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ABSTRACT

One important data-mining of microarray data is to dis-
cover the molecular variation among cancers. In microarray
studies, the number n of samples is relatively small com-
pared to the number p of genes per sample (usually in thou-
sands). Standard statistical methods in classification do not
work because there are far more variables than observations.
In this paper, the question of classification in such a high
dimension setting is addressed. We view the classification
problem as a regression one with few observations and many
predictor variables. We propose a new method combining
Partial Least Squares and Ridge penalized logistic regres-
sion. We review the existing methods based on PLS and /
or penalized likelihood techniques, outline their interest in
some case, explain theoretically their poor behavior. Our
procedure is compared with these other classifiers. The pre-
dictive performance of the resulting classification rule is il-
lustrated on two well known data sets: the Leukemia data
set and the Colon data set.

Keywords

gene expression, supervised classification, generalized lin-
ear models, logistic regression, partial least squares, ridge
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1. INTRODUCTION

The microarray technology generates a vast amount of data
by measuring, through the hybridization process, the levels
of virtually all the genes expressed in a biological sample.
One can expect that knowledge gleaned from microarray
data will contribute significantly to advances in fundamental
questions in biology as well as in clinical medicine.

One important data-mining of microarray data is to find out
classification of different cell types, predominantly cancer
types. To cite a few, Golub et al. [16] have considered clas-
sification of acute leukemia, Alon et al. [3] have addressed
the cluster analysis of tumor and normal colon tissues, and
Alizadeh et al. [2] for diffuse large B-cell lymphoma. The
approaches developed in these papers consists in several dis-
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crimination methods and machine learning methods (see [11]
for a comprehensive comparative study).

In microarray studies, the number of n of sample is rela-
tively small compared to the number p of genes, usually in
thousands. Unless a preliminary variable selection step is
performed, standard statistical methods in classification do
not work because there are far more variables than observa-
tions. One problem is the multicollinearity and estimating
equations becomes singular and have no unique and stable
solution. For instance, the pooled within-class sample co-
variance matrix in Fisher’s linear discriminant function is
singular if n < p 4+ 2. Even if all genes can be used as in
support vector machine technique, it seems to be not sen-
sible to use all the genes. Indeed, this use allows presence
of the noise associated with genes of little or no discrimi-
nation power. That inhibits and degrades the performances
of the classification rules in its application to unclassified
tumor. In this situation, dimension reduction is needed to
reduce the high p-dimensional gene space. In most previous
works mentioned, the authors have used univariate methods
for reducing the number of genes. Alternative approaches
to handle the dimension reduction problem can be used (see
for instance [33; 17; 29; 5]).

Similar data structures have been seen in the field of chemo-
metrics. The method of Partial Least Squares (PLS) has
been found to be a useful dimension reduction technique [34;
28; 20] as well as Principal Component Regression (PCR,
[26]) (see [14] for a statistical view of PLS and PCR). In
the context of microarray, the purpose of PCR (see [33])
is to produce orthogonal tumor descriptors that reduce the
dimension to only few gene component (super-genes). But
the dimension reduction is achieved without regards to the
response variation and may be inefficient. This is the rea-
son why PLS looks more adapted than PCR in dimension
reduction problem. Indeed, PLS components are chosen so
that the sample covariance between the response and a lin-
ear combination of the p predictors (genes) is maximum.
Nguyen and Rocke [29] proposed using PLS method for a
dimension reduction as a preliminary step to classification
using linear logistic discrimination (LD), linear or quadratic
discriminant analysis. However, it seems to be intuitively
unappealing because PLS is really designed to handle contin-
uous responses and especially for models that do not suffer
from heteroscedasticity as it is the case for binary or multi-
nomial data. Furthermore, in practice we have observed



problems in the convergence of the Iteratively Reweighted
Least Squares (IRLS) algorithm, which is the usual proce-
dure for solving the maximum likelihood in the field of the
generalized linear model (GLM). Indeed, for logistic regres-
sion, it is well known that convergence poses a long standing
problem. Infinite parameter estimates can occur depending
on the configuration of the sample points in the observation
space (see [1]).

Marx [25] proposed an extension of PLS to categorical re-
sponse variable and illustrates the developments from a spec-
troscopy example. lts approach embeds the usual PLS steps
within the IRLS. Unfortunately, we have observed that this
algorithm does not converge.

To deal with the high dimension problem, another approach
consists in penalizing the likelihood. Eilers et al. [12] pro-
pose to use the Ridge penalized logistic regression in order to
both stabilize the statistical problem and remove numerical
degeneracy due to multicollinearity. They have shown that
this method appears to work well with microarray data. No-
tice that this method is not a dimension reduction technique.
Indeed all explanatory variables are allowed into the regres-
sion model. From the log-likelihood a so-called ridge penalty
is subtracted, that discourages regression coefficients to be-
come large, unless they really contribute to the predictive
performance of the model. All the genes contribute and that
can inhibit and degrade the performances of the classifica-
tion rules.

In this paper, we extend the PLS method to categorical
response variable. To do that, we want to find a pseudo-
response variable whose expected value has a linear rela-
tionship with the covariates, and apply PLS. In the IRLS
algorithm, the pseudo-response variable seems to be a good
candidate. Unfortunately in our situation “small n, large
p”, IRLS no longer works since the maximum likelihood
does not admit a solution. The idea developed here is to
penalize with Ridge penalty the maximum likelihood. That
is our procedure combines Ridge penalty and PLS step and
the dimension reduction step is incorporated in the classifi-
cation step. Here we present classification rule for response
variable as a binary vector indicating normal or ovarian tu-
mor, for instance. Nevertheless, our approach remains valid
for categorical response. But the binary case is the simplest
case which allows us to point out that such a procedure
works well or not and why. We review the existing methods
based on PLS and / or penalized likelihood techniques, out-
line their interest and in some cases, explain theoretically
their poor behavior. Our procedure is compared with these
other classifiers. They are applied to two different microar-
ray data sets: Acute Myeloid Leukemia (AML) versus Acute
Lymphoblastic Leukemia (ALL) and normal colon tissues
versus tumor colon tissues.

This paper is organized as follows.

Section 2 is the methodological part of this paper. Sec-
tion 2.1 contains a description of the logistic regression and
linear discrimination. Then, in Section 2.2, we recall and
analyze some known regularization methods such as Partial
Least Squares and penalized maximum likelihood methods.
Section 2.3 is devoted to the analyses of the Nguyen and
Rocke’s algorithm and Marx’s algorithm; finally, we end this
methodological part by considering PLS extensions to GLM
based on the Ridge’s penalty, and derive a new classification
method (section 2.4). Applications to disease classification
through Microarrays are presented in Section 3.

2. METHODS

2.1 Logistic regression and linear logistic dis-
crimination

After introducing some notations in the first subsection, we
recall the principle of linear logistic discrimination (Subsec-
tion 2.1.2) and some results on the existence of the maxi-
mum likelihood estimator and the classical algorithm used
to compute it (Subsection 213)

2.1.1 Notations

Expression level of p genes for n microarray samples are col-
lected in a nxp data matriz X = (z;),1 <i<n,1<j<p.
The entry x;; is the expression level of the variable “gene” 7
in the microarray sample i. The design matrix Z := (1,,, X)
of size n x (p + 1), where 1,, := (1,---,1)/ stands for the
row vector of length n, and the symbol ’ denotes the trans-
position operator, is used when an intercept is included
into the regression model. In supervised classification, each
microarray sample is thought to originate from a specific
class k € {0,...,g}, where the number of possible classes
g is known and fixed. The data consists of n (statisti-
cally) independent observations of (Y, X), stored in (y, X)
where X;. = (x“, e, xip) is the vector of a gene expression
profile and y; is a discrete-valued label variable. That is
(Xi')1<z‘<n, are the predictor variables and (yi)1<i<" the re-
sponse variables. A classifier can be regarded as a function
G : R? — {0,...,g} that predicts the unknown class label
of a new tissue sample z € R” by G(z). In this contribution,
we restrict our attention to the binary problem where the

variable Y is {0, 1}-valued.

2.1.2 Linear Logistic Discrimination

In logistic regression, the regression function is given by the

the conditional class probability = := P(Y = 1|X = z). The

model consists in relating = to the linear predictor n
ni=a+z'f=2z5 y = (oz,,Bl) e RPT, (1)

through the response function kA such that = = h(n). We
opt for the logit model where

(n) = —22l1)_

7= h(D) = T een () @n::h_l(ﬂ)=1n< T ) (2)

1—7
The log-likelihood of the observations y = (y1,-++ ,yn»)’ for
the value v of the parameter is given by (the dependence
upon the observations and the covariates is omitted)

(7)== Y {yrme(y) +In (1 + exp(nx(7))} (3)

where for all 1 < &k < n,

(7)== (Z7)k- (4)

This is a (univariate) generalized linear model (GLM) with
canonical link [27].

Observe that the choice of a {0,1}-code to model the di-
chotomic classification is not at all restrictive, and can be
substituted by any binary code {a, b}, for some a < b. If Y
is {a, b}-valued, then Y = (Y —a)/(b—a) is {0, 1}-valued
and the log-likelihood of Y is given by

Y log(r) + (1 — )N’) log (1 —m).



This shows that in the case of a {a, b}-valued response vari-
able, all the results of the present paper applies by replacing
Y by the {0, 1}-valued response variable Y.

The vector of unknown parameter of the model v is esti-
mated by maximum log-likelihood. The predicted response
probabilities are obtained by replacing the parameter v with
its estimate in formulas (1) and (2). The predicted class of
each sample is § = T(451_4), where T, is the indicator
function. This classification procedure is commonly called
Logistic Discrimination (LD). In general, an optimal classi-
fication rule in terms of Bayes risk, could be determined by
minimizing the expected cost of misclassification ([23]). It
is given by

§= ]I(;r>g;"1’ (1-#)) (5)

where ¢(1]0) (resp. ¢(0]1)) is the cost when an observation
from the population 0 (resp. 1) is incorrectly classified as
1 (resp. 0). The LD procedure corresponds to a symmetric
cost z.e. ¢(1]0) = ¢(0[1).

2.1.3 Maximum likelihood estimate and Iteratively
Reweighted Least Squares (IRLS) algorithm

Regression analysis in GLM is based on likelihoods and pa-
rameter inference in such a case relies on the maximum like-
lihood (ML) method. Nevertheless, existence of a ML es-
timate i.e. a vector M such that ||| < oo which is a
(local) maximizer of the log-likelihood I, is not guaranteed.
We recall below known results on the existence of M for
logit model, and the classical algorithm used to compute
ML \when it exists - in the classical statistical framework
n>p+1.

The log-likelihood of the logit model is twice continuously
differentiable on RP*! and

V(y) = —Z'W(v)Z, (6)

where V? denotes the Hessian operator and W (v) is a diag-
onal n X n matrix with positive entries given by

W(7) := diag (7x(7) (1 = 7x(7))), (7)
and for all 1 <k < n,
m(7) := (1 + exp(=nk(7))) " - (8)

We denote by w(v) the vector of components mx(vy), k& =
1,...,n. Hence ! is at least concave and is strictly concave
if and only if Z is full rank and n > (p + 1). If 3M" exists,
it is computed as the solution to the score equation

Vi(y) =0« Z'(y — =(v)) =0, (9)

where V denotes the gradient operator.

When Z is full rank and n > (p + 1), Albert and Anderson
[1] showed that the existence of the ML estimate depends on
the configuration of the n samples points in the observation
space. There are three following exclusive situations.

(i) The points are separated i.e. there exists v such that

7'y >01if y; = an 7'y < 0ify; = 1. )
Zly>0ify; =0 d Zv<o0ify, =1 10

(ii) The points are quasi-separated i.e. (10) holds with
large inequalities and equality for at least one 2.

(ifi) The points overlap each other.

In the first two cases, ML estimate does not exist since [
reaches its maximum as ||v|| tends to 400, while it exists in
the third one. Santner and Duffy [31] derive an algorithm
to determine which of these three situations hold for given
data (y, 7). In the overlap case, (9) possesses an unique
solution, which in practice, is computed by the iterative
Newton-Raphson method. It consists in the construction of
a converging sequence (7“))%0 (with limit ™"} and such
that 'y(t+1) solves the equation in vy

2wy (7_7(0) _y (y —n(”)) ’ (1)

where W) .= W('y(t)) and 7(*) = n(v(t)). Since the Fisher
information matrix Z'W® 7 is invertible, solving (11) is
equivalent to regressing the pseudo-response variable 2"

2 = Z'y(c) + [VV(O] - (y - 71'(5)) , (12)

onto the columns of Z with the weight matrix w® e

0 =7 (7w Z)_l 2w 0, (13)
This algorithm is referenced in the literature as the ltera-
tively Reweighted Least Squares (IRLS) algorithm (see e.g.
Green [18] and references therein).

When Z is full rank and n < p+1, it is readily seen from (2)
that the unique solution to (9) is such that forall 1 < & < n,
(Z¥)r = In(yx) —In(1 — y&) so that |(Zv)x| = +oo for all k
and the ML estimate can not exist.

Finally, when Z is not full rank (which is unlikely for real
data sets), solutions to (9) are not unique.

2.2 Regularization methods

When n < p 4 1, which is the case in the considered ap-
plications, ML is not unique when it exists, so inference of
the parameter necessitates the introduction of new meth-
ods. A natural approach is to adapt the proposed methods
in the case n > p + 1 to overcome the non-existence prob-
lem. A first solution consists in reducing the dimension of
the problem, by replacing the p covariates of the initial data
matrix by few appropriately defined “super-covariables”. A
second solution consists in maximizing the log-likelihood un-
der constraints by introducing a penalty term; this yields a
penalized maximum likelihood estimate [4; 24; 19]. Notice
that these methods are not techniques of dimension reduc-
tion.

In this section, our goal is to describe some of theses tech-
niques, that appear, as discussed in Section 2.3, to be basic
ingredients for solving inference in GLM when n < p 4+ 1.
More precisely, we restrict our attention to three methods:
Partial Least Squares (PLS), Firth’s and Ridge penalized
regression.

2.2.1 \eighted Partial Least Squares (WPLS)

The Partial Least Squares (PLS) method, first introduced
in Chemometrics ([34; 28; 20]), can be read both as a tool
for (weighted) linear regression and as a tool for dimension
reduction.

For a given response vector y, a data matrix X and a posi-
tive definite n x n matrix W, the PLS scope is to convey the
relation between y and X through the definition of k scores
(t;)1<j<x, linear combinations of the columns of the design



matrix Z and such that

1, Wt; =0, Wi, =0, Vik=1,--,r j#k
(14)

Hence, this allows the decomposition
Yy=qln+aqti+-+guts + fx, (15)

where (g;)o<j<x are real numbers, the remainder term fy is

R"™-valued and

1. W f. =0, tWfe=0, Yj=1,-- -,k (16)
Principal Component Regression (PCR, [26]) provides a sim-
ilar decomposition, but in PCR, the scores are defined inde-
pendently of the response vector y. This is the reason why
PLS looks more adapted than PCR to solve the dimension
reduction problem in a regression framework. This method,
derived in the literature in the unweighted case (i.e. W = 1,,)
and thus simply called PLS, can naturally be extended to
the weighted case; this extension will be referred as WPLS.
As in the linear regression framework, the introduction of
a weight matrix is to take into account the heteroscedas-
ticity of the y variables. WPLS proceeds as follows (see
Section A.1 for an algorithmic description)

1. (a) Project y and the columns of X on 1,: set go :=
(y'W1,)/(1,W1,) and po := X'W1,,/1, W1,.

(b) Center the response vector and the data matrix
and define y° :=y — qo I, and X := X — T.p;.

2. (a) Choose t; as a linear combination of the columns
of X¢ i.e. on the form X°w; where w; is such
that w1 = |[(X°w1)'Wy®| is maximal; this yields
wy = X“Wy®and t; := X°X“Wy°.

(b) Project y© and the columns of X on ¢1: set ¢1 :=
(Y'Wt) /Wt and pr := (X'Wi) /L1 W .

3. Forj=1,--+,k—1, repeat step 2 by replacing (y“, X°)
with the deflated matrix y© — qit; — -+ — g;t; and
X¢—tiph — - — t;p).

The first score 1 is thus chosen as the vector in the space
spanned by the columns of X ¢ denoted by Sp(X°), maxi-
mizing the scalar product |[¢'Wy*€| or, equivalently, maximiz-
ing the weighted empirical covariance |C0V(\/Wt, \/Wycﬂ
(\/W denotes the square root matrix of W). In this sense,
ty is the vector of Sp(X°) which is the most informative
on the response variable y©. This information contained in
t1 is then subtracted to y“, and t2 is chosen as the vec-
tor of Sp(X“) which is the most informative on the unex-
plained part of y“, under the constraint that t» and ¢, are
W-orthogonal. This process is repeated until the number
of scores reaches k. From this algorithmic description, it
is easily seen that for given (y,X,W), the scores are un-
changed if the response vector y is multiplied by a constant
A or translated by adding a vector collinear to 1.

As discussed in Helland [21], the maximal number of scores
Kmax depends both of y, W and X. It is the number of dis-
tinct eigenvalues of X ¢'W X such that there exists at least
one corresponding eigenvector v such that »'X“'Wy* #£ 0.
When K = Kmax, the vectors (In, b1, -+, txpay) form a basis
of the subspace of Sp(Z) that contains the W-projection of
y onto the columns of Z; in this case, the PLS algorithm is a

method to find the weighted least squares (WLS) predictor
of y with regressors Z:

WPLS(y, X, W, kmax) = WLS(y, Z, W) (17)
= WLS(VWy, VW Z,1,.),

where [, denotes the n x n identity matrix.

From the above description of WPLS, it is readily seen
that the score txr is on the form X“Yr where ¥ is a lin-
ear combination of the RP-valued vectors wg: ¢x € Sp(Qk),
Qp = (wl, ces ,wk). Hence, the regression coefficient vector
(with respect to the matrix X°) is a linear combinations of
the columns of Q., which is full rank by construction (for
r < nmax). Hence ﬁPLS’” is on the form Q.v. From (15)
and the decomposition

X =tipr + - 4 tepls + Ex,

where the columns of £, are W-orthogonal to the vector
space Sp(ln,f1, -+ ,tx), it is seen that for all 1 < k < &,
qr = prQv so that the WPLS predictor of y© is given by
XCBPLS,K and

ﬂ"PLS,n = QK(P;QK)—lq’ q/ = (q1, - ,QK)a (18)

where P, := (p1,++,px). The PLS estimate of v, computed
with & PLS components is

!
R S . ]I;lWX APLS,s N S s
§rESe = (qo A V[f]]l L) (19)

The choice of & is, to our best knowledge, an open problem:
the non linear dependence of 7%* upon the observations y,
makes an explicit control of the error term f,, =y — Z4F 15
impossible. The results proposed in the literature all rely on
crude simplifications of the dependence upon y ([8; 9; 30]).
In practice, in the methods mentioned below as well as in
our procedure, & is either arbitrarily fixed to a small value

or fixed to the maximal one.

2.2.2 Firth’s penalty

To solve the non-existence question of the ML, estimate in
logistic regression when n > p+1, Heinze and Schemper [19]
advocates the use of the Firth’s modified score procedure.
The work by Firth [13] was originally introduced to reduce
the bias of the ML estimate when exists, in the case where
7 is full rank n > p + 1. Observe that in that case, the
Fisher information matrix Z(v) for a canonical GLM exists
and is invertible for all v € RP+L MI, estimate in GLM is
known to be biased when exists; the bias is divided into
two terms b1 (vy) + O(n_3/2) where, for canonical model,
the O(n_1/2)-term bi(7) is equal to —Z(y)™" 7(v)/2, and
(7)== (11 (%), -+, Tp41(7))” with

(M) =Y 27, 0w 27,

t,u

= Trace (I(’Y)_la'yk [1(7)]) ’

where 9; denotes the partial derivative wrt the variable t. To
remove the first-order term, Firth [13] proposes a suitable
modification of the score function; denote by ¥* the solution
to the modified score equation ViI(y) + A(y) = 0 for some
A to be specified that may depend upon the observations.
Then the first-order term in the bias of ¥* is equal to

bi(v)+Z(v)”" Ey[A()],



where E., denotes the expectation when the true value of the

. AML - . .
parameter is 7. To correct 4~ in an estimate with reduced
bias (by removing the first-order term) it is thus sufficient
to choose

A() 1=~ (2) = 37(). (20)

By using classical linear algebra results (see e.g. [6]), A may
be expressed as a differential term and one has A(y) =
0.5 Vlog |Z(v)|, where | . | denotes the determinant. As a
consequence, the estimate ¥* can be seen as the maximum
of the penalized maximum likelihood

() i=12) + 3 og | ()} (21)

in a Bayesian framework, this penalty is known as the Jef-
freys invariant prior.

Firth [13] (see also [19]) asserts that, when the design ma-
trix Z is full rank and n > p + 1, 4" always exists and is
unique. In addition, this maximum can be computed by
slightly modifying the IRLS algorithm as follows ([13; 7]).
Since Z(v) = Z'W(7)Z, it is trivial to prove that

() = Trace {(Z'W(7)2)"' 2" 0., [W(1)]Z}
= Trace {Z(ZlW('y)Z)_lzl Oy, [W('y)]}

= —Zij (2m;(v) — 1) Hy5(7)

J=1

where H(y) := Z(Z'W(y)Z)™' Z'W(v). Hence, by using
(9) and (20), we obtain

VI*(v)=Z"(§(v) — =(7)),

where S’k(’Y) = yr + O.SHkk('y) and ﬁ'k('y) = Trk(’Y)(l —+
Hpg(v)) for all 1 < k& < n. In the literature, it is thus
proposed to exhibit 4* as the limiting value of the sequence
(’y(t))teN, where 5(:+1) solves the equation

2w (7 _ ?(t)) — 7 (S,(;/(:)) _ fr('?(t))) , (22)

and W) = W(’y(t)). This algorithm, based on a simplifi-
cation of the Hessian V2I*, is thus similar to the IRLS al-
gorithm, in which the response variables y (resp. the mean
w) are replaced with the current values of ¥ (resp. 7).

We do not think it is sensible to penalize the intercept pa-
rameter . A penalty on the whole parameter v is a kind
of boundedness condition around zero on the linear predic-
tor n and is thus restrictive. To avoid this, we introduce the
penalty only on the parameter 3. This leads to the following
penalized log-likelihood,

P (y) = 1(2) + 5 0B [Z(8)] = U(x) + 5 log | — V3I(7)],

the maximum of which can be computed by applying the
above algorithm where the matrix H(v) is replaced by

X(X'W(n)X)T X'W ().

2.2.3 Ridge penalty

In linear regression, the regression coefficient vector vy ob-
tained with the Ordinary Least Squares (OLS) is estimated
by minimizing the sum of squares S := ||y — Zv||> where ||-||
is the Fuclidean norm. When multicollinearity is present i.e.
rank(Z) < n A (p+ 1), the usual OLS estimator will not be
well-defined. That is the system has no unique solution and

some regression coefficients will be very large. Hoerl and
Kennard [22] propose to add to S the square of the norm of
the regression coefficients, weighted by a positive shrinkage
parameter A: S* = S + A/2 ||B]|*>. The estimator ¥ is given
by

¥=(2'Z+XR)"'Z'y,
where R is an (p+1) x (p+1) identity matrix with Ry; set to
zero. The second term of S, that can be read as a constraint
with Lagrange multiplier A/2, is called the penalty and dis-
courages high values for the elements of 3. This method is
called the Ridge regression.
As commented in the subsection 2.2.2, there is no reason
to penalize the intercept parameter «, which explains that
the penalty only applies on 3. The larger A, the stronger
its influence and the smaller the elements of 8 are forced to
be: A controls the amount of shrinkage in the data. Con-
cerning the choice of A, a very common approach is to use
cross-validation ([32]).
In the same spirit, we find ridge estimators in logistic regres-
sion ([24]). The authors propose to estimate y as a maxi-
mizer of the likelihood under the constraint that || ,3|| < oo
i.e. they introduce a ridge penalty term in the criterion [*
to maximize. As previously, this penalty does not apply
to the location parameter « but only concerns the last p
components of v so that

() = 1) — 21817, (23)

for some shrinkage parameter A > 0. A second practical
interest of the penalty term is that the maximum of I* al-
ways exists and 1s unique, whatever the size and the rank
of Z. Algorithms for research of an extremum to I* are
never vain as they may be for research of an extremum
to ! (see Section 213) I* is twice-continuously differen-
tiable and strictly concave since for any non null vector
H= (Hh T a“P+1)I € Rp+17 it holds

—p' VA (7) g 2 Alpl* 4 (1,W ()1, = M)t > 0.

In addition, {* tends to —oco when ||v|| = 400 since

() < ~ 2817 ~In(1+exp(m (4)) ~In(1 + exp(—na())),

where we assumed that y; = 0, and y, = 1 (which can
be done without loss of generality). As a consequence, !*
possesses an unique maximum " that can be computed as
the limit of a Newton-Raphson sequence (y(t))tzoz this leads
to an iterative algorithm that mimics IRLS. (11) is replaced
by

(2wO242R) (=) = 2" (y =) = Amy",
so that (13) gets into
1 =7 (2w Z 4+ AR) T w0,

and the definition (12) of the pseudo-response variable 2
is unchanged. The ridge parameter A can be estimated by
cross-validation.

2.3 Procedures using PLS

For solving the classification problem in the case n << p,
different algorithms based on the procedures detailed above
have been proposed. These methods consist in algorithms



that first derive a dimension reduction step to exhibit “super-
covariates” using PLS, followed by an inference step in which
the initial covariates are replaced by few super-covariates.
We now review these methods, outline their interest and in
some cases, explain theoretically their poor behavior.

Some of the discussions below are illustrated by applying
the methods to the classification of AML-ALL Leukemia
microarrays (see Section 3 for a complete description of this
data set): the data are divided into a learning set with 38
samples and a test set with 34 samples. The data matrix
is of size 38 X p, for some p to be precised, and the p genes
are selected as suggested in Dudoit ef al. [11]. This data set
also contains a test set with 34 samples.

2.3.1 Nguyen and Rocke’s (NR) approach

In [29], the authors use the PLS method with entries the
response vector and the data matrix X with x PLS compo-
nents for dimension reduction, as a preliminary step before
classification using LD (see the algorithmic description in
Appendix A.1). That is the matrix X used in the LD is
replaced by a matrix with few columns formed by the first &
PLS components. They have also compared the Quadratic
discriminant analysis to the LI analysis. Their method is
applied to various data sets and the results appear good.
Nevertheless it seems to be intuitively unappealing to ex-
tract PLS components in a first place, since this method
is really designed to handle continuous response and espe-
cially for models that do not really suffer from conditional
heteroscedasticity.

In practice, we observed problems in the convergence of the
NR algorithm. When using the LLD on the Leukemia data
set, for example, the PL.S components form a new data ma-
trix such that the 38 samples points in the observation space
are separated. In Figure 1, we plot the (normalized) sec-
ond component ¢. 5 vs the (normalized) first one t.;; this
separation exists on the 38 coordinates of the first score
t.1, and hence in any k-dimensional space Sp(t. 1, - ,t. ),
K < Kmax.

Insert Figure 1 approximatively here.

As commented in Section 2.1.3, this shows that the IRLS
step of the NR algorithm can not converge: the linear predic-
tor, linear combinations of the PLS scores, tends (in norm)
to infinity and hence so does the parameter.

In practice, the authors advocates to stop the IRLS step af-
ter an arbitrary fixed number of iterations. This rule yields
an “unstable” classification method. When applied on the
Leukemia data set, we observed that the number of misclas-
sified samples of the test set depends upon the number of
iterations of the IRLS step. On Figure 2, we plot the es-
timates 4"F obtained respectively after ¢ = 7 and ¢« = 10
iterations, when p = 150 and k¥ = 3; we also plot the clas-
sification results on the test set (Out Of Sample analysis).
In the case ¢« = 7, the sample 66 is misclassified while in the
case ¢ = 10, the samples 60,66 are misclassified.

Insert Figure 2 approximatively here.

2.3.2 Marx’s approach

Marx [25] proposes an extension of the concept of PLS into
the framework of generalized linear models and illustrates
the developments from a spectroscopy example. His ap-
proach is based on an algorithm called [teratively Reweighted

Partial Least Squares (IRPLS, see the algorithmic descrip-
tion in Appendix B.2). The key idea is first to try to find
a pseudo-response variable whose expected value has linear
relationship with the covariates; and then to apply WPLS.
To that goal, IRPLS differs from IRLS in the regression
step (13). Since Z'W® Z is not invertible, the weighted re-
gression of the pseudo-response variable 2 onto the columns
of Z is replaced by a weighted partial least squares step
applied to (y, X, VV(t)) and run until the components are
x = rank(X°). The first s WPLS components obtained at
“convergence” of this step are then used as columns of the
new data matrix X"*%. A classical IRLS step is then per-
formed to regress y onto the columns of [T, X"*"] in the
ML sense. Some problems appear in the implementation of
this algorithm.

The first objection is about the choice of & in the calls to
the WPLS function. As mentioned in Section 2.2.1, the
maximal number of components Kmax 1s lower or equal to
rank(XC). Hence, the last (rank(Xc) — nmax) PLS compo-
nents, if non null, are nothing else than “noisy null vectors”.
The second objection is about the convergence of the IR-
PLS step. Equation (11) means that the new value F(t41)
chosen such that vW(t)Z'y(H'l) is the orthogonal projection
of VW®2z® onto the columns of VW® Z. In addition, as
discussed in Section 2.2.1, WPLS applied with &max com-
ponents is a way to solve (11) without “inverting the non-
invertible” Hessian matrix. Hence, IRPLS can be read as a

is

robust implementation of the Newton-Raphson’s procedure,
that produces a sequence ('y(t))tem such that 'y(H'l) solves
(11). Unfortunately, if the Hessian Z'W Z is nowhere
invertible, the sequence (’Y(t)):eN does not necessarily con-
verge. This phenomenon can be observed on the Leukemia
data set [p = 100]. On Figure 3, we plot some components
of n(t) = Z'y(t) and of the estimate 'y(‘) vs the number ¢ of
IRPLS loops.

Insert Figure 3 approzmimatively here.

The third objection is the sensibility of the IRPLS step to
the initial value. If convergence, the limiting value v is a
solution to (9). Since this solution is not unique, the limiting
point depends upon the initialization: different initial values
lead to different WPLS components and hence may lead to
different classification rules.

We finally conclude this analysis by showing that, in some
cases, a strict implementation of the algorithm described
in Marx can not run since the iterative procedure IRPLS
does not converge; and if stopped after a fixed number of
iterations, the Marx’s algorithm provides the same result as
the NR algorithm. This occurs when, as suggested by Marx,
the IRPLS is initialized by choosing a linear predictor on the
form

© = oy — co(,, — y); (24)

and for data sets (y, X) such that the maximal number of
WPLS components relative to (y, X, 1,) is equal to rank(X°).
In the classical statistical framework n >> p + 1, the lit-
erature advocates an initialization such as (24): usually,

70 = (y + 0.51,,)/2, which leads to co = In(3). A triv-

n



ial induction shows that for all ¢ > 0,

w® = exp(ct)/(1+ exp(ct))2ln
(t)

is a scalar matrix,

20 =cipy —cig1(ln —y),  cipr =1+ e +exp(—cr),

n(t+1) =,

The last assertion results from the fact that Kmax = rank(X°)
and W is a scalar matrix, so that the projection of 2
on Sp(Z) and the variable 2 coincide. This shows that
|c¢| tends to infinity and so does ||77(t) ||. Finally, the pseudo-
response variable z® inherits the structure of y (i.e. zlgt) =
¢t if yr =1 and —c; otherwise). From the PLS description
(Section 2.2.1), we see that since 2 = 2¢,y — ¢, 1, and
w s proportional to the identity matrix I,, the WPLS
components computed from (z(t),X,W(t)) are the same as
the WPLS components computed from (y,X,1,). Hence
NR’s algorithm and Marx’s algorithm lead to the same pre-
diction/classification analysis.

The condition Kmax = I'ank(Xc) is satisfied for example
when (a) X°X° has (n — 1) distinct eigenvalues, and (b)
for any eigenvectors v; of X X¢ y'X; # 0. This is the
case for example for the Leukemia data set [p = 100].

Insert Figure 4 approxzimatively here.

The equivalence of the two procedures can be visualized:
each of the first four WPLS components are drawn in Fig-
ure 3 [p = 100].

Insert Figure 5 approxzimatively here.

Hence, the Marx’s classification algorithm inherits the in-
stability of the NR’s classification algorithm.

In a recent work, Ding and Gentleman ([10], private com-
munication) propose an algorithm based on Firth’s penalty
in order to make the Marx’s algorithm “robust”. We have
some troubles with the preliminary version of their paper,
in particular because they formulate a condition in terms
of the determinant of the Fisher information matrix which,
even if, in the case n > p + 1 this quantity is not defined.
A solution could consist in changing the parameterization
of the model - till now based on -, since this parameter
is not identifiable when n < p + 1, which leads to a non-
invertible Fisher matrix. This approach will be treated in a
forthcoming paper.

2.4  AnewPLSextension based on Ridge penal-
ty

In this subsection, a new algorithm based on Ridge penalty

extending PLS is proposed that seems to overcome some of

the mentioned problems. Before that, we review the Eilers

et al. ’s approach based on the Ridge penalized maximum

log-likelihood.

2.4.1 Eilers et al. ’s approach

Eilers et al. [12] propose to use the Ridge penalized logistic
regression approach in order to both stabilize the statisti-
cal problem and remove numerical degeneracy due to multi-
collinearity. Furthermore they have shown that this method
appears to work well with microarray data. The algorithm
derived in Eilers et al. [12] is presented in Appendix B.3.

The Eilers et al. approach consists in using the regression co-
efficient vector 4® that maximizes the penalized maximum

likelihood criterion (23) in order to estimate the predicted
response probability # using (1) and (2). The classification
rule differs from LD and may be retrieved by using (5). LD
consists in choosing the cost such that the conditional er-
ror probabilities ¢(0]1) and ¢(1]0) are equal. The Kilers’s
approach comnsists in choosing the costs such that the error
probabilities are equal: ¢(1|0)P(y = 0) = ¢(0|1)P(y = 1).
Since P(y = 0) and P(y = 1) are unknown, they are re-
spectively estimated by 1 — § and §¥ where § denotes the
empirical mean of the response variable y. This yields the
classification rule

y= H(ﬁ->%(1—7‘r)) =lsy)-

In their paper, the authors propose different approaches to
choose an optimal shrinkage parameter A, based either on
cross validation methods or on Akaike’s Information Crite-
rion; they use the second approach in their illustrations.

The Eilers’s et al. method does not reduce the dimension.
In particular, all the explanatory variables are allowed and
included into the regression model, which can deteriorate
the performances of the classifier. This is the reason why
we prefer to introduce a dimension reduction step as it is
now derived in the following subsection.

2.4.2 RIDGE-PLS procedure

In order to extend PLS to GLLM, we want to try to find a
pseudo-response variable whose expected value has a linear
relationship with the covariates, and then to apply PLS. In
the classical case when n > p + 1 and the ML admits a so-
lution, one can choose the pseudo-response variable at con-
vergence z° and apply WPLS (2, X, W™ k). This yields
an estimate of v, denoted ¥7~FI%* When we have a new
sample, the predicted response probability is obtained by
(14exp(=7))7", where 7j = [1,™%']37Y5% Indeed, roughly
speaking, the pseudo-response variable z°° can be seen as
2™ = Zv™ + ¢, where conditionally to ™" being the true
value of the parameter, ¢ is a centered vector of covariance
matrix equal to (W)L

When n < p+1 the ML does not admit a solution and we can
penalize the likelihood in order to avoid this problem. When
applying the Ridge penalty, we have the same interpretation
for the pseudo-response variable z® at convergence. As a
consequence, we propose a new procedure which combines
Ridge penalty and PLS, so called RIDGE-PLS. Let A be
some positive real constant and x be some positive integer.
This algorithm divides into three steps.

1. IRRLS Step
(2%, W*) «— IRRLS(y, X, \, 1)
2. WPLS Step
(T, W, 37~ PLSRy WPLS(2™, X, W™, k)
3. Classification Step
For a new sample z, compute

=105

Affect y =01if 7 < %, otherwise set ¥ = 1.



In this method we need a procedure to estimate an “opti-
mal” value of the parameter A from the data. We opt for a
leave-one-out cross-validation approach as described in the
following section.

Notice that the choice of & 1s beyond the scope of this paper
and will be addressed in a forthcoming work.

3. APPLICATIONS TO CLASSIFICATION
OF MICROARRAY DATA

We illustrate the interest of the approaches described above
by considering applications to classification of Microarray
data. More precisely, we will consider in turn the Leukemia
data set, and the Colon data set : the data matrix con-
sists of gene expression intensities obtained from Affymetrix
high density oligonucleotide arrays. They can be both down-
loaded from

http : [/sdmc.lit.org.sg/GE Datasets | Datasets.html.

The Leukemia data set, initially analyzed in Golub et al.

[16], contains 72 tissue samples with 7129 genes: 47 cases of
acute lymphoblastic leukemia (ALL), coded 0, and 25 cases

of acute myeloid leukemia (AML), coded 1. In [16], this data

set is divided into a learning set formed with 27 ALL sam-

ples and 11 AML samples; and a test set that collects the

34 remainding samples. (see [16] for a complete description

of the samples).

The Colon data set, initially analyzed in Alon et al. [3],

contains 62 tissue samples with 2000 gene expressions: 40

tumors tissues, coded 0, and 22 normal tissues, coded 1

(see [3] for a complete description of the samples) .

The MATILAB codes that implement the procedures on which
the paper focuses, are available upon request from the cor-

responding author.

3.1 Pre-selection of genes

The collected data are first pre-processed by tresholding
(Aoor at 100 and ceil at 16000); filtering (exclusion of genes
such that max/min< 5 and max - min < 500, where the ex-
tremum values are computed on the learning set); base 10-
logarithmic transformation. After this pre-processing step,
the number of genes remains large (for example, 3051 for
the Golub subdivision of the Leukemia data set), and many
genes have similar expression pattern. Before applying a
classification algorithm, a method of pre-selection of the
p most informative genes for disease discrimination is run.
Different pre-selection methods are proposed in the littera-
ture, [11; 16; 29; 5], and we choose the protocol of Dudoit et
al. [11] which is based on the ratio of the between-groups to
within-groups sum of squares of expression levels of a given
gene. The genes are then sorted by the value of this statis-
tic. In the following, p refers to the number of pre-selected
genes, collected in a n x p data matrix where n is the length
of the learning set.

3.2 Assessing prediction methods

We restrict our study to the Ridge-PLS algorithm for k =
1,2, and the FEilers et al. ’s algorithm, and to that goal,
follow the NR’s framework [29].

Out of Sample (OS), Leave one out (LO), Resampling: The
performance of the classification rule is assessed by three
kind of analyses, the first two ones being narrowly related.
In the OS approach, the parameters v of the classifier are

determinded on the learning set; and the error rate od clas-
sification 1s computed on the test set. In the LO approach,
the homogeneity of the learning set is analyzed: the learning
set (of length n) is successively divided into a learning set
of length (n —1) and a test set with a single sample. An OS
approach is applied and the leave-one-out error rate is the
mean of the n out of sample error rates. For the Leukemia
data set, we choose the learning set introduced in Golub [16];
for the Colon data set, we define at random a learning set
that contains 14 tumor samples and 28 normal samples:

43,12,14, 10,4, 50, 16, 2, 54, 18, 55, 60, 20, 8, 58, 19, 61, 49, 34,
44,26, 29, 40, 25, 33, 56, 15, 41, 32, 23, 17, 21, 36, 47, 37, 46, 57,
31, 35,52, 53, 28.

For both data sets, we investigate the case p = 50.

In the Resampling approach, the data set is divided at ran-
dom into a learning set and a test set, and an OS analysis
is performed. This procedure is (independently) repeated
N times and the resampling error rate is the mean of the
N out-of-sample error rates. In the following, we choose
N = 50; for the Leukemia data set, each learning set con-
tains 27 ALL samples and 11 AML samples; for the Colon
data set, each learning set contains 14 tumor samples and
28 normal samples. For both data sets, we investigate the
case p = 50.

Cross-Validation (CV): The Eilers et al.’s algorithm and the
Ridge-PLS algorithm both necessitate the determination of
a parameter A. This is done by cross-validation and the
criterion to be optimized is one of the criteria mentioned in
Filers et al. : we choose A that minimizes

> (yr— i), (25)

k=1

where —k means that the sample & 1s left out and the prob-
ability is estimated with the remaining (n — 1) samples of
the learning set. In the LD case, y» — 1 is lower or equal
to 0.5 when observation k is correctly classified; and the
smaller it is, the more accurate the prediction is. Hence, by
minimizing this quantity, one wants to minimize the number
of misclassification, to correctly classify a sample with “high
probability” (i.e. #_x close to yx) and to make an error of
classification with “low probability” (i.e. #_x close to 0.5).
In the LO analysis, the optimal value of A, denoted Aopt,
is determined by using N; linearly spaced values of log;, A
between lnin and lnax. For the Leukemia data set, N; = 6,
Imin = 70 and lmax = 100. For the Colon data set, N; = 14,
lmin = 35 and lnax = 700 when applying LO analysis to
the Eilers classification rule and Ridge-PLS-1; N; = 15,
lmin = 270 and lna.x = 340 when applying LLO analysis to
the Ridge-PLS-2. In the Resampling analysis, N; = 15,
lnin = 70 and l,.x = 1000 for the Leukemia data set and
N; = 15, limin = 100 and l,ax = 2000 for the Colon data set.

A remark on the Cross-Validation step Aopy is determined as
the minimum of the criterion (25), over a wide range of val-
ues. In some cases, the minimal value is reached while the
IRPLS step did not converge; indeed, even if the penalized
likelihood is strictly concave as shown in Section 2.2.3, the
concavity may be very “small” (for small values of A) so the
Newton-Raphson’s algorithm do not converge.

When the minimum is reached while IRPLS did not con-



verge, we do not accept this value and choose the minimum
over the values A such that all the IRPLS steps used in the
computation of the criterion converge. This phenomenon is
illustrated in Figure 6: for the Leukemia data set and the
OS analysis, we plot the evolution of the CV criterion vs A;
the points drawn with a o are not considered since they are
computed with non-converging IRPLS steps and hence are
not significant; while the points drawn with a x-mark are
taken into account. Hence, we say that the minimum is not
reached at A = 65 = 10'®! but at Aopt =75 = 10187,

Implementation of Filers et al.§ algorithm: We run the Eil-
ers’ algorithm, for different values of p. The IRPLS step is
initialized as suggested in (24) with ¢o = In(3), and stops
either if

sup  [+{"FV /4P —1] < 0.0, (26)
1<5<p+1
or when the maximal number of iterations, fixed at 20, is
reached.

Implementation of the Ridge-PLS algorithm: We run the
Ridge-PLS algorithm for different values of p and of the
number of PLS components, «. The initialization and the
stopping rule of the IRPLS step are the same as in the Eilers’
algorithm.

3.3 Results

Filers et al. vs Ridge-PLS: The assertions of this paragraph
are illustrated by considering an OS analysis on the Leukemia
data set, when p = 50, and for the CV criterion (25) -except
when specified-.

When comparing the Eilers’s method with the Ridge-PLS
one, we first observe that for the CV criterion (25), )\Ept ~
AORP:PLSJ (see Table 1 and Figure 9). This property is not
true in general and depends upon the CV criterion. For
example, for some of the mentioned analysis, we also con-
sidered a CV criterion based on the log-likelihood: we choose
A that maximizes

S {velog(hor) + (1 — yi) log(1 — &)} (27)

The results, given in Table 4, illustrate that )\Ept #* )\ORP_,GPLS’I.
We observed a similarity in the vector of regression coeffi-
cients 7y given by the Eilers’s algorithm 5% and the one by
Ridge-PLS-1 §R=PLS1 . {he last p components are more or
less equal and the two estimates differ from the intercept pa-

rameter. In Figure 7, we plot 4B 4R-PLSL apd 4R-PLS2,

in this case, ¥ = —2.2765 and '?F_PLSJ = 0.2183. This ob-
servation is not specific to the CV criterion in use, since the
same behavior can be observed when the Aqpt is determined
by using (27), as shown in Figure 10.

The different estimation of the intercept implies a significant
difference in the estimates 7, and a significant difference in
the classification result even if the classification rules are
different. In Figure 8, we plot the true class label of the test
samples vs their estimated probability 7; as in Filers et al.
[12], the labels are plotted with a random vertical shift. It
may be seen that the correctly classified samples (according

to the Ridge-PLS method) are classified with “high accu-
racy” i.e. 7 is close to y. The “sample of exception” is the
#67 which is known in the Leukemia data set literature to
be a problematic sample (and the sample #66 too; we re-
port in Tables 1 and 4, the estimated probability of being
in Class 1 of these two special samples).

Results of Tables 1 and 4 depend, by nature, upon the ho-
mogeneity of the learning set/test set. It is known that
the samples #32, 35,66, 67 of the Leukemia data set are of-
ten problematic : the first (resp. last) two ones are in the
learning set (resp. test set) of the OS analysis. Hence, the
presence of samples #32 and #35 in the learning set, induce
a bias which is visible on the LLO analysis 2. Whatever the
classification rule, these two samples are misclassified when
the inference of the parameter ¥ is based on the 37 remain-
ing samples.

This bias can be weakened by running a Resampling anal-
ysis. Tables 3 and 7 show that, for the CV criterion (25),
the Ridge-PLS algorithm is more outstanding, and the case
x = 2 appears slightly better than the case k = 1.

Some comments on the numerical results We end this section
with some comments of the results collected in Tables 1 to
7.

As commented above, samples #66 and 67 in the Leukemia
data set are often misclassified. In our case, #67 is always
correctly satisfied in the OS analysis. A strict reading of
Table 1 shows that the Ridge-PLS algorithm seems to be
a better classifier than the Eilers’ one. Nevertheless, we
must mention that the poor behavior of the Eilers’ algorithm
on this OS analysis may come from the choice of the CV
criterion; in their paper, Filers ef al. use a criterion based
on the Akaike’s Information criterion which must be more
favorable to their approach.

In the LLO analysis, we see that #32,35 are misclassified
whatever the methods; here again, the Eilers’ algorithm and
the Ridge-PLS-1 algorithm have a similar behavior, which
is slightly less accurate than the Ridge-PLS-2.

Finally, the Resampling approach confirms that the good
performance of the Ridge-PLS.

Concerning the Colon data set, the OS analysis shows that
the three methods have a similar behavior; observe that the
two or three misclassified samples are also misclassified by
Alon et al. [3] (more precisely samples # N34, T2, T30) and
by Furey et al. [15] (more precisely samples # N34,7'30).
As said above, the learning set was drawn at random, and we
observed that it contains 50% of the misclassified samples of
Alon et al. (more precisely, #N8,7T33,736,T37) and 50%
of the misclassified samples of Furey et al. (more precisely,
#T36, N8, N36, N34). Nevertheless, the methods are quite
robust and lead to results as nice as or better than what is
obtained in earlier works ([3; 5; 15]).

4. CONCLUSIONS

We have proposed a statistical dimension reduction approach
for the classification of tumor based on Microarrays gene
expression data. Our method is designed to address the
curse of dimensionality to overcome the problem of a high
dimensional gene expression space so commun in such type
of problems. We have extended the Partial least Squares
to binary response variable. The results on two real data



sets show that such an approach is successful. While we
have not illustrated the methodology for multi-class prob-
lems, we believe that our approach can be adapted for such
situations.
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APPENDIX
A. BASIC PROCEDURES

The procedures are described for the logit model. The in-
put variables of the algorithms described below are chosen
through

y Response vector, matrix n x 1.

X Data matrix, matrix n X p.

W Weight matrix, matrix n x n.

& Number of components, matrix 1 x 1.

A Shrinkage positive parameter, matrix 1 x 1.

A.l Function WPLS: (T, ¥, v.) = WPLS(y, X, W, k)
The following procedure is a slight modification of the orig-
inal one [20]. The instructions (x) are added to determine a
(p+1) x k matrix ¥ such that 7= Z¥ where Z := [1,, X].
1. meanY «— y'W1,/(T,W1,).
meanX «— T, WX/(1,W1,,).
fo ¢«—y —meanY 1,.
Fo +— X — 1,, meanX.
(*) ¥ +— 1.
2. Fork=1,.--- k&,
w(k) ¢— Ej_ W fr_1.
T(:, k) +— Er_w(k).
c(k) «— T, k)YWT(:, k).
P(:, k) «— E,_WT(:,k)/c(k).
q(k) «— frmaWT(:, k)/c(k).
Ex «— Ex_1 —T(:, k)P(:, k).
Jr — fo—1 —q(K)T'(:, k).
(¥) (2, k) — duw(k).
(%) ¥ «— ¥ (Ip — w(k)P(: k)').

!

3. B +— P(P'P) 'qand 7« ¢— (meanY — meanX g, ')

4. ¥(1,:) ¢— —meanX U and U(2:p+1,:) U,
5. Return

7', matrix n X K.

U, matrix (p+ 1) X k.

Yw, matrix (p+ 1) x 1.

A.2 Function IRLS: y = IRLS(y, X)

1. Choose 7(0) € RPH,
t+— 0.

2. While ||Av]|| > treshold,
17(5) — Z'y(t).

() (t)yy—1 !

) — ((1+exp(—nk N1<k Sn) .
Wt diag (W(t)(l - W(t))).

OO (Wu))‘l (y _ ,r<r>)_

MC DI (Z'W(f)z)_1 ZW0 0,
bt 1.
3. Return

~+1)  matrix (p+1)x1.

Fach loop of this algorithm is presented as an update of
the variable y. It is equivalent to define the methods as
iterative loops producing the parameters n. In that case,
it must be adapted as follows: initiahzation concerns n(o),
the loop starts with the definition of (¥ and ends with the

definition of 77(t+1). Finally, the stopping rule relies on the

variation of n.
A.3 Function IRPLS: T = IRPLS(y, X, x)
1. Choose 77(0) = (7750), cee ,7751,0))1 eERrR™
t+— 0.

2. While ||An|| > treshold,
!
7t — ((1 + exp(—m(:)))_1 1 <k<L n) .
W — diag (0 (1 - =(9)).

20 ) (W(t))‘1 (y _ ,rm)_

(T0+D) 7£t+1)) — WPLS(z, X, W k).
77(t+1) — Z‘y,(iH']).

t—t+1.
3. Return
T(Hl)7 matrix n X s.

WO+ matrix (p+1)xk.

A.4  Function IRRLS: v = IRRLS(y, X, A, switch)
Remind that by definition, R, is a (p 4+ 1) x (p + 1) matrix
such that R(2 : p+1,2: p+ 1) = I, and the first column
and first row are null vectors.

1. Choose 7(0) c RPtL
t +—— 0.

2. While ||Ay]|| > treshold,

77“) — Z'y(t).



P pa— ((1 + exp(—n}:)))_l7 1<k< n),.

W — diag (W(t)(] — w(t))).
20 0 4 (W(c))‘l (y _ W(t))_

-1
(#) 7D — (Z’W“)Z + )\Rp) ZW® L),
be—t41.
3. Return

If switch ==

~+D matrix (p+1) x1.

else

z(b)7 matrix n x 1.

VV(t)7 matrix n X n.

The update of 'y(H'l) in line (*) requires an inversion of a
(p+1) x (p+1) matrix, which is of large cost as discussed in
Eilers et al. [12]. By using SVD decomposition of the data
matrix X, this can be substituted by instructions requiring
the inversion of a (n + 1) x (n + 1) matrix. More precisely,
set X = UDV' and Z := [1,,,UD] where U (resp. V) is a
n X n (resp. pXn) matrix and 1) is a n x n diagonal matrix;
the instruction () can be replaced with the two instructions

50+ (2WOE 4 AR,) Terw 0,

S a) and 2] VAL,

B. ALGORITHMS
B.1 Nguyen and Rocke’s algorithm

1. WPLS step

(1,V) «— WPLS(y, X,1,,k) where & is chosen by
the user.

2. TRLS step

Ys+1 — IRLS(y,T(:,1 : s)) where s < & is chosen
by the user.

B le1, ¥(:,1: s)]ve41 where e is the first vec-

tor of the canonical basis of RPT1.
3. Classification Step

For a new sample z, compute

n= [1,$l]ﬁ/NR, = (1+ exp(—f]))_l.

Affect § = 01if 7 < 0.5, otherwise set ¥ = 1.
B.2 Marx’s algorithm

1. IRPLS Step
(T, ¥) +— IRPLS(y, X, Kmax)-
2. IRLS Step

Yst1 ¢— IRLS(y,7'(:,1 : s)), where s < & is chosen
by the user.

Set 4M «— [e1, U(:,1:8)]vey1 where e; is the first

vector of the canonical basis of RPT!,
3. Classification Step
For a new sample z, compute
i=[1,a19", &= (1+exp(—i))~

Affect § =0 if 7 < 0.5, otherwise set ¥ = 1.

1

B.3 Eilers’s algorithm

1. IRRLS Step
5% «— IRRLS(y, X, A, 0) for some positive A.
2. Classification Step
For a new sample z, compute
=[5, &= (14 exp(=7)) 7"

Affect § =0 if # < T, y/n, otherwise set ¥ = 1.
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Figure 1: 38 points with coordinates (t1x,t25) where ¢,
stands for the k-th component of the normalized j-th PLS
component. This shows that the points are separated. This
discrimination is induced by the first PLS component so the
IRLS step can not converge, whatever the number of “super-
covariates” used in the IRLS step.
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Table 1: Leukemia: Out of Sample

Aopt | # of misclassified samples | Comments
p=50 k=1 75 66 e = 0.3158 77 = 0.4611
k=2 79 57,60,61,66 mee = 0.2289 77y = 0.2112
Eilers 75 54,60,61,64,66 e = 0.0336 77y = 0.0812
p=150 k=1 166 66 Tee = 0.2942 77 = 0.4667
k=2 || 500 66 Tee = 0.0294 77 = 0.3188
Eilers || 150 54,60,61,62,64,66 e = 0.0338 77 = 0.0840
p=300 k=1 ]| 240 61,66 wee = 0.2689 7e7r = 0.3595
k=2 | 627 66 e = 0.2909 77 = 0.2656
Hilers || 240 54,60,61,62,64,66 e = 0.0393 77 = 0.0721
Table 2: Leukemia: Leave One Out
# of misclassified samples
p=50 k=1 28,32,35
k=2 32,35
Filers 28,32,35
Table 3: Leukemia: Resampling
| || k=1 | k=2 | Eilers |
Mean || 0.0523 | 0.0518 | 0.1047
Std 0.0461 | 0.0349 | 0.0476
Table 4: Leukemia: Out of Sample, CV criterion (27)
Aopt | # of misclassified samples | Comments
p=50 k=1 66 66,67 e = 0.4226 7g7 = 0.5355
k=2 74 57,60,61,66 e = 0.2403 77 = 0.2227
Eilers || 101 54,60,61,64,66 e = 0.0584 77 = 0.1143
p=150 k=1 180 66 e = 0.2540 77 = 0.4229
k=2 | 245 54,60,62,66 e = 0.2284 77 = 0.2489
Eilers || 185 54,60,61,62,64,66 e = 0.0521 77 = 0.1086
p=300 k=11 250 61,66 wee = 0.2544 7e7r = 0.3454
k=2 | 356 54,60,62,66 wee = 0.1757 7e7r = 0.1735
Eilers || 356 54,60,61,62,64,66 7ee = 0.0784 77 = 0.1183
Table 5: Colon: Out of Sample
Aopt | # of misclassified samples | Identification as in Alon ef al.
p=50 k=1 40 45,51 N34 T30
k=2 | 300 3,45,51 N34 T2,30
Eilers 40 3,45,51 N34 T2,30
p=150 k=1 100 3,45,51 N34 12,30
k=2 | 397 3,45,51 N34 12,30
Hilers 100 3,45,51 N34 12,30
Table 6: Colon: Leave One Out
# of misclassified samples | Identification as in Alon et al.
p=50 k=1 16,18,49,55,56 N8,9,36 133,36
K=2 15,16,43,49,50,55,56,57 N&8,29,33,36  '1'8,33,36,37
Hilers 16,18,49,55,56,57 N&,9,36  '1'33,36,37

Table 7: Colon: Resampling

|| k=1 | K=2 | Eilers |

Mean || 0.1430 | 0.1500

0.1440

Std 0.0693 | 0.0631

0.0787
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Figure 5: Normalized PLS components obtained “at con-
vergence” of the IRPLS step of Marx’s algorithm (y-axis)
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