1(z) is large,

and periods of quiet sleep when it is small. It is worth mentioning that the ECG is

easy to measure, while the sleep states is more tricky and less objective. With our

estimator, we are also able to detect some changes in the sleep states, sometimes
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with a small delay. Then, we believe that our estimator may help to provide some

objective measurement of the activity during sleep. Finally, we mention that a finer

analysis of the fitting between the sleep states and our adaptive estimator is also

one possible way to derive an automatic choice of the parameter gj .

4.2. Tremor data

The aim of this last example is to apply our proposed test of stationarity to the

following data example.

The data shown in Figure 2 are the first 3072 observations of a set of tremor

data. The object of the study is to compare different regions of tremor activity

coming from a subject with Parkinson’s disease. These data have been considered

by von Sachs and Neumann16 (hereafter vSN16) who apply their test of stationarity

over three consecutive segments of length 1024 of the first-order differenced series,

shown in Figure 9. As in vSN16, we have added a Gaussian white noise of standard

deviation 0.01 to the original data, in order to break the discrete nature of the data.
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Fig. 9. First-order difference of the tremor data.

We apply the test of homogeneity over R = (0, 1) scale by scale for the three

segments (1), (2) and (3). The parameters for the pre-estimation of the variance are

|RT | = log2(1024) and MT = 2. For each scale, we test the homogeneity between

the EWS on (0, 1) and on 20 subintervals. Table 2 reports the results. The number
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Scale (1) (2) (3)

-1 0.08 0.39 0.05 (*)

-2 0.35 0.44 0.46

-3 0.74 0.42 0.68

-4 0.34 0.001 (**) 0.28

-5 0.07 3 · 10−21 (**) 0.002 (**)

-6 0.54 8 · 10−5 (**) 0.24

-7 0.72 0.02 (*) 0.60

-8 0.91 0.84 0.81

-9 0.92 0.94 0.88

-10 0.98 0.98 0.97

Table 2. Results of the test of stationarity for the three segments taken from the tremor data.
(1), (2) and (3) refer to the first, second and third segment in Figure 9. At each scale, for each
segment, we perform 20 tests of homogeneity between R = (0, 1) and 20 subintervals U . The
number reported in the table is the minimum probability value obtained among the 20 tests. This
value is computed using g in (2.21). (*) indicates a value less than or equal to 0.05 and (**)
indicates a value less than 0.01.

reported in the table is the minimum probability value obtained between the 20

tests. This value is computed using g in (2.21). (*) indicates a value less than or

equal to 0.05 and (**) indicates a value less than 0.01.

The conclusion of this study is a lack of stationarity for segments (2) and (3) of

the tremor data. The test of vSN16 concludes also to a lack of stationarity for series

(2). However, they do not detect any change of regime in the series (3), and our

conclusion seems to be a new observation. A careful inspection of the time series

shows that some changes of regime indeed occur in segment (2), and also in segment

(3) (around the time point 2300). This is also in accordance with the findings of the

neurologists who attributed two different regimes of tremor activity for this part of

data. Our conclusion is that (at least) one change of regime occurs in segment (2)

as well as in segment (3).

The difference with the conclusion of vSN16 may be explained by Table 2. In-

deed, the lack of stationarity for segment (3) is due to an inhomogeneity at scale −5

only (and perhaps also at scale −1). This is certainly a very subtle behaviour to be

detected, and our multiscale approach succeeded to find this lack of homogeneity.

Our analysis offers a more precise interpretation of the nonstationarity of the

tremor data. Moreover, we would like to recall that, unlike the test of vSN16, our

approach is not limited to time series with a length equal to a power of 2. Further-

more, it is of course possible with our method to detect the underlying intervals of

homogeneity in the tremor data, such that we can say exactly where the changes

of regime occur in the time series.
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5. Conclusion

In this paper we have developped a series of new algorithms for various problems

of adaptive estimation and tests, for a particular class of non-stationary processes.

These Locally Stationary Wavelet processes have been shown useful to combine

two goals: controlling the deviation from second-order stationarity, and giving a

meaningful time-scale decomposition for a stochastic process (and its autocovari-

ance) which is potentially globally non-stationary or just along certain predominant

scales.

Our proposed methods derive all from the idea of “testing homogeneity”, along

certain intervals of certain scales of the process decomposition. The test of local

significance is essentially a test to decide for significance of a (squared) wavelet

coefficient in the local autocovariance representation. Consecutively, we can apply

our proposed adaptive estimator for the wavelet spectrum on only those regions in

the time-scale plane where there is significant contribution. Another application is

testing for stationarity of the underlying process: scale by scale, testing whether the

EWS depends on time, and globally whether there is one scale for which the EWS

would not be constant over time. Furthermore, we can use our method to precisely

identify some possible changes of regime (breakpoints) in the time series.

We have applied our suggested procedures to a variety of simulated and two

real data examples. We found out that it is of high utility to have theoretically

well understood methods to finer analyse non-stationary, transient behaviour in the

correlation structure of the observations. Often there are physiological explanations

(such as the sleep state activities for the heart rate data) for these time-changing

phenomena being concentrated on certain predominant scales.

We believe that further research might be useful, e.g. on possibilities of better

controlling the problem of multiple hypothesis testing. From our numerical examples

it has become evident that more recent statistical methods, such as controlling the

False Discovery Rate1, might be promising further developments of our proposals.
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