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Abstract 

 
In this study, we merge results of two recent directions in efficiency analysis research—the 

Aggregation and the Bootstrap—applied, as an example, to one of the most popular point-estimators 

of individual efficiency: the Data Envelopment Analysis (DEA) estimator.  A natural context of the 

methodology developed here is a study of efficiency of a particular economic system (e.g., an 

industry) as a whole, or a comparison of efficiencies of distinct groups within such a system (e.g., 

private vs. public or regulated vs. non-regulated firms, etc).  Our methodology is justified by the 

(neo-classical) economic theory and is supported by carefully adapted statistical methods. 
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 1. Introduction 
 
Many applied economists devote their attention to analyzing economic efficiency of various 

economic systems: firms, industries, countries, regions, etc.  After performing various techniques 

for estimating efficiencies of individual units (say, firms) of a system, most researchers inevitably 

come to a question like ‘What is the efficiency of the entire system (the industry)?’ or ‘What are the 

efficiencies of distinct groups within this system?  Which one is more efficient?’  For example, 

many researchers have recently analyzed and compared efficiencies of groups of firms operating 

under different regulatory regimes, or different ownership structures (private vs. public, domestic 

vs. foreign, etc.), or operating in different regions, or efficiencies of countries at different stages of 

economic development or transition.  The answers to such questions are of high importance not only 

to researchers but also, perhaps even more important, for policy makers, for voters, for educators in 

related areas, for many others.  Sometimes, economic theory cannot give precise general answer on 

which group of firms must be more efficient in a particular environment, or this may depend on 

various unobserved conditions, or different models may suggest different conclusions.  All this 

makes the empirical studies on efficiency of various groups and sub-groups interesting and 

important, demanding reliable methods of estimation and inference. 

For comparison of efficiencies of different groups—the context of our study—there are at 

least two critical issues about the appropriateness of methodology: (i) reliable point-estimators of 

group (or sub-group) efficiencies, and (ii) reliable interval-estimators of group efficiencies. The first 

issue can be viewed as an aggregation question—a question of obtaining an (appropriate) aggregate 

efficiency score from (appropriate) individual efficiency scores.   This question has been recently 

explored in a number of studies. 1  One of the most important issues here is the choice of weights in 

the aggregation.  For example, the answer for such an important question as: ‘What is the more 

efficient way of regulation used in practice?’ may merely depend on the (researchers) choice of 

weights that are distributed among the estimated efficiencies of each economic unit in the system.  

Consider for example, a hypothetical industry consisting of two types of firms, two firms in each 

type, whose efficiency and an economic weight is given in Table 1.  

According to this example, if a researcher uses the simple average (as many studies have 

been doing in practice) then the conclusion would be that, on average, group A is as efficient as the 

group Z.  Noting that the efficiency scores per se are ‘standardized’ to be between zero and 1 and 

                                                                 
1 See Blackorby and Russell (1999), Färe and Zelenyuk (2003), Färe, Grosskopf and Zelenyuk (2002), Li and Ng 
(1995), and Ylvinger S., (2000).  Also see the latter source for a review of earlier studies. 



 2 

thus ignore the relative effort or (economic) importance of firm that earned this score, another 

researcher may want to use the weighted average.  In this case, a dramatically different conclusion 

would be reached: group A is more efficient than Z, but the industry average is still very low 

because the type Z firms dominate.  The policy implications would differ dramatically. 

 
Table 1.  A hypothetical example 

Firms in A 
(10%) 

Weight in 
sub-group 

Efficiency 
(%) 

Firms in Z 
(90%) 

Weight in 
sub-group 

Efficiency 
(%) 

Efficiency of 
Entire Group 

 
A1 

 
90% 

 
100% 

 
Z1 

 
10% 

 
100% 

 
-- 

A2 10% 50% Z2 90% 50% -- 
Simple Average 75%  Simple Average 75%  75%  

Weighted Average 95%  Weighted Average 55%  59%  
     

 

Of course, the main question here is like that of A. Griboyedov’s play, Woe from Wit: “And 

who are the judges…?”—or in our case “And what are the weights?” Clearly, a strong justification 

for choice of weights is needed.  One of such justifications for Farrell-type efficiencies was recently 

proposed by Färe and Zelenyuk (2003) and is based on economic optimization. The resulting group 

efficiency measure that they derived is the average of the efficiencies of individual units weighted 

by their realized shares (cost or revenue, depending on optimization assumed) in the industry. This 

result gives to applied researchers a point-estimator of group efficiency with meaningful weights 

derived from economic principles.  Here, we extend their result to aggregation within and between 

sub-groups in a given group. 

The main goal of this paper is to propose a way of constructing reliable confidence intervals 

and bias corrections for the DEA-estimated aggregate efficiencies of a group and also its sub-

groups, as well as to propose an appropriate test for comparison of such aggregate efficiencies. 

The choice of DEA is not necessary but is motivated by its increasing popularity, especially 

since some good statistical properties of DEA have been recently unveiled.  This includes most 

recent discovery of the limiting distribution by Kneip et al. (2003a), who also prove the consistency 

of the sub-sampling bootstrap for DEA estimator of individual efficiency scores.   

The goal of this paper is to merge the existing works on bootstrap for DEA with the works 

on aggregation of efficiency scores—to provide researchers with a theoretically appropriate and 

reliable practical tool of statistical inference on the size of aggregated efficiency scores and for 

their comparison between each other. 
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2.  Efficiency Measurement 

2.1.  Measurement of Individual efficiency  

The methodology developed below can be used to analyze virtually any economic system that can 

be viewed as a composition of several units. To facilitate our discussion we consider an example of 

an industry with n firms.  For each firm k (k = 1, 2, … , n) we will use vector Nk
N

kk xxx +ℜ∈= )',...,( 1  

to denote N inputs that the firm k uses to produce a vector of M outputs, denoted by 

Mk
M

kk yyy +ℜ∈= )',...,( 1 .  We assume the technology of firm k can be characterized by the set T k, 

  }:),{( kkkkk yproducecanxyxT ≡ .     (2.1.1) 
 
Equivalently, the technology can be characterized by the output sets 

  }:{)( kkkkk yproducecanxyxP ≡ , Nkx +ℜ∈ .   (2.1.2) 
 
Throughout, we assume the technology satisfies the usual regularity axioms of production 

theory, under which we can use the output orientated Shephard (1970) distance function 

}{: 1 ∞∪ℜ→ℜ×ℜ +++
MNk

oD , defined as  

  )}(/:inf{),( kkkkkk
o xPyyxD ∈≡ θθ      (2.1.3) 

 
to have a complete (primal) characterization of the technology of firm k, in the sense that 

)(1),( kkkkkk
o xPyyxD ∈⇔≤       (2.1.4) 

 
This function is particularly convenient as a criterion for technical efficiency of a firm k 

since, roughly speaking, it gives a ‘measure’ (valued between 0 and 1) of a distance from a point yk 

in )( kk xP  to the ‘upper’ boundary of )( kk xP .  Such efficiency criterion often appears in another 

form, as the Farrell output oriented measure of technical efficiency, defined for all )( kkk xPy ∈  as2 

 ),(/1)}(:max{),( kkk
o

kkkkkk yxDxPyyxTE =∈≡ θθ .    (2.1.5) 
 
  Formally, if we let the technological frontier to be the ‘upper’ boundary of )( kk xP  defined 

as )},1(),(),(:{)( ∞∈∀∉∈ℜ∈=∂ + λλ kkkkMkk xPyxPyyxP  then, whenever we have 

0),(),(1),(0 ≠∂∉∈⇔<< kkkkkkkkkk
o yxPyxPyyxD , we would call  ),( kk yx  as 

technically inefficient, with inefficiency score given by (2.1.5) (or its reciprocal).  Alternatively, we 

                                                                 
2  Farrell (1957) originally used input orientation, conceptually the same idea. Similar idea also appeared in Debreu 
(1951), as a capacity utilization measure.  See Russell (1990) for properties of this ‘measure’. 
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call ),( kk yx  technically efficient if and only if )(1),( kkkkkk
o xPyyxD ∂∈⇔= .  Finally, 

0),( =kkk
o yxD , if and only if  yk = 0 (which is usually not the case in practice).  

An alternative, dual, characterization of )( kk xP  can be given via the revenue function,  

  )}(:{max),( kk
y

kk xPypypxR ∈≡ .     (2.1.6) 
 
where p = (p1 , …, pM )∈ ℜM

++   denotes the vector of output prices. 3  As it is well known, the 

revenue function, ),( pxR kk , is the dual to the distance function ),( kkk
o yxD , since4 

  }1),(:{sup),( ≤= pxRpyyxD kkk
p

kkk
o      (2.1.7) 

 
A natural criterion of efficiency of a firm in the dual framework is what is often called the 

revenue (or overall output) efficiency and is defined as, 

  kkkkkk pypxRpyxRE /),(),,( ≡ .      (2.1.8) 
 
The Mahler’s inequality (which can be obtained from (2.1.7)) tells us that 

),(/),( kkk
o

kkk yxDpypxR ≥ ,      (2.1.9) 
 
and the multiplicative residual that closes the inequality (2.1.9) is often interpreted as the criterion 

or a measure of the allocative (in)efficiency of firm k, and is formally defined as 

   ),(/),,(),,( kkkkkkkkk yxTEpyxREpyxAE ≡ .    (2.1.10) 
 
The decomposition (2.1.10) goes back at least to Farrell (1957) and will prove very useful in 

deriving the results for aggregating the technical efficiencies into (sub)group measures.  

 

2.2.  Group Efficiency Measures 

Let us focus first on a sub-group , call it sub-group l, of nl firms taken from the original group of n 

firms (e.g., the selection can be based on exogenous economic criterion such as ownership structure, 

regulation regimes, etc).  We will denote the input allocation among firms within the group l by 

),...,( ,1, lnlll xxX =  and the sum of output vectors over all firms in lth  group with ∑ =
= ln

k
kl yY

1
.   

                                                                 
3 For the purpose of obtaining the desired aggregation results we have make a necessary assumption that all firms face 
the same output  prices.  
4 To achieve this result, convexity of the output sets is needed, in addition to other regularity axioms mentioned above;  
see Färe and Primont (1995) for details. 
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A crucial step now is to define a group technology, that is, the aggregate technology of all 

firms within a (sub)group. In the context we have chosen—the output orientation, i.e., consideration 

of output changes given fixed levels of inputs—a natural way to define a (sub)group technology is to 

assume a linear structure of aggregation of the output sets (Färe and Zelenyuk, 2003), i.e., 

  ∑
=

≡
ln

k

klklll xPXP
1

,, )()(        (2.2.1) 

 
Thus, the output set of a sub-group of firms, )( ll XP , is the sum of the individual output sets of all 

firms in this sub-group.  Clearly, the properties of the group technology depend on the properties of 

technologies of each firm in the group.  In particular, )( ll XP  inherits the regularity conditions 

imposed above and is convex if the individual output sets are convex. 

Given the lth sub-group technology (2.2.1), the sub-group revenue function can be defined as 

  )}(:{max),( ll
y

ll XPypypXR ∈≡       (2.2.2) 
 
and the lth sub-group revenue efficiency, analogue of (2.1.9) is therefore defined as 

  llllll
YppXRpYXRE /),(),,( ≡ .      (2.2.3) 

 
The next theorem and its corollaries give the aggregation results needed for our study.   

 
Theorem.5  The maximal revenue of the sub-group of firms is equal to the sum of the maximal 

revenues of all its member firms, i.e., 

    ∑ =
= ln

k
klklll pxRpXR

1
,, ),(),( .      (2.2.4) 

 
This theorem (as well as the first two corollaries below) is from Färe and Zelenyuk (2003), 

adapted to our context, and for the sake of completeness, the proof is provided in the appendix.  The 

economic intuition of this theorem is straightforward.  It says that the sum of the revenues of 

individual (independent) revenue-maximizing firms in a given subgroup would be the same as the 

revenue obtained by one revenue-maximizing firm (e.g., a revenue-maximizing social planner) 

whose technology is defined in (2.2.1), given that the output price vector is the same for all firms.  

In the next corollary, we will use this theorem to obtain some results for aggregating efficiencies. 

 

                                                                 
5 This theorem is a revenue analog to the Koopmans (1957) theorem of aggregation of the profit functions. The cost 
analog is proven in Färe, Grosskopf and Zelenyuk (2002). 
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Corollary 1. The revenue efficiency of the lth sub-group of firms is equal to the weighted sum of 

revenue efficiencies of all its member firms, where the weights are the actual (observed) revenue 

shares of these firms in the sub-group, i.e., 

 ∑ =
⋅= ln

k
klklklkllll

SpyxREpYXRE
1

,,,, ),,(),,( ,     (2.2.5) 
where 

lklkl YppyS /,, = ,    k = 1, …, nl.      (2.2.6) 
 

Corollary 2.  The aggregate revenue efficiency can be decomposed into the weighted sum of the 

technical efficiencies (where the weights are the  actual revenue shares) and the weighted sum of the 

allocative efficiencies (where the weights are the revenue shares corrected for inefficiency). I.e., 

  
lllll

AETEpYXRE ×=),,(       (2.2.7) 
where 

kln

k
klklkll

SyxTETE l ,
1

,,, ),( ⋅≡ ∑ =
      (2.2.8) 

and 
kl

ae

n

k
klklkll

SpyxAEAE l ,
1

,,, ),,( ⋅≡ ∑ =
,     (2.2.9) 

where  

l

kl
kl

Yp
py

S
,

, ≡ ,  
( )

( )∑ =

≡
ln

k
klklklkl

klklklkl
lk
ae

yxTEyp

yxTEyp
S

1
,,,,

,,,,

),(

),(
, k = 1, …, nl.  (2.2.10) 

 
Remark 1. Note that if L = 1,  then the aggregate measures in (2.2.7)-( 2.2.9) are measures 

for the entire group.  Moreover, the measure (2.2.8) is a multi-output generalization of what Farrell 

called the “structural efficiency of an industry,” (Farrell, 1957, p. 261-262).  

Remark 2.  Note that the weights of aggregation for obtaining the (sub)group technical 

efficiency derived above depend on prices.  This may seem somewhat undesirable for at least two 

reasons.  First of all, the technical efficiency, at least in principle, is often thought of as a price 

independent measure of efficiency, e.g., as in our disaggregate case or single-output aggregate case.  

Note however that these weights were not chosen arbitrarily or in an ad hoc way, but came out as a 

result of imposing a standard economic criterion—optimization behavior—which researchers, at 

least implicitly, consider when making their choice of orientation (input, output, etc) in measuring 

efficiency.  Moreover, if the goal is to account for an economic weight of each firm, its relative 

economic effort in earning the particular ‘standardized’ efficiency score then, since prices contain 

some economic information, it must not be surprising to derive the price-dependent weights from 

imposing the economic optimization principle.  The second consideration is more practical: price 
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information may be unavailable (or unreliable) in a given study.  One way around this is to use the 

shadow prices instead.  Another way is to impose some additional standardization that will make the 

weights derived above being price-independent (as we will do below). 

Remark 3. It is not the first time that positive aggregation results in economics requires some 

additional, often strong and perhaps sometimes undesirable assumptions (e.g., the reader can recall 

assumptions needed for aggregation of demands over consumers or over goods).  In fact, in a more 

general context of aggregating efficiencies (without optimization criterion as in our case) Blackorby 

and Russell (1999) have shown an impossibility result for their general case and the need of quite 

strong assumptions on the technology in special cases.   

Let us now consider a case when (given some exogenous economic criterion) a researcher is 

interested in comparing aggregate efficiencies of certain sub-groups within  the entire group and 

relative to the entire group.  In particular, consider a case of partitioning the entire group into L non-

intersecting and exhaustive sub-groups, indexed by  l = 1 , …, L, and let ∑ =
≡

n

k
kyY

1
.  An 

immediate consequence of the previous theorem would be the following result. 

 
Corollary 3. The maximal revenue of the entire group of firms is equal to the sum of maximal 

revenues of all its (non-intersecting) sub-groups of firms, i.e., 

∑ =
=

L

l
ll pXRpXR

1
),( ),( .         (2.2.11) 

 
This is an analog of the theorem 1 (extension to aggregation between the sub-groups) and the next 

corollary is the corresponding analog of corollary 1. 

 
Corollary 4.  The revenue efficiency of the entire group of firms is equal to the weighted sum of 

revenue efficiencies of all its (non-intersecting) sub-groups of firms, where the weights are the 

actual revenue shares of these sub-groups in the entire group, i.e., 

∑
=

⋅=
L

l

llll
SpYXREpYXRE

1

),,(),,( ,      (2.2.12) 

where 

∑ =
=

L

l
lll YpYpS

1
/ ,  l = 1, …, L.       (2.2.13) 

 
Finally, the ‘between-the-group aggregation’ analog of the corollary 2 is given in the next corollary. 
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Corollary 5.  The revenue efficiency of the entire group can be decomposed into the weighted sum 

of the sub-group technical efficiencies of all non-intersecting sub-groups (where the weights are the  

actual revenue shares of these sub-groups) and the weighted sum of the sub-group allocative 

efficiencies of all non-intersecting sub-groups (where the weights are the actual revenue shares 

corrected for the sub-groups technical inefficiency). Formally, 

AETEpYXRE ×=),,(        (2.2.14) 
where 

l
L

l

l
STETE ⋅= ∑

=1

,   l
ae

L

l

l
SAEAE ⋅= ∑

=1

,      (2.2.15) 

and  

∑ =
=

L

l
lll YpYpS

1
/ ,    and    ∑ =

=
L

l

lllll
ae TEYpTEYpS

1
/ ,  l = 1, …, L.  (2.2.16) 

 
That is, the efficiencies of the sub-groups of firms are aggregated into efficiencies of the  

entire group much like the efficiencies of individual members of the sub-group are aggregated into 

the sub-group efficiencies. 

 
Price Independent Weights 

Here, we adopt the standardization proposed by Färe and Zelenyuk (2003) for making the weights 

derived above being price independent, while still preserving the aggregation structure based on the 

economic optimization criterion that we have used above.  Let us first illustrate this for the case of 

aggregating efficiencies of the entire group.  The trick is based on the following ‘standardization’:   

 
   AYp mm = ,   m = 1, … , M     (2.2.17) 
 

where ∑ =
≡

n

k
k
mm yY

1
 and A is a positive constant. Intuitively, this standardization means that, in 

cases when we do not want the price information to impact the aggregate measure of technical 

efficiency (or simply when we do not have such information) we choose to regard that each output 

is valued, on industry level, as any other output among m = 1, …, M.  If instead we were interested 

in valuing each output differently—the price-dependent weights we have obtained above would be a 

natural candidate.  Also note that, incidentally, expression (2.2.17) is the output analog to what 

Cornes (1992, p.42) uses to illustrate the duality theory in economics (for A=1 ).   
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Now, denote the firm’s k share in the group in terms of mth-output as m
k
m

k
m Yy /=ϖ , then the 

standardization imposed by (2.2.17) onto the weights for aggregation of technical and revenue 

efficiencies derived above will be the average of these shares, i.e., 

 ∑
=

=
M

m

k
m

k

M
S

1

1
ϖ ,     k = 1, … , n.   (2.2.18) 

 
Analogously, the price-independent weights for aggregating allocative efficiencies are 

similar to the weights in aggregating technical efficiencies but, as before, the actual outputs are 

replaced with their technically-efficient prototypes, i.e.,  

 ∑
∑=

=

=
M

m
n

k
kkkk

m

kkkk
mk

ae
yxTEy

yxTEy

M
S

1
1

),(

),(1
,   k = 1, … , n.   (2.2.19) 

 
We can now also use the standardization (2.2.17) and combine with (2.2.16) to obtain the 

‘between the sub-groups’ weights as 

 ∑
=

=
M

m

l
m

l W
M

S
1

1
, ∑

∑=
=

=
M

m
L

l

ll
m

ll
ml

ae
TEY

TEY
M

S
1

1

1
, l = 1, …, L.   (2.2.20) 

 
where, m

l
m

l
m YYW /=  is the l’s sub-group  share in the entire group in terms of mth-output (analogous 

to what we had for the individual firms).  This in turn helps getting the weight ‘within a sub-group l’ 

for an individual efficiency of firm k to be 

∑
= ⋅

=
M

m
ll

m

kl
mkl

SY
y

M
S

1

,
, 1

,     k = 1, … , nl ;  l = 1, …, L. 

 
Intuitively, it is exactly what we had in (2.2.18) except that we now account for the weight 

of the particular group in the entire group.  The analog of this for the allocative inefficiency is 

∑
∑=

=
⋅

=
M

m
ln

k
klklklkl

m

klklklkl
mkl

ae
SyxTEy

yxTEy

M
S

l
1

1
,,,,

,,,,
,

),(

),(1
,   k = 1, … , nl ;  l = 1, …, L 

 
In the next section, we discuss the means of estimation of the above -presented measures. 

 

2.3.  The DEA Point-Estimator 
 
In the previous section we have outlined the theoretical measures of individual and aggregate 

efficiencies.  All these measures require the knowledge of )(⋅kTE  or/and )(⋅kR , or at least their 
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values at  ( kk yx , ) for all firms k = 1, …, n, whose efficiencies are of interest.  In turn, obtaining 

such information requires knowledge of the technology characterization, for example in terms of 

)( kk xP , or in terms of its frontier.  In practice, such information is unlikely to be available and an 

appropriate estimation method is needed.  In this study we will focus on the class of estimators 

known under the general name—Data Envelopment Analysis (DEA).  There are many variations in 

this class, all intending to estimate the technological frontier of some set-wise characterization of 

the technology and then compute a point estimate of efficiency scores for each observation, relative 

to this estimated frontier.   Here, for the sake of brevity, we will focus only on the most common 

DEA model (that uses output orientation, assumes variable returns to scale, and free disposability of 

inputs and outputs) and only on the estimation (and bootstrap) of the technical efficiency.  The 

methodology, however, can be extended to other cases. 

 One fundamental assumption in most DEA estimations is that all firms have access to the 

same technology, which we will denote as )(xP  or T.6  This is needed to justify the estimation of 

one frontier from the entire data, often called the (observed) best practice frontier.  Another 

fundamental assumption of the DEA estimator is that all observed input-output combinations  

( kk yx , ),  k =  1, …, n  are feasible under T, i.e., )( kk xPy ∈ , k =  1, …, n.  This assumption 

implicitly assumes no errors and all deviations from the frontier are assumed to be due to technical 

inefficiency (however, the data is allowed to be random; see below for statistical assumptions).  

With these assumptions and allowing for variable returns to scale and free disposability of 

inputs and outputs, the (observed) best practice frontier under DEA is defined as 

 )},1(),(ˆ),(ˆ:{)(ˆ ∞∈∉∈ℜ∈=∂ + λλ xPyxPyyxP M ,    (2.3.1) 
where  

 :{)(ˆ MyxP +ℜ∈=  m

n

k

k
mk yyz ≥∑

=1

,   m = 1, ..., M,  xxz
n

k

k
nk ≤∑

=1

,  n = 1, ..., N,  

      0≥kz  ,   k = 1, ... , n ,   1
1

=∑
=

n

k
kz  }.    (2.3.2) 

 
Thus, )(ˆ xP  is the smallest convex free-disposal hull that fits the observed data, and )(ˆ xP∂  is its 

‘upper’ boundary and is a piece-wise linear estimate of the true best -practice frontier of P(x).   

 The DEA estimator of individual technical efficiency at a fixed point (x, y), is computed 

relative to this estimated frontier—as a solution to the following linear programming problem (LPP) 
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 :{max),(ˆ

,...,, 1

θ
θ nzz

yxET =  )(̂xPy ∈θ }      (2.3.3) 

 
Finally, the DEA estimator of the technically efficient level (‘à la Farrell’) of output at a 

particular level of input x, is defined as 

),(ˆ)(ˆ yxETyxy ⋅≡∂         (2.3.4) 
 

While these DEA estimators can be applied to any point in the estimated output set, i.e., 

)(ˆ xPy ∈∀ , researchers usually are interested in the observed points, and thus apply the 

corresponding liner programming problem (2.3.3) for each ),( kk yx ,  k = 1, …, n.  In the next 

section we discuss the statistical issues of this basic DEA estimator. 

 
 
3. Known Statistical Results for the DEA Estimator 
 
First of all, it must be clear that )()(ˆ xPxP ⊆ , and therefore )(ˆ xP∂ is a downward biased estimator 

of )(xP∂ . As a result, ),(ˆ yxET  is a downward biased estimator of ),( yxTE , i.e., 

),(),(ˆ1 yxTEyxET ≤≤ ,   )(ˆ xPy ∈∀    (3.1) 
 

The asymptotic statistical properties have recently been discovered for the DEA estimator 

presented above.  In particular, (2.3.2) is consistent and is the maximum-likelihood estimator of the 

frontier of P(x), as shown by Korostelev et al. (1995) and generalized by Kneip et al. (1998), who 

also derived the rates of convergence.  Gijbels et al. (1999) provided the limiting distribution of 

DEA in the 1-input-1-output case and most recently, Kneip et al., (2003a) have unveiled it for the 

multi-output-multi-input case. 

These statistical results require additional assumptions that help defining the data generating 

process (DGP) and converting our economic model of production into a statistical model.  Before 

listing these axioms, we represent the problem by using the polar coordinates of My +ℜ∈  defined by 

the modulus 1)( +ℜ∈= yωω , where yyy ')( ≡ω , and the angle 1]2/,0[)( −∈≡ My πηη , where 

0)/arctan( 111 >≡ + yifyy mmη  or 2/πη ≡m , if 01 =y  for m = 1, …, M.  The following 

assumptions, adapted to our context from Kneip et al. (1998), define the DGP we will work with. 

  

                                                                                                                                                                                                                        
6 Standard regularity conditions must also be imposed, see Färe and Primont (1995) for details. 
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A1.  },...,1:),{( nkyx kk =  are independent random variables on the convex technology set T.  All 

observations },...,1:),{( nkyx kk =  can be partitioned into L sub-samples (by some exogenous 

criterion) such that each sub-sample l (l = 1, …, L) represents a distinct sub-group l (l = 1, …, L) 

of interest that exists in the population (e.g., public vs. private firms in an industry). 

A2.  For all l (l = 1,…,L), the inputs Nx +ℜ∈  has density )(, xf lx , with compact support N
+ℜ⊆ℵ . 

A3. For all l (l = 1,…,L) and all ℵ∈x , the vector ),...,( 11 −≡ Mηηη  has a conditional p.d.f. 

)|(),|( xf lx ηη  on  1]2/,0[ −Mπ and the modulus ω  has a conditional p.d.f. ),|(),,|( xf lx ηωηω . 

A4.  For all l (l = 1,…,L), all ℵ∈x , and all 1]2/,0[ −∈ Mπη  there exist constants 01 >ε and 02 >ε  

such   that ]))(()),(([ 2εωωω +∈∀ ∂∂ xyxy , 1),,|( ),|( εηωηω ≥xf lx , l = 1, …, L . 

A5.  The technical efficiency measure ),( yxTE  is differentiable in both its vectors. 

 
Note that for all l and given ),( xη , the efficient output level )(xy∂  has the modulus equal to 

 
}0),|(:sup{))(( ),,|(

1 >ℜ∈= +
∂ xfxy lxl ηωωω ηω ,  l = 1, …, L,  (3.2) 

 
so that the relation between )( ylω  and the technical efficiency measure at (x, y),  ),( yxTE l , is now 
 

)(/))((),( yxyyxTE l
l ωω ∂= ,     l = 1, …, L.   (3.3) 

 
Thus, A3 along with (3.3) implies the existence of a conditional (on ),( xη ) density for 

),( yxTE l , l = 1, …, L (with the support ),1[ ∞ ), which we will denote with ),|( xTEf l η .  

Moreover, A4 along with (3.3), implies that ]1,1[,),|( 21 εεη +∈∀≥ TExTEf l , l = 1, …, L.  

Finally, with assumptions A1-5, the DGP, denoted with ),...,1),,,(),(( LlxTEgxP l =℘=℘ η  is 

completely defined through the joint densities of ),,( xTE η , for all sub-groups l = 1, …, L. 

 
)()|(),|(),,( ;),|( xfxfxTEfxTEg lxlxll ηηη η= ,  l = 1, …, L,  (3.4) 

 
each with the support ℵ××∞≡Ω −1]2/,0[),1[ Mπ .  It is this DGP that we assume has generated our 

sample }...,,1:),{( nkyx kk
n ==Ξ  of independent observations that are identically distributed 

within each sub-group l (l = 1, …, L) but not necessarily across them. 

 With these assumptions, following Kneip et al., (1998), the DEA estimator is consistent, and 
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)(),(),(ˆ )1/(2 ++−=− NM
P

ll nOyxTEyxET .     (3.5) 
 

Note that such DGP still assumes that all firms have access to the same technology, but the 

conditions of this access (“how easy it is to get to the frontier”) might be different for different sub-

groups.  In economic terms, such DGP can be well justified.  Different sub-groups may have 

considerably different regulation regimes, ownership structures, environments, etc—some 

exogenous factors that may cause systematic differences in economic incentives or just ‘physical’ 

capabilities of firms in different sub-groups to reach the frontier of the same technology. For 

example, private firms may have different incentives for being closer to the frontier than state-

owned firms; firms under average-cost pricing regulation may have, theoretically, different 

incentives than firms under rate-of-return regulation, which are in turn different from unregulated 

firms.  In all these cases the marginal densities that generate technical (in)efficiency (as well as 

densities generating inputs and outputs) for these firms might be different across sub-groups, while 

the technology is still the same.  All of this provides an intuitive justification of the group-wise 

heterogeneous bootstrap for the DEA estimates of a common technology frontier. 

 
4. Bootstrap for Aggregate Efficiency Scores from the DEA Estimator 
 

Statistical bootstrap is a method of estimation of unknown sampling distribution of an estimator by 

means of re-sampling from original data.  The theory of statistical bootstrap was originated by Efron 

(1979) and developed in many studies since then. 7  Perhaps the most encouraging result from the 

general bootstrap theory is that under fairly moderate assumptions on the DGP, the bootstrap 

provides approximation to the unknown sampling distribution that is at least as good as the 

approximation given by the first -order asymptotic theory.  It can give even better approximation if 

the estimator is asymptotically pivotal (i.e., if the asymptotic distribution of the estimator of interest 

is independent from the unknown population parameters).  For the case where the limiting 

distribution is unknown, as ours, the bootstrap is the only appropriate alternative.  To the efficiency 

analysis, the bootstrap was introduced by Simar (1992) and later developed by Simar and Wilson 

(1998, 2000a) and most recently by Kneip et al. (2003a), whom we follow here.    

 To outline the basic principle of the bootstrap in our context, at this point we focus on 

bootstrapping the aggregate efficiency of the entire group, assuming we have a data set 

                                                                 
7 For a recent survey of main results (and references to them), see Horowitz (2002). 
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}...,,1:),{( nkyx kk
n ==Ξ  generated from a DGP )),,(),(( xTEgxP η℘=℘  that satisfies the 

assumptions imposed above.  Of course, no one of TExTEgxP ),,,(),( η  is observed, but we can 

obtain consistent estimates of them, ETxP ˆ),(ˆ , using the data nΞ  from this DGP and the DEA 

estimator (2.3.3).  We then can aggregate the estimates of ET ˆ  over all firm k in the sample using 

the aggregation procedures presented above to obtain ET ˆ  as an estimator of TE .  What we are 

interested now is in the sampling distribution of ℘− |ˆ TEET .   The idea of the bootstrap is to 

approximate this distribution by treating nΞ  as the population, whose properties then can be 

inferred by operation with pseudo -samples, }...,,1:),{( *** nkyx kk
n ==Ξ , drawn randomly (with 

replacement) from this population, nΞ .  Since we have all the population, nΞ , we thus can learn 

everything about the distribution of *
nΞ .  In particular, we can use the same formula for estimation 

of technical efficiency as the one applied to the original sample, (2.3.3), but applied to the pseudo-

sample *
nΞ , obtaining kET *ˆ —the bootstrap estimate of kET ˆ , for all k.  We then can aggregate 

kET *ˆ  over k using (using the same formulas as for the original DEA estimates) now with weights 

based on the pseudo-sample, to obtain
*

ˆbET —a bootstrap estimate of ET ˆ .  If the bootstrap is 

consistent then the relationship between the bootstrap (pseudo) estimate and the original estimate 

will mimic the relationship between the original estimate and the true unobserved value of what we 

want to estimate.  In our case, if the bootstrap is consistent, then 

.
* ~ˆ|ˆˆ

asy

ETET ℘−  ℘− |ˆ TEET       (4.1) 
 

Since we know ‘everything’ about the distribution of *
nΞ , at least in principle, the sampling 

distribution of 
*

ÊT  is also completely known and, although its analytical form is most likely 

unknown, it can be approximated with arbitrary degree of accuracy by Monte-Carlo simulations.  

The key, of course, is to have the bootstrap that is consistent.  Indeed, the context of 

technology frontier estimation turns out to be a case where the consistency of variants of basic, or 

naïve, bootstrap is questionable.  In fact, a few such approaches of bootstrapping DEA efficiency 

scores have appeared in the literature, and were shown to offer inconsistent estimates.  Briefly put 

(and see Simar and Wilson (2000 b) for details) the naïve bootstrap does not account for specifics of 
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the problem—estimation of the (upper) boundary of the unknown (technology) set.  In this case, the 

assumptions of the theorem of consistency for the naïve bootstrap are violated and thus the naïve 

bootstrap (sampling distribution) does not correctly mimic the true distribution of the DEA.  One 

remedy was offered by Simar and Wilson (1998, 2000a) who showed how to use the “smooth 

bootstrap” in the DEA context.   The idea of the smooth bootstrap is based on re-sampling not from 

the original input-output data but from the (kernel-estimated) density of technical efficiency scores.  

Simar and Wilson (1998, 2000a) suggested two variants of the smooth bootstrap: (i) the 

homogeneous bootstrap, and (ii) the heterogeneous bootstrap. Under the homogeneous case, it is 

assumed that )(),|( TEfxTEf =η , i.e., the same probability law is dictating how far any firm is 

from the frontier, regardless of the input-output mix. The heterogeneous bootstrap does not make 

this assumption, and thus requires consideration of the joint density ),,( xTEg η . Both variants can 

be extended to cover the group-wise heterogeneous case as ours. 

Most recently, Kneip, Simar and Wilson (2003a) offered another alternative—the sub-

sampling (with replacement) bootstrap—and, most importantly, showed that it is consistent (for any  

sub-sample that has a smaller size than the original sample).  They also showed Monte-Carlo 

evidence that the smooth bootstrap (in the homogeneous case) is a good approximation of this 

consistent bootstrap.  The sub-sampling however has important advantages over the smooth 

bootstrap.  The main advantage is that it accounts for heterogeneity but does not require density 

estimation as the smooth bootstrap does.  Another advantage is that it is much simpler and faster to 

compute.  The main disadvantage of the sub-sampling bootstrap in the DEA context is that the 

choice of the sub-sample size is not clear at this point.  Although consistency of the sub-sampling 

bootstrap for DEA is proven for any sub-sample size smaller than the original, precision of 

bootstrap estimates in finite samples may be different for different sub-sample sizes (see Kneip et 

al., 2003).  This problem is intuitively similar to the problem of the bandwidth choice in the density 

estimation. However, many methods exist for the latter, while little is developed for the former in 

the DEA context.  Recent work of Kneip, Simar and Wilson, (2003b), investigates the use of 

iterated bootstrap to select the appropriate sub-sample size.   

Below, we present the algorithm of the sub-sampling bootstrap for DEA estimated aggregate 

efficiencies, adapted to our context of the group-wise heterogeneous case.  
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4.1.  Algorithm of the Group-Wise Heterogeneous Sub-Sampling Bootstrap of Aggregates of 
DEA Efficiency Scores 

 
1.   For each observation in the sample }...,,1:),{( nkyx kk

n ==Ξ  compute ),(ˆ yxET ,  from 

(2.3.3), obtaining { ),(ˆ kk yxET :  k=1,…, n}. 

2.  Aggregate the estimates of individual efficiencies from step 1 into the L sub-group estimated 

aggregate measures of technical efficiency using formulas outlined in section 2.2. 

3. Obtain the bootstrap sequence }...,,1:),{( ***
, l

k
b

k
bbs skyx

l
==Ξ  (b denotes the bootstrap 

iteration, b=1,…,B), by sub-sampling with replacement independently from data on each sub-group 

l of the original sample, }...,,1:),{( l
kk

n nkyx
l

==Ξ ,  where 1,)( <≡ κκ
ll ns ,  l=1,…,L. 

4. Compute the bootstrap estimates of ),(ˆ yxET  via (2.3.3), using the bootstrapped sample *
,bnΞ  

obtained from step 3, call them 
kl

bET ,*ˆ , for k = 1, …, ll ns < ,  all l = 1, …, L. 

5.  Compute the bootstrap estimates of the aggregate efficiency scores, using  

kl
b

s

k
kl

b
l

b SETET l ,*
1

,** ˆˆ ⋅= ∑ =
,     where   

∑ =

=
ls

k
kl

b

kl
bkl

b
yp

py
S

1
,*

,*
,* ,  k = 1, …, ll ns < ; (4.2a) 

and 

l
b

L

l

l
bb STEET *

1

**ˆ ⋅= ∑
=

,    where   
∑ ∑

∑
= =

== L

l

s

k
kl

b

s

k
kl

bl
b l

l

yp

yp
S

1 1
,*

1
,*

*  ,  l = 1, …, L. (4.2b) 

 
or using the price independent weights (e.g., if the price information is unavailable), using 

 ∑
∑∑

∑
=

==

==
M

m
s

k
kl

bm

L

l

s

k
kl

bml
b l

l

y

y

M
S

1
1

,*
,1

1
,*
,* 1

, l = 1, …, L.   

and 

∑
∑=

=
⋅

=
M

m
l

b

s

k
kl
bm

kl
mkl

b
Sy

y
M

S
l

1
*

1
,*
,

,
,* 1

, k = 1, …, ll ns < ,   l = 1, …, L   (4.3) 

 
6.  Repeat the steps 3-5, B times (obtain the above bootstrap estimates for each b = 1, …, B). 

 

At the end, the bootstrap will provide B bootstrap-estimates of estimated aggregate efficiencies 

B
b

l

bET 1

*
}ˆ{ =  for each sub-group l (l=1,…,L) and of the entire group B

bbET 1

*
}ˆ{ = .  These estimates can be 

used to obtain the bootstrap confidence intervals, bias corrected estimates and standard errors of the 
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estimates.  Simar and Wilson (1998, 2000a) have shown how to do this for the individual technical 

efficiency scores.  In the next section, we adapt this procedure to obtain the bootstrap confidence 

intervals and bias correction for the aggregate efficiencies.   

 

4.2.  Bootstrap Confidence Intervals and Bias Correction for Aggregate Efficiency 
 
Here, we use the most recent approach of Simar and Wilson (2000a), where the bootstrap 

constructed confidence intervals automatically account for the bias.  The key is the expression  

 
asy

ll ETET ~ˆ|ˆˆ* ℘−  ℘− |ˆ ll TEET     (4.4) 
 
which is satisfied if the bootstrap is consistent.  Given this, the true confidence interval given by 

( ) ααα −=℘−≤−≤− 1|ˆPr aTEETb ll  can be approximated with its bootstrap analog 

 

( ) ααα −=℘−≤−≤− 1ˆ|ˆˆˆˆPr * aETETb ll      (4.5) 
 
where α  is the significance level (size of the test) chosen by the researcher, and αb̂  and αâ  are 

obtained as the endpoints of the truncated sorted (in ascending order) list of ( )ll
b ETET ˆˆ* − , b= 1, …, 

B,  where the truncation is done by deleting 100)2/( ×α  percent of the elements at each end of the 

sorted list.  The resulting bootstrap confidence interval around the unknown  aggregate efficiency, 

TE , with significance level α , is therefore, 

 

  αα bETTEaET lll ˆˆˆˆ +≤≤+       (4.6) 
 
To obtain a bias corrected estimate of aggregate efficiency we, again relying on (4.4), note that the 

true bias ( ) lll TEETEETBias −=℘ ˆ)|ˆ(  can be approximated with its bootstrap analog 
 

 ( ) lll ETETEETBias ˆˆ)ˆ|ˆ( ** −=℘       (4.7) 
 

where, ( )lETE *ˆ  can be approximated with its Monte-Carlo analog (from the original bootstrap 

procedure) ∑
=

≡
B

b

l
b

l ET
B

ET
1

** ˆ1ˆ , therefore the estimated bias is lll ETETETiasB ˆˆ)ˆ|ˆ(ˆ ** −=℘  and 

the resulting bias corrected estimate of the aggregate efficiency is 
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lllll ETETETiasBETET ** ˆˆ2)ˆ|ˆ(ˆˆ −=℘−=
(

    (4.8) 
 

Finally, the standard error of lET ˆ  can be computed as 

   
2/1

1

2
*** ˆˆ

1
1

)ˆ(

















 −

−
≡ ∑

=

B

b

ll
b

l
b ETET

B
ETse      (4.9) 

 
The next section discusses how to make statistical inference on the difference between the aggregate 

efficiencies of any two distinct sub-groups in a given group. 

 

4.3. The Test for Equality of Aggregate Efficiencies of Two Sub-Groups  
 
In empirical literature, when making judgement on efficiency of certain groups in the industry after 

using DEA, researchers often resort to such popular non-parametric test as, for example, the 

Kruskal-Wallis test.  However, a direct application of this test to analysis of DEA estimates does not 

take into account the fact that the estimates are used instead of the true efficiencies, thus ignoring 

the corresponding issues of finite-sample bias and dependency.  Most importantly for our context, 

such tests use equal weights, ignoring the economic weights associated with each ‘standardized’ (to 

be between 0 and 1 or 1 and ∞) efficiency score.   

The goal of this section is to propose a bootstrap-based test of equality of aggregate 

efficiencies, say, of two sub-groups in an industry.  The test can be based on a pair-wise comparison 

of the aggregate efficiencies of sub-groups.  For example, for group A and Z we can postulate 

 
ZA TETEH =:0  against  ZA TETEH ≠:1 . 

 

We are then interested in how far, in a statistical sense, the quantity ZA
ZA TETERD /, =  is 

different from unity, and we can infer about it by considering its DEA estimator 

ZA
ZA ETETDR ˆ/ˆˆ
, = , whose behavior can be mimicked by its bootstrap analog,  

Z
b

A
bbZA ETETDR ***

,,
ˆ/ˆˆ = ,  b = 1, …, B.  The bootstrap-based bias correction and the confidence 

interval for this statistic can be constructed in the same fashion as we described for the aggregate 

efficiencies in the previous sub-section.  The decision rule would then be: “Reject the null if the 

bootstrap confidence interval does not cover unity”.   The next section presents a few illustrations of 

the methods described above for simulated data. 
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5. Simulated Examples 
 
The goal of this section is to illustrate the methods described above for some simulated examples 

where we know the ‘truth’ and thus can get a feeling of the performance of the proposed techniques. 

In all examples, we assume the prices are not available so that we have to construct the price-

independent weights as proposed above.   

 Playing with many different scenarios we have noticed that the precision of estimation 

results is sensitive to the choice of sub-sample size 1,)( <≡ κκ
ll ns ,  l=1,…,L.  In any case, 

reasonable precision was reached for values of κ in between 0.5 and 0.7.  Monte-Carlo evidence 

from Kneip et al ( 2003a) also indicates that, depending on original sample size and the dimension of 

the technology set, good precision is reached for these values of κ .  To illustrate, how our methods 

work we try 3 values of κ = {0.5, 0.6, 0.7} and present only the result that gave the best 

performance among these choices. 

 
5.1. Example 1: Single-output-single-input  
 
We decided to present this example since it allows us to visualize the plot of true technology as well 

as the spread of the observed realizations of input-output combinations for each firm.  We assume 

that the entire population (e.g., industry) has two types of firms (sub-groups)—A and Z—and we 

observe 100 firms of each type.   We assume that the true technology frontier is characterized by the 

Shephard output distance function of the following simple form:  
5.0)/(),( xyyxD o =  

 
For sub-groups A and Z, the only input is assumed to come from Uniform(0,1).8  We assume 

that klkl uTE ,, 1+=  where ))(,(~)|( 2, xNxu ll
kl σµ+ , l = A, Z, which we call the ‘true’ 

inefficiencies. We choose 0>Aµ , intuitively representing some pathological tendency for 

inefficiency existing for this group, say, of the state-owned firms (such tendency could be justified 

with one of the economic theories of incentives, etc). For simplicity, we assume AA x σσ =)( .9  On 

the other hand, we assume that the other type of firms has a tendency to be technically efficient by 

having the mode of TE at 1, i.e., 0=Zµ , but also has 2)1()( xx ZZ −= σσ .  Such heteroskedasticity 

here can be motivated by vulnerability of this type of firms at low levels of operations (this can be 

                                                                 
8 We have tried other distributions (e.g., Beta, with various parameters) and the results did not change qualitatively. 
9 We have tried it heteroskedastic too and the results did not change qualitatively. 
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supported by empirical evidence of, say, private firms having higher risk of being unstable when 

they are small but becoming more stable as they grow).  For purpose of supporting the message 

conveyed by Table 1 in the Introduction section, we set 4.1,2.0,25.0 === ZAA σσµ .  

Figure 1 visualizes the technology set and the input-output realizations for each firm in the 

sample, and clearly shows the tendency of decreasing inefficiency with increase of scale for Z-type 

firms.  Four panels of Figure 2 give the plots of estimated densities of efficiencies for each group. 

Specifically, (i) compares densities estimated from the ‘true realizations’ of inefficiency for the two 

sub-groups (generated from their distributions), and (ii) does the same for the densities estimated 

using the DEA-estimates of efficiencies for the two sub-groups.  The two pane ls look very similar, 

supporting the fact that in 1-input-1-output case, the rate of convergence of the DEA estimator is 

better than the usual parametric one.  This is also supported by panels (iii) and (iv) that illustrate the 

difference between the densities estimated with the ‘true’ and with the DEA-estimates.10 The rugged 

shape observed for the sub-group Z is a consequence of our heteroskedasticity assumption.  The 

results of bootstrapping the aggregate efficiencies are given in Table 2. 

<Insert Figure 1 Here>   <Insert Figure 2 Here> 
 
Table 2.  Estimation results for Example 1. 

 
  

DEA Estim. 
 

 
True Estim. 

 

 
Bias Corr. 

Estim. 
 

 
Estim. 
Bias 

 
Estim. 

St. Dev. 
 

 
Est. lower 
CI bound 

 
Est. upper 
CI bound 

 
 

AgEf. A  
AgEf. Z 
AgEf. 

 
MeEf. A  
MeEf. Z 
MeEf. 

 
 RDA,Z;Ag 
RDA,Z;Mean   

 
1.2528 
1.1237 
1.1817 

 
1.2592 
1.2811 
1.2701 

 
1.1149 
0.9776 

 

 
1.2785 
1.1424 
1.2036 

 
1.3007 
1.3236 
1.3122 

 
1.1191 
0.9827 

 

 
1.2768 
1.1394 
1.2017 

 
1.2973 
1.3279 
1.3126 

 
1.1199 
0.9621 

 

 
-0.0239 
-0.0157   
-0.0200 

 
-0.0381   
-0.0468 
-0.0424 

 
-0.0050 
0.0156 

 
0.0358 
0.0311 
0.0245 

 
0.0345 
0.0789    
0.0431 

 
0.0447 
0.0678 

 
1.2065 
1.0695 
1.1488 

 
1.2290 
1.1510 
1.2174 

 
1.0340 
0.8321 

 

 
1.3459 
1.1895 
1.2483 

 
1.3621 
1.4596 
1.3897 

 
1.2061 
1.0994 

 
  
Notes:  CI = Confidence Intervals are all at the 0.95 level;  AgEf. = aggregate efficiency, MeEf = mean efficiency; 
RDA,Z;Ag and RDA,Z;Mean  are RDA,Z; for aggregate (weighted mean) and (non-weighted) mean efficiencies, respectively; 
‘True’ estimates are obtained by aggregating (with appropriate weights) the ‘true’ efficiencies that were drawn from the 
specified above densities when constructing the example. ),( ZA κκ =(0.7, 0.7); estimation time  =  1017.8 (sec.) 

 

                                                                 
10 The boundary issue is dealt with Silverman  (1996) ‘reflection’ method; bandwidth is by Sheather and Jones (1991). 
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Perhaps the first thing that catches the eye in Table 2 is that the estimated aggregate 

efficiencies are, as expected, biased downward for the ‘true’ ones and that the bias correction makes 

them closer to the truth, with a little noise.  The confidence intervals cover the true quantities.  

Overall, despite the fact that our estimator knew almost nothing about the true DGP, it still 

produced good estimates of the aggregate efficiencies, after applying our bootstrap procedure. 

The most important observation is that the point-estimates of the non-weighted means tell us 

that the sub-group A is more eff icient relative to the sub-group Z, while the point-estimates of the 

aggregate  efficiencies (weighted means) tell us the opposite story.  The bootstrap confidence 

intervals (CIs) for these efficiencies suggest that the difference between the non-weighted means is 

not statistically significant, while it is significant for the aggregate efficiencies.  This last argument 

is also supported by the bootstrap CIs for our RD-measure—applied for comparison of sub-group 

efficiencies using the weighted means (RDA,Z;Ag) and using the non-weighted means (RDA,Z;Mean). 

All this supports the corner-stone argument of our research: Tests on sample means of 

estimated DEA efficiencies may lead to quite different conclusion than the tests based on aggregate 

efficiencies, whose weights account for economic importance of each firm in the sample. 

 
5.2. Example 2: Two-outputs-two-inputs  
 
Here we modify the example from Park et al., (2000). We assume the technology is characterized by 

the Shephard’s output distance function of the following simple form:  
3.0

2
2.0

112 )()/()(),( xxyyyxDo +=  
 
For both sub-groups A and Z, the two inputs are drawn from Uniform(0,1).  The outputs are 

generated by first drawing the pseudo-outputs, kly ,
1

~  and kly ,
2

~ , from Uniform(0.2,1) for both sub-

groups, which are then used to generate random rays in the output space characterized by the slopes 
klklkl yys ,

2
,

1
, ~/~=  for each k in each l (l=A,Z), which are in turn used to generate the efficient outputs 

(i.e., when 1),( =yxD o ) as: )1/()()( ,3.0
2

2.0
1

,
,1 += klkl
eff sxxy , and kl

eff
kl
eff yxxy ,

,1
3.0

2
2.0

1
,
,2 )()( −= .  

Finally, the ‘realized’ (or observed) outputs are constructed as klkl
eff

kl TEyy ,,
,1

,
1 /= ,  

and klk
eff

k TEyy ,
,22 /=  where, ))(,(~)|(,1 2,,, xNxuuTE ll

klklkl σµ++= , for all  k,  l = A, Z.  

Here we assume that 0,1.0 =−= ZA µµ , and now inefficiency is heteroskedastic for both  

type of firms, however in a very different manner.  For the Z-type firms, Zxx ZZ
γσσ )1()( 1−= , 
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while for the A-type firms: Axx AA
γσσ )()( 1⋅= , that is, the A-type firms here tend to be more 

inefficient as they use more of the input 1x (e.g., increase in number of employees may increase the 

asymmetric information problem between the employees and management and thus lead to decrease 

in firm’s efficiency).  Again, for the purpose of supporting the message conveyed by Table 1 above, 

we set 7.1,5.0 == ZA σσ  and 5/1,3 == ZA γγ .  Figure 3 visualizes this scenario with the 

kernel-estimated densities of true and DEA-estimated efficiencies for each group. 

<Insert Figure 3 here> 
 
Table 3.  Estimation results for Example 2. 
 

  
DEA Estim. 

 

 
True Estim. 

 

 
Bias Corr. 

Estim. 
 

 
Estim. 
Bias 

 
Estim. 

St. Dev. 
 

 
Est. lower 
CI bound 

 
Est. upper 
CI bound 

 
 

AgEf. A  
AgEf. Z 
AgEf. 

 
MeEf. A  
MeEf. Z 
MeEf. 

 
RDA,Z;Ag 

RDA,Z;Mean  
 

 
1.2083 
1.1081 
1.1573 

 
1.2700 
1.2990 
1.2134 

 
1.0904 
0.9733 

 

 
1.2718 
1.1591 
1.2144 

 
1.3138 
1.3141 
1.3139 

 
1.0972 
0.9998 

 

 
1.2787 
1.1561 
1.2168 

 
1.3154 
1.2852 
1.3003 

 
1.1068 
0.9045 

 

 
-0.0704 
-0.0480   
-0.0595 

 
-0.0834   
-0.0904 
-0.0869 

 
-0.0164 
0.0688 

 

 
0.0312    
0.0268 
0.0202 

 
0.0345 
0.0516    
0.0309 

 
0.0408    
0.0570 

 

 
1.2118 
1.0965 
1.1731 

 
1.2435 
1.1688 
1.2331 

 
1.0252 
0.7968 

 

 
1.3360 
1.2000 
1.2540 

 
1.3779 
1.3673 
1.3543 

 
1.1885 
1.0209 

 
 
Notes:  CI = Confidence Intervals are all at the 0.95 level;  AgEf. = aggregate efficiency, MeEf = mean efficiency; 
RDA,Z;Ag and RDA,Z;Mean  are RDA,Z; for aggregate (weighted mean) and (non-weighted) mean efficiencies, respectively; 
‘True’ estimates are obtained by aggregating (with appropriate weights) the ‘true’ efficiencies that were drawn from the 
specified above densities when constructing the example. ),( ZA κκ =(0.7, 0.7);  Time of estimation  = 1827.1 (sec.) 
 
 

Table 3 presents the results of estimation and the first thing that must catch the eye here is 

that again the estimated aggregate efficiency scores are quite far from the ‘true’ ones and, 

remarkably, the bias correction definitely improves our estimate.  The confidence intervals also 

cover the true quantities.  Overall, despite all the complications we have imposed in our scenario we 

still recover the truth very well with our bootstrap application to DEA estimates.   

Note that the point-estimates tell us that the efficiency scores of the two sub-groups, A and 

Z, are very similar when the non-weighted means are used, but quite different when the aggregate 

efficiencies are used.  In turn, the bootstrap CIs for these efficiencies and for the RD-measures 

suggest that the non-weighted means are not significantly different from each other, while the 

aggregate efficiencies of the two sub-groups do differ significantly.   
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All this gives another support for the argument given in Table 1, and illustrates that the 

method we propose in this paper helps making inferences in a quite complex environment, but with 

a fully non-parametric approach, where the knowledge of that complexity is not required. 

 

5.3  Example 3: Two-outputs-two-inputs  
 
Here we modify the example above under assumption that the two groups share the same 

distribution.  In particular, we assume that 0== ZA µµ   and 35.0)()( == xx ZA σσ , and the rest is 

the same as in the example 2.  The goal is to see if our method generates any ‘spurious’ difference 

between the groups.  Although both groups have the same underlying DGP, the particular draws we 

got look a bit different even in terms of estimated densities based on true efficiencies, as revealed by 

Figure 4 (panel i), but this difference is not exaggerated (but mimicked) when the DEA-estimates 

are used instead (panel ii).  It is still possible, in principle, that the weights happen to be distributed 

such that the aggregate efficiencies look different in estimation and in a bootstrap iteration.  The 

results of bootstrapping aggregate DEA scores are given in Table 4.  

 
Table 4.  Estimation results for Example 3. 

 
  

DEA Estim. 
 

 
True Estim. 

 

 
Bias Corr. 

Estim. 
 

 
Estim. 
Bias 

 
Estim. 

St. Dev. 
 

 
Est. lower 
CI bound 

 
Est. upper 
CI bound 

 
 

AgEf. A  
AgEf. Z 
AgEf. 

 
MeEf. A  
MeEf. Z 
MeEf. 

 
RDA,Z;Ag 

RDA,Z;Mean   

 
1.1306 
1.1591 
1.1445 

 
1.1487 
1.1746 
1.1617 

 
0.9754 
0.9816 

 

 
1.2229 
1.2405 
1.2315 

 
1.2577 
1.2757 
1.2667 

 
0.9858 
0.9859 

 

 
1.2082 
1.2520 
1.2285 

 
1.2384 
1.2781 
1.2571 

 
0.9625 
0.9734 

 

 
-0.0776 
-0.0929   
-0.0841 

 
-0.0897   
-0.1035 
-0.0954 

 
0.0130    
0.0082 

 

 
0.0327    
0.0286 
0.0203 

 
0.0365    
0.0331    
0.0237 

 
0.0424    
0.0472 

 

 
1.1339 
1.1895 
1.1846 

 
1.1513 
1.2048 
1.2056 

 
0.8753 
0.8778 

 

 
1.2586 
1.3006 
1.2631 

 
1.2948 
1.3318 
1.2967 

 
1.0404 
1.0596 

 
 
Notes:  CI = Confidence Intervals are all at the 0.95 level;  AgEf. = aggregate efficiency, MeEf = mean efficiency;  
RDA,Z;Ag and RDA,Z;Mean  are RDA,Z; for aggregate (weighted mean) and (non-weighted) mean efficiencies, respectively; 
‘True’ estimates are obtained by aggregating (with appropriate weights) the ‘true’ efficiencies that were drawn from the 
specified above densities when constructing the example. ),( ZA κκ =(0.6, 0.6);  Time of estimation  =  971 (sec.) 
 

As in the example above, the point-estimates of the aggregate DEA-efficiency scores are 

quite far from the ‘true’ ones and the bias correction does a good job improving them.  The 
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bootstrap CI’s cover the true quantities and overlap for the two sub-groups.  The tests based on the 

RD-measure also suggest that the two sub-groups are not statistically different from each other both 

in terms of the aggregate efficiencies and in terms of the sample means. Thus, when the groups have 

identical DGP, the group-wise heterogeneous sub-sampling bootstrap (which does not take into 

account information that the DGP is the same for both sub-groups) does a good job estimating the 

true model.  

 

6.  Conclusion 
 
In this paper we have merged two streams of the current literature in efficiency analysis—bootstrap 

and aggregation—and thus proposed a new way of making statistical inference on the relative 

efficiency among the distinct sub-groups of (e.g., public vs. private) firms within a population.  

Simulations that we have tried, a few of which we presented here, suggest that the proposed 

methodology have a good potential to be very useful for practitioners and we are ready to share our 

code (for Matlab) to facilitate the use of the proposed method in empirical research.   

A natural extension of this work would be to provide extensive Monte-Carlo (MC) evidence 

of performance of the proposed methodology (including analysis of empirical size and power of the 

proposed test) for various scenarios.  Although it is quite a time-expensive exercise in itself, given 

that just one MC replication takes about 1000-2000 seconds (for 1133MHz, 253MB machine) for a 

2x2 case with 200 firms, it can shed light on the precision of the method we proposed under various 

circumstances.  Another useful extension for this work (and any other sub-sampling bootstrap 

application) is to develop a data driven method of choosing the sub-sample size, especially the one 

that maximizes the power of the proposed test for the comparison of aggregate efficiencies among 

different sub-groups.  This could be done along the lines of the iterated bootstrap procedure 

proposed by Kneip et al. (2003b). 
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APPENDIX 

Proof of (2.2.4).  

Recall that Nk
N

kk xxx +ℜ∈= )',...,( 1  and Mk
M

kk yyy +ℜ∈= )',...,( 1  are input and output vectors, 

respectively, of a particular firm k (k = 1, …, n).  Input allocation over the entire group of n firms is 

denoted with a (N by n) matrix ),...,( 1 nxxX = .  Now suppose the entire group of firms must be 

partitioned into (non-intersecting) subgroups by some exogenous criterion.  Suppose there are L 

subgroups (indexed as: l = 1, …, L) with number of firms in each group l equal to a positive integer 

ln .  The input allocation among firms within a group l will be denoted by a (N by ln ) matrix 

),...,( ,1, lnlll xxX = .  In general, technology of a particular firm k ( lnk ...,,1= ) within a group l is 

assumed to be characterized by the output sets 
Nklklklklklkl xyproducecanxyxP +ℜ∈≡ ,,,,,, },:{)(     (A1) 

 
Technology of a particular sub-group l is assumed to be related to technologies of its firms as 

∑
=

≡
ln

k

klklll xPXP
1

,, )()(        (A2) 

which yields one of the main aggregation results we stated in the text as (2.2.4):  

∑
=

=
ln

k

klklll pxRpXR
1

,, ),(),(        (A3) 

where 
)}(:{max),( ,,,, klkl

y
klkl xPypypxR ∈≡      (A4) 

and 
)}(:{max),( ll

y
ll XPypypXR ∈≡      (A5) 

 
To prove this, for each lnk ...,,1= , take kly ,  to be an arbitrary vector in )( ,, klkl xP  and use them to 

define ∑ =
= ln

k
kll yY

1
, .  Because of (A2) we have )( lll XPY ∈ , and due to (A5), we obtain 

 
),( pXRYp lll ≤         (A6) 

 
Since kly ,  is an arbitrary vector in )( ,, klkl xP , it implies that (A6) also holds for those kly ,  that 

solve (A4), call them kly ,~ , in which case we would have 

),(),(~~
1

,,
1

, pXRpxRypYp lln

k
klkln

k
kll ll ≤=≡ ∑∑ ==

   (A7) 
 

On the other hand, let lY  be an arbitrary vector in )( ll XP , then due to (A2) there exist 

)( ,,, klklkl xPy ∈ , for each lnk ...,,1= , such that ∑ =
= ln

k
kll yY

1
, . Therefore, due to (A4) we have 
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∑∑ ==
≤≡ ll n

k
klkln

k
kll pxRpyYp

1
,,

1
, ),( ,      (A8) 

 
and since lY  is an arbitrary vector in )( ll XP , expression (A8) is also true for those lY  that solve 

(A5), call them lY
~

, in which case we get 
 

∑ =
≤≡ ln

k
klkllll pxRpXRYp

1
,, ),( ),(

~
     (A9) 

 
Clearly, expressions (A7) and (A9) can simultaneously hold if and only if  
 

∑ =
= ln

k
klklll pxRpXR

1
,, ),( ),( .      Q.E.D. 

 
One immediate implication from this conclusion is that if  L = 1, i.e., the subgroup is the entire 

group (thus indexing with l can be dropped, e.g., nl = n), then 

∑ =
=

n

k
kk pxRpXR

1
),( ),( ,       (A10) 

where 
)}(:{max),( XPypypXR y ∈≡       (A11) 

and 

∑
=

=
n

k

kk xPXP
1

)()(         (A12) 

 Another important implication is about the relationship between the maximal revenues of the 

sub-groups to the maximal revenue of the entire group.  In particular, since 

∑∑ ∑∑ == ==
==

n

k
kkn

k
klklL

l
ll pxRpxRpXR l

1

L

1l 1
,,

1
),(),( ),(   (A13) 

 
thus along with (A10) we get 

∑ =
=

L

l
ll pXRpXR

1
),( ),( .        (A14) 

 
This insures ‘internally consistent’ aggregation within and between the subgroups in the sense that 

k
n

k

kl
L

l

l
SRESRERE ⋅=⋅= ∑∑

== 11

,  k
n

k

kl
L

l

l
STESTETE ⋅=⋅= ∑∑

== 11

,    where  
Yp

py
S

k
k ≡ ,   and  

 

k
ae

n

k

kl
ae

L

l

l
SAESAEAE ⋅=⋅= ∑∑

== 11

,  where  
( )

( )∑ =

≡ n

k
kkkk

kkkk
k
ae

yxTEyp

yxTEyp
S

1
),(

),(
, k = 1, …, n.  
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Figure 1.  True technology set and observed firms (sub−group Z is indicated by ’x’) 
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Figure 2. Kernel−estimated densities of efficiencies for sub−group A and Z,              
                    estimated from true or DEA−estimates of efficiencies:  Example 1     
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Figure 3. Kernel−estimated densities of efficiencies for sub−group A and Z,              
                    estimated from true or DEA−estimates of efficiencies:  Example 2     
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Figure 4. Kernel−estimated densities of efficiencies for sub−group A and Z,              
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