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Abstract

The classical theory of rank-based inference is essentially limited to univariate linear models
with independent observations. The objective of this paper is to illustrate some recent exten-
sions of this theory to time-series problems (serially dependent observations), in a multivariate
setting (multivariate observations), under very mild distributional assumptions (mainly, ellipti-
cal symmetry; for some of the testing problems treated below, even second-order moments are
not required). After a brief presentation of the invariance principles underlying the concepts of
ranks to be considered, we concentrate on two examples of practical relevance: (i) the multivari-
ate Durbin-Watson problem (testing against autocorrelated noise in a linear model context), and
(ii) the problem of testing the order of a vector autoregressive model (testing VAR(p0) against
VAR(p0 + 1) dependence). These two testing procedures are the building blocks of classical
autoregressive order-identification methods. Based either on pseudo-Mahalanobis (Tyler) or on
hyperplane-based (Oja and Paindaveine) signs and ranks, three classes of test statistics are con-
sidered for each problem: (a) statistics of the sign test type, (b) Spearman statistics, and (c)
van der Waerden (normal score) ones. Simulations confirm theoretical results about the power
of the proposed rank-based methods, and establish their good robustness properties.

AMS 1980 subject classification : 62G10, 62M10
Key words and phrases : Ranks, signs, Durbin-Watson test, interdirections, elliptic symmetry,

autoregressive processes.

1 Ranks, signs, and semiparametric models

1.1 Rank-based methods: from nonserial univariate to multivariate serial

Rank-based methods for a long time have been essentially limited to statistical models involving
univariate independent observations. Except for a few exceptions (such as testing against bivariate
dependence, tests based on runs, tests for scale, or goodness-of-fit methods that do not address any
specific alternative), classical monographs (Hájek and Šidák, 1967 and Hájek, Šidák, and Sen, 1999;
Lehmann, 1975; Randles and Wolfe, 1979; Pratt and Gibbons, 1981; Hettmansperger, 1984; Puri
and Sen, 1985—to quote only a few) mainly deal with single-response linear models with indepen-
dent errors: one- and two-sample location, analysis of variance, regression, etc.

The need for non Gaussian, distribution-free and robust methods is certainly no less acute in
problems involving multivariate and/or serially dependent (time series) data. Rank-based meth-
ods for multivariate observations have attracted much attention in the late fifties and the sixties,
leading to a fairly complete theory of hypothesis testing based on componentwise ranks. A unified
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of the Communauté française de Belgique.

1



account of this line of research is given in the monograph by Puri and Sen (1971). Componentwise
ranks however are not affine-invariant, hence crucially depend on the (often, arbitrary) choice of a
coordinate system; as a consequence, they cannot yield distribution-free statistics. The resulting
tests are permutation tests; however, if invariance and distribution-freeness are lost, there is little
reason for considering permutations of componentwise rank vectors rather than permutations of
the observations themselves. The resulting theory therefore is not entirely satisfactory.

The interest for an adequate generalization of ranks and signs for multivariate observations
(still in the independent case) was revived in the nineties, with a series of papers by Oja, Randles,
Hettmansperger, and their collaborators: see Oja (1999) for a review. The signs and ranks we are
considering below belong to this vein, and we refer to Section 1.3 for details.

Despite the fact that some of the earliest and most classical rank tests (such as runs tests,
turning point tests, etc.) were of a genuine serial nature, no systematic and coherent theory of
serial rank-based statistics was constructed until the mid-eighties. The reason for this late interest
is probably the confusing idea that, since ranks are intimately related with independence or, at
least, exchangeability, they were inherently confined to the analysis of independent observations;
this idea however does not resist closer examination, since ranks, whatever their definition, always
should be computed from a series of residuals reducing to white noise under some null hypothesis to
be tested. Serial statistics based on the ranks of univariate observations or residuals were considered
in a series of papers (Hallin et al. 1985, Hallin and Puri 1988, 1991, 1994); see Hallin and Puri (1992)
for a review of rank-based testing in a (univariate) ARMA context.

The purpose of this paper is a combination of these two extensions of the classical theory:
time-series in a multivariate setting. Rather than giving a general exposition (for which we refer
to Hallin and Paindaveine 2003d), we concentrate on two important particular problems: a multi-
variate version of the classical Durbin-Watson test, and the tests allowing for autoregressive order
identification, namely, the problem of testing VAR(p0) against VAR(p0 + 1) dependence (reducing
to the Durbin-Watson problem for p0 = 0). In both cases, we limit ourselves to statistics of the
following three types: sign test statistics, Spearman statistics, and van der Waerden (normal score)
ones.

1.2 Ranks, signs, and semiparametric efficiency

The reader who is not familiar with local asymptotic normality (LAN) or tangent spaces safely can
skip this section, where we very briefly provide the theoretical justification for considering rank-
based methods in the analysis of a broad class of semiparametric models. Details can be found in
Hallin and Werker (2003).

Rank-based methods apply whenever the data are generated, through some model involving a
parameter θθθ ∈ ΘΘΘ ⊆ R

K , by some unobserved white noise (here, a k-dimensional one) with unspeci-
fied density f belonging to some class F of densities. The statistical models we are considering are
thus, typically, semiparametric ones, of the form

(
X (n),A(n),P :=

{
P

(n)
θθθ,f , θθθ ∈ ΘΘΘ, f ∈ F

})
. (1)

Assume that θθθ is the parameter of interest, whereas f plays the role of a nuisance. Whenever the
fixed-f parametric submodels of (1) are locally asymptotically normal (LAN) with central sequence

∆∆∆
(n)
f (θθθ), and provided that some other regularity assumptions are met, the theory of semiparametric

efficiency (see Bickel, Klaassen, Ritov, and Wellner 1993) stipulates that semiparametrically efficient

(at θθθ and f) inference can be based on the projection ∆∆∆
(n)∗
f (θθθ) of ∆∆∆

(n)
f (θθθ) along the so-called tangent

spaces.
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Another way of reaching semiparametric efficiency (still, at θθθ and f) is possible when the fixed-

θθθ submodels of (1) are generated by some group of transformation G
(n)
θθθ acting over

(
X (n),A(n)

)
,

with maximal invariant R(n)(θθθ). Hallin and Werker (2003) have shown that, under quite general

conditions, the difference between ∆∆∆
(n)∗
f (θθθ) and ∆∆∆

˜
(n)
f (θθθ) := E

[
∆∆∆

(n)
f (θθθ)

∣∣∣R(n)(θθθ)
]

tends to zero, as

n → ∞, in probability, under P
(n)
θθθ,f . Conditioning on the maximal invariant thus does the same

job as projecting along tangent spaces. Now, in most models involving unobserved white noise
with unspecified density f , residual ranks and/or signs (their definitions depend on the class of

densities F) provide a maximal invariant R(n)(θθθ).
Rank-based methods thus, in a sense, allow for bypassing tangent space calculations in the

construction of semiparametrically efficient inference procedures. Besides these semiparametric
efficiency features, of course, they also enjoy their usual properties of distribution-freeness (a con-
sequence of invariance), robustness, etc.

1.3 From classical univariate signed ranks to multivariate signs and ranks

Denote by Z
(n)
1 , . . . , Z

(n)
n a n-tuple of univariate i.i.d. random variables with common density f

satisfying the symmetry assumption f(−z) = f(z), z ∈ Z. The sign of Z
(n)
t will be denoted by

s
(n)
t , and the rank of |Z

(n)
t | among |Z

(n)
1 |, . . . , |Z

(n)
N | by R

(n)
+;t. The products (s

(n)
1 R

(n)
+;1, . . . , s

(n)
n R

(n)
+;n)

are called the signed ranks, and constitute (up to a factor ±1) a maximal invariant for the group

of antisymmetric, continuous order-preserving transformations acting on Z
(n)
1 , . . . , Z

(n)
n . When no

confusion is possible, superscripts (n) are omitted.

Similarly, denote by Z
(n)
1 , . . . ,Z

(n)
n a n-tuple of k-dimensional i.i.d. random vectors with common

density f . The univariate assumption of symmetry will be replaced by the assumption of elliptical
symmetry. We say that a random vector Z, with density f , is elliptically symmetric if there
exist a symmetric, positive definite k × k matrix ΣΣΣ and a function f : R

+
0 −→ R

+
0 satisfying∫∞

0 rk−1f(r) dr < ∞ such that

f
ΣΣΣ,f

(z) = ck,f
1

(detΣΣΣ)1/2
f
(
‖ΣΣΣ−1/2z‖

)
, z ∈ R

k, (2)

where ck,f is a normalization constant, and ‖ΣΣΣ−1/2z‖ := (z′ ΣΣΣ−1z)1/2 denotes the norm of z in

the metric associated with ΣΣΣ (we write ΣΣΣ−1/2 for the unique upper-triangular k × k array with
positive diagonal elements satisfying ΣΣΣ−1 = (ΣΣΣ−1/2)

′

ΣΣΣ−1/2). The contours of f
ΣΣΣ,f

clearly are a

family of ellipsoids centered at the origin, the shape of which is characterized by the matrix ΣΣΣ;
the nonnegative function f will be called a radial density, though it does not integrate to one.
Note that ΣΣΣ needs not be the covariance matrix of Z; the rank-based Durbin-Watson tests we are
describing in Section 3 do not even require finite second-order moments. In practice, of course,
both ΣΣΣ and f remain unspecified nuisance parameters.

The multivariate generalizations of signed ranks we are now considering are based on arguments
of invariance with respect to the group GΣΣΣ of continuous order-preserving radial transformations
and the group G of affine transformations acting on R

k.

Let dt = d
(n)
ΣΣΣ;t := ‖ΣΣΣ−1/2Z

(n)
t ‖. Then, U

(n)
ΣΣΣ;t := ΣΣΣ−1/2Z

(n)
t /d

(n)
ΣΣΣ;t is the unit vector pointing in

the direction of the sphericized vector ΣΣΣ−1/2Z
(n)
t . Clearly, if Z

(n)
t has density (2), then U

(n)
ΣΣΣ;t is

uniform over the unit sphere Sk−1 in R
k, just as s

(n)
t , in the univariate setting, is uniform over

S0 = {−1, 1}, the unit sphere in R. For each ΣΣΣ, define the group of continuous order-preserving
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radial transformations G
(n)
ΣΣΣ = {G

(n)
g }, with

G
(n)
g (Z1, . . . ,Zn) := (g(d

(n)
ΣΣΣ;1)ΣΣΣ1/2U

(n)
ΣΣΣ;1, . . . , g(d

(n)
ΣΣΣ;n)ΣΣΣ1/2U

(n)
ΣΣΣ;n),

where g : R
+→ R

+ is a continuous, strictly increasing function such that g(0) = 0 and limr→∞ g(r)=

∞. The transformation G
(n)
g is radial, in the sense that, under the action of G

(n)
g , the residuals

Zt = dΣΣΣ;tΣΣΣ
1/2UΣΣΣ;t are moving along a half line running through the origin in R

k. This group is a
generating group for the fixed-(θθθ,ΣΣΣ) submodel, and a maximal invariant for this group is the couple

(U
(n)
ΣΣΣ ,R

(n)
ΣΣΣ ), where the matrix U

(n)
ΣΣΣ = (U

(n)
ΣΣΣ;1, . . . ,U

(n)
ΣΣΣ;n) collects the signs of the observations, and

R
(n)
ΣΣΣ = (R

(n)
ΣΣΣ;1, . . . , R

(n)
ΣΣΣ;n) is the vector of the ranks R

(n)
ΣΣΣ;t of d

(n)
ΣΣΣ;t among d

(n)
ΣΣΣ;1, . . . , d

(n)
ΣΣΣ;n, t = 1, . . . , n.

Similarly, the group G of affine transformations of R
k generates the fixed-(θθθ, f) submodel.

In view of this, U
(n)
ΣΣΣ;t and R

(n)
ΣΣΣ;t can be considered as multivariate generalizations of the usual

signs and ranks of absolute values. But, when ΣΣΣ is unspecified, they cannot be computed from the

Z
(n)
t ’s.

1.3.1 Pseudo-Mahalanobis signs and ranks: the Tyler signs and ranks

Of course, ΣΣΣ in practice is not known. A natural idea therefore consists in replacing U
(n)
ΣΣΣ;t and

R
(n)
ΣΣΣ;t with U

(n)

Σ̂ΣΣ;t
and R

(n)

Σ̂ΣΣ;t
, respectively, where Σ̂ΣΣ = Σ̂ΣΣ

(n)
is some root-n consistent, affine-equivariant

estimator of ΣΣΣ. A possible choice for Σ̂ΣΣ would be the empirical covariance matrix of the Z
(n)
t ’s. This

estimate however is known to be highly non robust, and its consistency requires finite moments of
order two. We therefore rather suggest using Tyler (1987)’s estimator of shape, which is defined as
Σ̂ΣΣ := C−1

TylC
′−1
Tyl, where CTyl is the unique upper triangular k× k matrix with nonnegative diagonal

and upper left element 1 such that

1

n

n∑

t=1

(
CTylZt

‖CTylZt‖

)(
CTylZt

‖CTylZt‖

)′

=
1

k
Ik, (3)

(Ik stands for the k×k identity matrix). This estimate thus is such that the empirical covariance of

the corresponding U
(n)

Σ̂ΣΣ;t
’s is proportional to the identity matrix. It is affine-equivariant, and, under

the assumption that the Z
(n)
t ’s are i.i.d. with density (2), it can be shown (without making any

moment assumption) that Σ̂ΣΣ converges in probability to aΣΣΣ, where a is some positive constant. The

Tyler signs U
(n)

Σ̂ΣΣ;t
are strictly equivariant under both GΣΣΣ and G, but the Tyler ranks R

(n)

Σ̂ΣΣ;t
are invariant

under G only. However, it can be shown that U
(n)

Σ̂ΣΣ;t
−U

(n)
ΣΣΣ;t and R

(n)

Σ̂ΣΣ;t
−R

(n)
ΣΣΣ;t are oP(1) as n → ∞, so

that, although the ranks R
(n)

Σ̂ΣΣ;t
are not invariant under GΣΣΣ, they are at least asymptotically invariant,

in the sense of being asymptotically equivalent to the strictly invariant genuine ranks. When the
choice of Σ̂ΣΣ is not imposed, we use the somewhat heavier terminology pseudo-Mahalanobis signs
and pseudo-Mahalanobis ranks.

1.3.2 Hyperplane-based signs and ranks

Another approach to reconstructing the genuine signs U
(n)
ΣΣΣ;t and genuine ranks R

(n)
ΣΣΣ;t is based on

counts of hyperplanes.

For the signs, the idea is due to Randles (1989). For any pair Z
(n)
t1 ,Z

(n)
t2 , 1 ≤ t1 6= t2 ≤ n,

consider the

(
n − 2
k − 1

)
hyperplanes going through the origin and (k−1) out of the (n−2) remaining
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Z
(n)
t ’s (t1 6= t 6= t2). Define the interdirection c

(n)
t1t2 as the number of such hyperplanes separating

Z
(n)
t1 and Z

(n)
t2 . Interdirections are invariant under the affine group G and under the group GΣΣΣ

of radial transformations, irrespective of ΣΣΣ. Due to this invariance, it is intuitively clear that

πp
(n)
t1t2 := πc

(n)
t1t2/

(
n − 2
k − 1

)
is a consistent estimate of the angle arc cos(U′

ΣΣΣ;t1
UΣΣΣ;t2) between U

(n)
ΣΣΣ;t1

and U
(n)
ΣΣΣ;t2

. Interdirections thus allow for a reconstruction of those angles (equivalently, of their
cosines U′

ΣΣΣ;t1
UΣΣΣ;t2 , since the UΣΣΣ;t’s are unit vectors): quite remarkably, they do the same job,

with the same invariance properties, as the Tyler cosines U′

Σ̂ΣΣ;t1
U

Σ̂ΣΣ;t2
, but without requiring any

estimation of ΣΣΣ.
The hyperplane-based cosines p

(n)
t1t2 are sufficient for the first problem we are treating below

(Section 3). For the second problem (Section 4), we need the slightly more informative concept
of absolute interdirections (Hallin and Paindaveine 2003c and d). The basic idea is exactly the
same, and the same hyperplanes are taken into account as before. However, instead of counting

the number of hyperplanes separating Z
(n)
t1 and Z

(n)
t2 , we now count the number c

(n)
t;i of hyper-

planes separating Z
(n)
t and the transformed unit vectors Σ̂ΣΣ

1/2
ui, i = 1, . . . , k, where (u1, . . . ,uk)

forms the canonical basis of R
k. Then, for the same reasons as above, πp

(n)
t;i := πc

(n)
t;i /

(
n − 1
k − 1

)

allows for a consistent estimation of the angles arccos(U′
ΣΣΣ;tui), i = 1, . . . , k, so that the vectors

(cos(πpt;i), i = 1, . . . , k) are consistent estimators of the signs UΣΣΣ;t themselves. Absolute interdirec-
tions are invariant under the group of radial transformations; however, they are only asymptotically
affine-equivariant, in the sense that they converge to strictly equivariant quantities.

Along with the hyperplane-based concepts of signs just described, we propose using a hyperplane-
based concept of ranks introduced by Oja and Paindaveine (2003). This concept relies on the
so-called lift-interdirections.

For any Z
(n)
t , consider the

(
n − 1

k

)
hyperplanes going through k out of the (n − 1) remaining

Z
(n)
t′ ’s (t′ 6= t). The lift-interdirection `

(n)
t associated with Z

(n)
t is defined as the number of such

hyperplanes that separate Z
(n)
t and −Z

(n)
t . Lift-interdirections can be shown to converge to some

monotone increasing function of the distances d
(n)
ΣΣΣ;t; as for their ranks, they converge to the genuine

ranks R
(n)
ΣΣΣ;t (see Oja and Paindaveine 2003 for details). Again, we are able to reconstruct, as n → ∞,

a quantity that depends on the unspecified shape matrix ΣΣΣ without estimating it.

2 The general linear model with VAR errors

The model we are considering throughout is the k-variate general linear model with VAR error
terms (the more general case of VARMA errors could be treated as well; we restrict to the VAR
case for the sake of simplicity). Under this model, the observation is an n-tuple

Y(n) :=




Y1,1 Y1,2 . . . Y1,k
...

...
...

Yn,1 Yn,2 . . . Yn,k


 :=




Y′
1

...
Y′

n




of k-variate random vectors satisfying

Y(n) = X(n)βββ + V(n), (4)
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where

X(n):=




x1,1 x1,2 . . . x1,m
...

...
...

xn,1 xn,2 . . . xn,m


:=




x′
1
...

x′
n


 and βββ:=




β1,1 β1,2 . . . β1,k
...

...
...

βm,1 βm,2 . . . βm,k


:=




βββ′
1
...

βββ′
m




denote an n × m matrix of constants (the design matrix), and the m × k regression parameter,
respectively. Instead of the traditional assumption that the error term

V(n) :=




V1,1 V1,2 . . . V1,k
...

...
...

Vn,1 Vn,2 . . . Vn,k


 :=




V′
1

...
V′

n




is white-noise, we rather assume (Vt, t = 1, . . . , n) to be a finite realization (of length n) of the
VAR(p) process generated by

Vt =
p∑

i=1

AiVt−i + εεεt, t ∈ Z, (5)

where {εεεt | t ∈ Z} is a k-dimensional white-noise process with elliptical density (2). Under (4) and
(5),

Yt = βββ′xt +
t−1∑

u=0

Guεεεt−u + rt, t = 1, . . . , n; (6)

with matrices Gu (the Green’s matrices of the VAR operator) characterized by the linear recursion
Gu =

∑p
i=1 AiGu−i, u ∈ Z and initial conditions G0 = Ik, G−1 = G−2 = . . . ,G−p+1 = 0. The

remainder term rt is related to the influence of the unobserved initial values V0, . . . ,V−p+1; it
is easy to see that, under the traditional VAR stationarity assumptions, limt→∞ Λtrt is bounded
in probability, where 1 < Λ is the modulus of the smallest root of the characteristic polynomial
associated with (5).

Letting θθθ := (vec′(βββ′), vec′(A1), . . . , vec
′(Ap))

′ ∈ R
km+k2p =: R

K , we write P
(n)
θθθ,ΣΣΣ,f for the prob-

ability distribution of the observation Y(n) under (6).

3 Rank-based Durbin-Watson tests

3.1 The Gaussian Durbin-Watson test

Consider the first-order version (p = 1) of the general model described in Section 2. Writing A

instead of A1, (6) takes the form

Yt = βββ′xt +
t−1∑

u=0

Auεεεt−u + AtV0, t = 1, . . . , n; (7)

The Durbin-Watson testing problem deals with the null hypothesis that Vt is white noise, i.e., that
A = 0; under this hypothesis, the observations are serially independent, of the form Yt = βββ′xt +εεεt.
The regression parameter βββ, as well, of course, as the underlying elliptic density (the shape matrix
ΣΣΣ and the radial density f of εεεt), remain unspecified.

The multivariate version of the traditional (Gaussian) Durbin-Watson procedure relies on the

following test statistic. Denote by β̂ββ
(n)

N := (X′X)−1X′Y the usual least square estimate of βββ, and

6



by Zt := Yt − β̂ββ
(n)′

N xt the corresponding estimated residuals. Write Σ̂ΣΣN := 1
n

∑n
t=1 ZtZ

′
t for the

empirical residual covariance matrix. The null hypothesis of serially independent errors is rejected
(at asymptotic level α) whenever

W
(n)
DW :=

1

n − 1

n∑

s,t=2

(Z′
sΣ̂ΣΣ

−1

N Zt)(Z
′
s−1Σ̂ΣΣ

−1

N Zt−1) = (n − 1)

∥∥∥∥∥
1

n − 1

n∑

t=2

Σ̂ΣΣ
−1/2

N ZtZ
′
t−1Σ̂ΣΣ

′−1/2

N

∥∥∥∥∥

2

(8)

exceeds the (1 − α) quantile χ2
k2;1−α of the chi-square distribution with k2 degrees of freedom

(‖M‖ := (
∑k

i,j=1(M)2ij)
1/2 stands for the Euclidean norm of the k×k matrix M). Being the sum of

all residual squared cross-correlation coefficients at lag one, this test statistic has a clear intuitive
interpretation; in the univariate case, it reduces to the squared residual autocorrelation coefficient
of order one.

3.2 Multivariate signed rank Durbin-Watson tests

The Gaussian test just described requires finite second-order moments, whereas the signed rank
tests we now consider remain valid under arbitrarily heavy tails: only finite radial Fisher information
(
∫∞
0 [(−f ′/f)(r)]2rk−1f(r) dr)/(

∫∞
0 rk−1f(r) dr) is required. Any consistent sequence of estimates

of βββ can be substituted for the Gaussian one β̂ββ
(n)

N (consistency here means “consistency, under
the null hypothesis, at the appropriate (optimal) rate”; the definition of this rate depends on the
asymptotic behavior of the regression constants; see Hallin and Paindaveine (2003d), Section 2.1).
If however the tests are to remain valid under infinite second-order moments, robust estimators,
resisting heavy-tailed distributions, such as the M -estimators proposed by Davis et al. (1997),

should be used; denote by β̂ββ
(n)

such an estimator.

The residuals associated with β̂ββ
(n)

are obtained as in Section 3.1; denote by U
(n)
t and R

(n)
t the

sign and the rank (among Z1, . . . ,Zn), respectively, of the residual Zt. In principle, any combination
of a pseudo-Mahalanobis or hyperplane-based sign with a pseudo-Mahalanobis or hyperplane-based
rank can be considered (four possibilities, thus). However, hybrid statistics mixing the two types
(Tyler signs, for instance, with lift-interdirection ranks) are somewhat incoherent, and we will
restrict to combining signs and ranks of the same type (either pseudo-Mahalanobis or hyperplane-
based); the same notation will be used for both cases.

We will concentrate on three versions of signed rank Durbin-Watson statistics:

(a) a multivariate Durbin-Watson statistic of the sign-test type

W
(n)
DW; sign :=

k2

n − 1

n∑

s,t=2

(U′
sUt)(U

′
s−1Ut−1) =

k2

n − 1

∥∥∥∥∥

n∑

t=2

UtU
′
t−1

∥∥∥∥∥

2

, (9)

(b) a multivariate Durbin-Watson statistic of the Spearman type

W
(n)
DW; Sp :=

9k2

(n − 1)(n + 1)4

n∑

s,t=2

R(n)
s R

(n)
s−1R

(n)
t R

(n)
t−1(U

′
sUt)(U

′
s−1Ut−1)

=
9k2

(n − 1)(n + 1)4

∥∥∥∥∥

n∑

t=2

R
(n)
t R

(n)
t−1UtU

′
t−1

∥∥∥∥∥

2

, (10)
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(c) a multivariate Durbin-Watson statistic of the van der Waerden type

W
(n)
DW; vdW :=

1

(n − 1)

×
n∑

s,t=2

Φ−1
k

(
R

(n)
s

n + 1

)
Φ−1

k


R

(n)
s−1

n + 1


Φ−1

k

(
R

(n)
t

n + 1

)
Φ−1

k


R

(n)
t−1

n + 1


(U′

sUt)(U
′
s−1Ut−1)

=
1

(n − 1)

∥∥∥∥∥∥

n∑

t=2

Φ−1
k

(
R

(n)
t

n + 1

)
Φ−1

k



R
(n)
t−1

n + 1



UtU
′
t−1

∥∥∥∥∥∥

2

, (11)

where, denoting by F−1
χ2

k

(u) the quantile function of the chi-square variable with k degrees of

freedom, Φ−1
k (u) :=

√
F−1

χ2

k

(u), u ∈]0, 1[.

3.3 Asymptotic relative efficiencies

The asymptotic relative efficiencies, with respect to the traditional Gaussian procedure described
in Section 3.1, of the signed-rank tests of Section 3.2 have been derived in Hallin and Paindav-
eine (2003d), where a multivariate serial version of the classical Chernoff-Savage result is also
established. This result shows that the asymptotic relative efficiency, with respect to the Gaussian
procedure based on (8), of the van der Waerden tests (c) based on (11) is uniformly larger than
one. Some of these ARE values are reported in Table 1 for several elliptic Student distributions
and several dimensions of the observation space; note that the elliptical Student distributions con-
sidered have strictly more than two degrees of freedom in order for the Gaussian procedure to be
valid.

degrees of freedom of the underlying t density

k test 3 4 5 6 8 10 15 20 ∞
S 0.657 0.563 0.519 0.494 0.467 0.453 0.435 0.427 0.405

1 SP 1.299 1.139 1.070 1.032 0.992 0.972 0.948 0.938 0.912
vdW 1.356 1.176 1.106 1.071 1.038 1.024 1.010 1.005 1.000

S 1.000 0.856 0.790 0.752 0.711 0.689 0.662 0.650 0.617
2 SP 1.305 1.152 1.089 1.055 1.022 1.006 0.990 0.983 0.970

vdW 1.400 1.204 1.125 1.085 1.047 1.030 1.013 1.007 1.000

S 1.266 1.084 1.000 0.952 0.900 0.872 0.838 0.823 0.781
4 SP 1.189 1.050 0.994 0.966 0.941 0.930 0.922 0.920 0.924

vdW 1.458 1.242 1.153 1.106 1.061 1.039 1.018 1.010 1.000

S 1.373 1.176 1.085 1.033 0.977 0.946 0.910 0.893 0.847
6 SP 1.115 0.982 0.929 0.903 0.879 0.870 0.865 0.865 0.880

vdW 1.493 1.267 1.172 1.122 1.071 1.047 1.022 1.013 1.000

S 1.467 1.256 1.159 1.104 1.043 1.011 0.972 0.954 0.905
10 SP 1.039 0.909 0.857 0.831 0.808 0.799 0.795 0.797 0.823

vdW 1.535 1.299 1.197 1.142 1.086 1.058 1.029 1.017 1.000

Table 1: AREs with respect to the Gaussian procedure of the sign type (S), Spearman type (SP ),
and van der Waerden type (vdW ) Durbin-Watson tests, under various k-variate Student and normal
densities, k = 1, 2, 4, 6, 10.
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3.4 Numerical study

3.4.1 Size and Power

In order to study the size and power of the Durbin-Watson tests described in Sections 3.1 and
3.2, we generated N = 1000 independent samples (εεε1, . . . , εεε650) of size n = 650 from various
bivariate spherical densities, with mean zero and identity covariance matrix (the bivariate normal
and bivariate Student distributions with 1, 3, and 8 degrees of freedom). From each of these
samples, we constructed a series of 650 “observations” Y∗

1, . . . ,Y
∗
650 characterized by the linear

models
Yt = βββ1I[501≤t≤575] + βββ2I[576≤t≤650] + Vt,

Vt − (mA)Vt−1 = εεεt, m = 0, 1, 2, (12)

with initial value V0 = 0, βββ1 =

(
1
0

)
, βββ2 =

(
0
1

)
, and A =

(
0.12 0.06
−0.04 0.10

)
.

Dropping observations Y∗
1 through Y∗

500 (this warming up period of 500 observations allows
for achieving approximate stationarity), we performed, on the remaining n = 150 observations
(Y1, . . . ,Y150) := (Y∗

501, . . . ,Y
∗
650), the following seven Durbin-Watson tests (at asymptotic prob-

ability level α = 5%):

(a) the Gaussian Durbin-Watson test based on (8),

(b1) the sign-test type Durbin-Watson test, based on (9) with Tyler signs,

(b2) the sign-test type Durbin-Watson test, based on (9) with hyperplane-based signs (interdirec-
tions),

(c1) the Spearman Durbin-Watson test, based on (10) with Tyler signs and ranks,

(c2) the Spearman Durbin-Watson test, based on (10) with hyperplane-based signs and ranks,

(d1) the van der Waerden Durbin-Watson test, based on (11) with Tyler signs and ranks, and

(d2) the van der Waerden Durbin-Watson test, based on (11) with hyperplane-based signs and
ranks, respectively.

In the Gaussian test (a), the least square estimator

β̂ββ
′

N :=

(
1

75

75∑

t=1

Yt
...

1

75

150∑

t=76

Yt

)
,

was used for βββ′ = (βββ1

...βββ2), while, in the rank-based procedures, the location center of each group
was estimated by the multivariate affine-equivariant median introduced in Hettmansperger and
Randles (2002); the latter is root-n consistent—and consequently, the resulting rank-based proce-
dures are valid—without any assumptions on the tails of the underlying densities (so that, unlike
the Gaussian test, the rank-based tests are valid under the t1 distribution). The Tyler estimate
Σ̂ΣΣT was computed from the algorithm of Randles (2000). Iterations were stopped as soon as the
Frobenius norm of the difference between the two members of (3) fell below 10−6.

Rejection frequencies are reported in Table 2. The corresponding individual confidence intervals
(for N = 1000 replications), at confidence level 0.95, have half-widths .014, .025, and .031, for
frequencies of the order of .05 (.95), .20 (.80), and .50, respectively. It appears that none of the
rejection frequencies significantly differs from the nominal 5% level. All tests thus apparently are
valid and unbiased—even the Gaussian one under Cauchy density, although in principle it is not
valid. Except for the sign test, the rank-based procedures yield the same overall performance
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as the Gaussian one under Gaussian density, a slight superiority under t8 density, and a more
marked one under t3 density. This confirms the ARE values (which we also report in the table).
Somewhat disappointingly, all methods (except again for the sign tests) have more or less the same
power under Cauchy density, a fact that is not explained by any ARE value, since the latter is not
defined. As a rule, the hyperplane versions of all rank-based tests are doing slightly better than
their Tyler counterparts.

Autoregression matrix Autoregression matrix

test innovation
density

0 A 2A ARE innovation
density

0 A 2A ARE

φN 0.0460 0.2640 0.9020 1.000 0.0580 0.2380 0.9030 1.000
φvdW 0.0440 0.2530 0.8910 1.000 0.0410 0.3460 0.9590 1.400
φS 0.0460 0.1620 0.6800 0.617 0.0490 0.2620 0.8650 1.000
φSP N 0.0510 0.2580 0.8920 0.970 t3 0.0420 0.3460 0.9650 1.305
φh

vdW 0.0420 0.2580 0.8850 1.000 0.0390 0.3380 0.9600 1.400
φh

S 0.0500 0.1590 0.6820 0.617 0.0450 0.2580 0.8600 1.000
φh

SP 0.0460 0.2620 0.8870 0.970 0.0450 0.3360 0.9600 1.305

φN 0.0440 0.2640 0.9040 1.000 0.0460 0.2640 0.9020 undefined

φvdW 0.0410 0.2650 0.9070 1.047 0.0440 0.2530 0.8910 undefined

φS 0.0420 0.1890 0.7410 0.711 0.0460 0.1620 0.6800 undefined

φSP t8 0.0510 0.2790 0.9030 1.022 t1 0.0510 0.2580 0.8920 undefined

φh
vdW 0.0410 0.2660 0.9050 1.047 0.0420 0.2570 0.8850 undefined

φh
S 0.0430 0.1880 0.7400 0.711 0.0500 0.1590 0.6820 undefined

φh
SP 0.0460 0.2730 0.9050 1.022 0.0460 0.2620 0.8860 undefined

Table 2: Rejection frequencies (out of N = 1000 replications), under various values mA, m = 0, 1, 2
(cf. (12)) of the autoregression matrix and various innovation densities, of the Gaussian parametric
Durbin-Watson test φN , the Tyler signed-rank van der Waerden φvdW , Spearman φSP , and sign φS

Durbin-Watson tests, and their hyperplane-based counterparts φh
vdW , φh

SP , and φh
S ; the series length

is 150.

3.4.2 Robustness

In order to investigate the robustness properties of the various Durbin-Watson procedures proposed
in Section 3.3, we studied their resistance to innovation and observation outliers, respectively. For
simplicity, in this section, we only consider Gaussian series.

The same Monte-Carlo scheme as in Section 3.4.1 was used to generate bivariate series of
length n = 650 from model (12), with i.i.d. Gaussian innovations εεε1, . . . , εεε650. The resulting series
Y∗

1, . . . ,Y
∗
650 then were subjected to the following perturbations (inducing observation outliers):

(Y+) (observation outliers) Y∗
t was replaced with 5Y∗

t at time t = 549, 550, 599, 600, 649, 650;

(Y−) (observation outliers) Y∗
t was replaced with 5Y∗

t at time t = 549, 599, 649, and with −5Y∗
t

at time t = 550, 600, 650, respectively;

(E+) (innovation outliers) the Gaussian innovations εεεt were replaced with 5εεεt at time t = 549,
550, 599, 600, 649, and 650;

(E−) (innovation outliers) the Gaussian innovations εεεt were replaced with 5εεεt and −5εεεt at time
t = 549, 599, 649 and t = 550, 600, 650, respectively;
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N = 1000 series of each type were generated. The last n = 150 observations then were subjected
to the various Durbin-Watson procedures described in Section 3.4.1.

The resulting rejection frequencies are reported in Table 3, which thus consists of four parts
(one for each type of outlier), each of which is to be compared with the left upper part of Table 2.
Inspection of the table reveals that, quite significantly, the type one risk of the Gaussian test is
exploding (up to a 70% rejection rate under Y−!). The Gaussian procedure thus is totally unreliable
in the presence of outliers, whatever their type; the corresponding rejection frequencies under the
alternative thus are meaningless. The rank-based tests also are affected, but considerably less so,
with a rejection rate under the null that in general does not significantly differ from the nominal
one; as expected, the sign tests seem to be slightly more robust than the van der Waerden and
Spearman ones.

Autoregression matrix Autoregression matrix

test type of
outliers

0 A 2A type of
outliers

0 A 2A

φN 0.6250 0.7380 0.9020 0.5080 0.6390 0.8820
φvdW 0.0730 0.3480 0.8810 0.0570 0.3140 0.8920
φS 0.0570 0.1870 0.6900 0.0460 0.1760 0.7150
φSP Y+ 0.0590 0.3130 0.8980 E+ 0.0560 0.3050 0.8920
φh

vdW 0.0670 0.3480 0.8850 0.0560 0.3190 0.8800
φh

S 0.0560 0.1800 0.6920 0.0460 0.1730 0.7140
φh

SP 0.0570 0.3150 0.8980 0.0520 0.3050 0.8860

φN 0.7040 0.6700 0.7130 0.5360 0.6600 0.8770
φvdW 0.0850 0.1500 0.6140 0.0720 0.3300 0.9080
φS 0.0600 0.1510 0.5810 0.0510 0.1850 0.7230
φSP Y− 0.0760 0.1650 0.7100 E− 0.0690 0.3200 0.9060
φh

vdW 0.0840 0.1590 0.6100 0.0680 0.3230 0.9010
φh

S 0.0610 0.1490 0.5840 0.0480 0.1850 0.7210
φh

SP 0.0720 0.1720 0.7040 0.0630 0.3200 0.9050

Table 3: Rejection frequencies (out of N = 1000 replications), for various perturbed Gaussian
VAR(1) processes, of the Gaussian parametric (φN ), the Tyler signed-rank van der Waerden (φvdW ),
the Spearman (φSP ), and the sign-test type (φS) Durbin-Watson tests, and for their hyperplane-
based counterparts φh

vdW , φh
SP , and φh

S , at (asymptotic) probability level 5%; the series length
throughout is n = 150.

4 Rank-based selection of the order of a VAR process

4.1 Gaussian parametric VAR order selection

Going back to the general model described in Section 2, we now turn to the problem of testing a
VAR(p0) dependence in (5) against a VAR(p0 + 1) one; for simplicity, we assume that βββ = 0; ΣΣΣ
and f of course are nuisance parameters in this problem. A sequential application of such tests
can be used in the identification of the actual order of the unobserved autoregressive errors: see
Pötscher (1983) or Garel and Hallin (1999) for the univariate counterpart of the problem.

More formally, denote by ΘΘΘp0
the set of all values of θθθ ∈ R

K such that Ap0+1 = . . . = Ap =
0, |Ap0

| 6= 0, and for which the VAR(p0) model with parameters A1, . . . ,Ap0
is stationary and
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invertible. The null hypothesis then is of the form θθθ ∈ ΘΘΘp0
. Gaussian parametric optimal tests

for this problem can be obtained, e.g., by the Lagrange Multiplier method; they require finite
second-order moments.

Denote by Â1, . . . , Âp0
the estimators obtained under the assumption that the VAR model, in

(5), is of order p0; write θ̂θθ for (vec′(Â1), . . . , vec
′(Âp0

), 0′, . . . , 0′)′. Defining the residuals

Zt = Zt(θ̂θθ) = Yt −
p0∑

i=1

ÂiYt−i, t = p0 + 1, . . . , n,

the residual cross-covariance matrix at lag i takes the form

ΓΓΓ
(n)
i := (n − p0 − i)−1

n∑

t=p0+1+i

ZtZ
′
t−i = (n − p0 − i)−1

n∑

t=p0+1+i

dΣΣΣ;t dΣΣΣ;t−i ΣΣΣ
1/2UΣΣΣ;tU

′
ΣΣΣ;t−iΣΣΣ

′1/2;

write Σ̂ΣΣN for ΓΓΓ
(n)
0 . The Gaussian test statistic for this problem then is

W (n)
p0

:= nT′

p0;Σ̂ΣΣN

Q
Σ̂ΣΣN

T
p0;Σ̂ΣΣN

, (13)

where, writing Gu = Gu(θ̂θθ) for the Green’s matrices associated with (Â1, . . . , Âp0
),

n1/2T
p0;Σ̂ΣΣN

:=




(n − 1)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ
(n)
1

)

n−p0−1∑

u=2

(n − u)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ(n)
u G′

u−1

)

n−p0−1∑

u=2

(n − u)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ(n)
u G′

u−2

)

...
n−p0−1∑

u=i

(n − u)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ(n)
u G′

u−i

)

...
n−p0−1∑

u= p0

(n − u)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ(n)
u G′

u−p0

)




(14)

and (for p0 = 1, 0k2×k2(p0−1) is void)

Q
Σ̂ΣΣN

:=

(
Σ̂ΣΣN ⊗ Σ̂ΣΣ

−1

N 0k2×k2p0

0k2p0×k2 w2

)−1

−

(
Ik2 0k2×k2(p0−1)

Ik2p0

)(
W2

)−1
(

Ik2 0k2×k2(p0−1)

Ik2p0

)′

,

with the (k2p0 × k2p0) matrices w2 and W2 having (i, j)-blocks (of dimension (k2 × k2))

(w2)ij :=
n−p0−1∑

u=max(2,i,j)

(Gu−iΣ̂ΣΣNG′
u−j)⊗Σ̂ΣΣ

−1

N and (W2)ij :=
n−p0−1∑

u=max(i,j)

(Gu−iΣ̂ΣΣNG′
u−j)⊗Σ̂ΣΣ

−1

N , i, j = 1, . . . , p0,

respectively; note that w2 and W2 only differ by their upper left (k2 × k2) block. The structure of
this test statistic is the same as that of the univariate Gaussian Lagrange multiplier test statistic
described in Garel and Hallin (1999).
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The null hypothesis of AR(p0) dependence is rejected whenever W
(n)
p0

exceeds the (1−α) quantile
of a chi-square distribution with k2 degrees of freedom. The intuition behind the test statistic (13)

is a little bit less straightforward than in the Durbin-Watson case. Actually, W
(n)
p0

is a quadratic
form involving all estimated residual cross-correlation matrices, with weights that neutralize the
effect of parameter estimation on the residuals, and optimize the power. For instance, p0 = 1 yields
(writing Â instead of Â1, we have Gu = Âu)

n1/2T
1;Σ̂ΣΣN

:=




(n − 1)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ
(n)
1

)

n−1∑

u=2

(n − u)1/2vec
(
Σ̂ΣΣ

−1

N ΓΓΓ(n)
u (Âu−1)′

)




and

Q
Σ̂ΣΣN

:=




Σ̂ΣΣN ⊗ Σ̂ΣΣ
−1

N 0

0

n−1∑

u=2

(
Au−1Σ̂ΣΣN (Au−1)′

)
⊗ Σ̂ΣΣ

−1

N




−1

−

(
Ik2

Ik2

)(
n−1∑

u=1

(Au−1Σ̂ΣΣN (Au−1)′) ⊗ Σ̂ΣΣ
−1

N

)−1 (
Ik2 Ik2

)
.

The order selection procedure then consists in first running a Durbin-Watson test (reducing to
a simple test for randomness when βββ = 0). In case this is inconclusive, a VAR of order zero (that
is, white noise) is selected, and a traditional regression model is considered for the analysis. If
Durbin-Watson is significant, then turn to testing VAR(1) against VAR(2) (i.e., the particular case
just discussed), and so on. This procedure as a whole is of a heuristic nature, and no precise risk
can be evaluated for the final output. However, consistency results have been obtained, possibly
with α values varying from step to step; see Pötscher (1983) and (1985).

4.2 Signed-rank VAR order selection

The procedure runs exactly as in the Gaussian parametric case, but is based on multivariate signed
rank statistics. Here again, we propose three particular test statistics. Each of them can be
computed from Tyler signs and ranks, or from hyperplane-based ones; in case interdirections are
used, they should be the “absolute” ones. The three statistics are

(a) a test statistic of the sign-test type,

W
˜

(n)
p0; sign

:= k2n T
˜
′

p0;Σ̂ΣΣ; sign
Q

Σ̂ΣΣ
T
˜p0;Σ̂ΣΣ; sign

,

with n1/2 T
˜p0; sign as in (14), but with the “sign-test” type cross-covariance matrices

ΓΓΓ
˜

(n)

i;Σ̂ΣΣ; sign
:= Σ̂ΣΣ

1/2



 1

n − p0 − i

n∑

t=p0+i+1

UtU
′
t−i



 Σ̂ΣΣ
′1/2

substituted for ΓΓΓ
(n)
i ;

(b) a test statistic of the Spearman type

W
˜

(n)
p0; Sp := 9k2n T

˜
′

p0;Σ̂ΣΣ; Sp
Q

Σ̂ΣΣ
T
˜p0;Σ̂ΣΣ; Sp

,
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with n1/2 T
˜p0; Sp as in (14), but with the Spearman cross-covariance matrices

ΓΓΓ
˜

(n)

i;Σ̂ΣΣ; Sp
:= Σ̂ΣΣ

1/2


 1

(n − p0 − i)(n − p0 + 1)2

n∑

t=p0+i+1

RtRt−iUtU
′
t−i


 Σ̂ΣΣ

′1/2

substituted for ΓΓΓ
(n)
i ;

(c) a test statistic of the van der Waerden type

W
˜

(n)
p0; vdW := n T

˜
′

p0;Σ̂ΣΣ; vdW
Q

Σ̂ΣΣ
T
˜p0;Σ̂ΣΣ; vdW

,

with n1/2 T
˜p0; vdW as in (14), but with the van der Waerden cross-covariance matrices

ΓΓΓ
˜

(n)

i;Σ̂ΣΣ; vdW
:= Σ̂ΣΣ

1/2



 1

n − p0 − i

n∑

t=p0+i+1

Φ−1
k

(
Rt

n − p0 + 1

)
Φ−1

k

(
Rt−i

n − p0 + 1

)
UtU

′
t−i



 Σ̂ΣΣ
′1/2

(Φk is as in (11)) substituted for ΓΓΓ
(n)
i .

The null hypothesis of AR(p0) dependence is rejected whenever the test statistic exceeds the (1−α)
quantile of a chi square distribution with k2 degrees of freedom.

We insist upon the fact that Σ̂ΣΣ, contrary to the estimate Σ̂ΣΣN appearing in the Gaussian statistic,
needs not be the empirical marginal covariance matrix anymore.

4.3 Asymptotic relative efficiencies

The asymptotic relative efficiencies, with respect to their Gaussian counterparts, of the rank-based
tests used at each step of the order selection procedure are the same as in the Durbin-Watson
case. The figures in Table 1, as well as the generalized Chernoff-Savage result of Hallin and
Paindaveine (2003d) thus still apply here. However, a more pertinent assesment of the respective
relative efficiencies of order selection procedures considered as a whole would be provided by ratios
of correct identification probabilities. Deriving exact values for such ratios is probably infeasible.
Monte-Carlo evaluations however are possible; some numerical values are given in the simulation
study below.

4.4 Numerical study

4.4.1 Efficiency

Here again, we generated N = 1000 independent samples (εεε1, . . . , εεε620) of size n = 620 from various
bivariate spherical densities, with mean zero and identity covariance matrix: the bivariate normal
and bivariate Student distributions with 1 (in this case, the shape, not the covariance matrix, is
identity), 3, and 8 degrees of freedom. These samples were used in the VAR(1) model

Yt − AYt−1 = εεεt, with A =

(
0.30 0.12
−0.06 0.24

)
(15)

and initial value: Y0 = 0, yielding VAR(1) series (Y∗
1 , . . . ,Y

∗
620) of length 620, of which only

the last 120 observations, denoted as (Y1, . . . ,Y120), were subjected to various sequential order-
identification procedures.
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Seven versions (Gaussian or rank-based) of those order identification procedure were performed
on each series. Step one of each procedure consists in testing for white noise against VAR(1)
dependence using a (degenerate—since no trend has to be estimated) Durbin-Watson test which
coincides with the tests for randomness developed in Hallin and Paindaveine (2002b). If the hy-
pothesis of randomness cannot be rejected, the model is identified as being VAR(0), that is, white
noise (under-identification). If randomness is rejected, the tests developed in Sections 4.1 and 4.2
are performed for testing VAR(1) against VAR(2) dependence. If VAR(1) is not rejected, the order
(p = 1) is correctly identified; if not, the procedure is pursued further, but we simply record over-
identification of the order. Of course, it is pretty natural to use the same type of tests throughout
the procedure. The following seven types of identification procedures were considered:

(a) the parametric Gaussian procedure,

(b1) the sign-test type procedure based on Tyler’s signs and ranks,

(b2) the hyperplane-based sign-test type procedure,

(c1) the Spearman type procedure based on Tyler’s signs and ranks,

(c2) the hyperplane-based Spearman type procedure,

(c1) the van der Waerden type procedure based on Tyler’s signs and ranks,

(c2) the hyperplane-based van der Waerden type procedure.

All individual tests were performed at nominal (asymptotic) level α = 5%. In each case, the
Yule-Walker estimator

Â :=

(
1

119

120∑

t=2

YtY
′
t−1

)(
1

119

120∑

t=2

Yt−1Y
′
t−1

)−1

was used for estimating A. The Tyler estimate Σ̂ΣΣT was computed from the algorithm of Ran-
dles (2000) (again, iterations were stopped as soon as the Frobenius norm of the difference between
the two members of (3) fell below 10−6).

Under-, correct, and over-identification frequencies are reported in Table 4, along with the
corresponding ARE figures. The corresponding individual confidence intervals (for N = 1000
replications), at confidence level 0.95, have half-widths .014, .025, and .031, for frequencies of the
order of .05 (.95), .20 (.80), and .50, respectively. Inspection of that table reveals the excellent
overall performance of all rank-based procedures considered:

– hyperplane-based van der Waerden procedures uniformly outperform the Tyler-type van der
Waerden ones, which in turn perform at least as well as their parametric Gaussian counterpart,
even under Gaussian innovations;

– more generally, hyperplane-based procedures (van der Waerden, signs, Spearman) are doing
uniformly better than their Tyler-type competitors;

– although the validity of the tests used at each step of the identification procedure is not
formally established under multivariate Cauchy (t1) innovations, the final result under such
densities remains excellent, with a remarkable 95% frequency of correct identification for the
hyperplane-based van der Waerden and Spearman versions.
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order identification order identification

test innovation
density

0 1 ≥ 2 ARE innovation
density

0 1 ≥ 2 ARE

φN 42 898 60 1.000 41 915 44 1.000
φvdW 54 898 48 1.000 35 914 51 1.400
φS 186 764 50 0.617 139 809 52 1.000
φSP N 55 891 54 0.970 t3 37 903 60 1.305
φh

vdW 55 906 39 1.000 40 925 35 1.400
φh

S 186 771 43 0.617 139 812 49 1.000
φh

SP 51 910 39 0.970 42 915 43 1.305

φN 37 903 60 1.000 31 919 50 undefined

φvdW 50 898 52 1.047 9 930 61 undefined

φS 161 791 48 0.711 84 864 52 undefined

φSP t8 48 903 49 1.022 t1 12 925 63 undefined

φh
vdW 48 911 41 1.047 10 956 34 undefined

φh
S 159 794 47 0.711 88 873 39 undefined

φh
SP 45 904 51 1.022 12 952 36 undefined

Table 4: Under-identification (p = 0), correct identification (p = 1), and over-identification (p ≥ 2)
frequencies (out of N = 1000 replications) for the VAR(1) model (15), under various Gaussian
and Student innovation densities. The seven procedures considered are based on the Gaussian
parametric tests φN , the Tyler signed-rank van der Waerden and Spearman tests φvdW and φSP ,
the Tyler sign-test φS , and their hyperplane-based counterparts φh

vdW , φh
SP , and φh

S. All tests are
performed at probability level 5%; the series length throughout is n = 120 (AREs refer to individual
tests, not to the order identification procedure as a whole).

4.4.2 Robustness

A robustness investigation also was conducted, on the model of Section 3.4.2, for the various
order-identification procedures proposed in Sections 4.1 and 4.2. Observation (Y∗

1, . . . ,Y
∗
620) were

generated in the same way as in the previous section, from model (15), with Gaussian εεεt’s. These
observations then were perturbed, as in Section 3.4.2, in order to produce observation outliers and
innovation outliers, respectively:

(Y+) (observation outliers) observations Y∗
t were replaced with 5Y∗

t for t = 538, 540, 578, 580,
618, and 620;

(Y−) (observation outliers) observations Y∗
t were replaced with 5Y∗

t for t = 538, 578, and 618,
with −5Y∗

t for t = 540, 580, and 620;

(E+) (innovation outliers) εεεt was replaced with 5εεεt for t = 538, 578, 580, 618, and 620;

(E−) (innovation outliers) εεεt was replaced with 5εεεt for t = 538, 578, and 618, with −5εεεt for
t = 540, 580, and 620, respectively.

The last n = 120 observations then were subjected to the seven order-identification procedures
described in Section 4.4.1. The resulting under-, correct, and over-identification frequencies are
reported in Table 5. This simulation exercise of course is somewhat limited, and only allows for
very general conclusions. The frequencies reported in Table 5 however very clearly show how
fragile the traditional parametric method can be in the presence of a small number of outliers: the
observed proportion of correct identification (based on the parametric tests) drops from 0.898 in
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the unperturbed case to 0.180 under the observation outlier scheme Y−. Quite on the contrary,
the rank-based methods apparently resist quite well, irrespective of the type of outliers.

Order identification Order identification

test type of
outliers

0 1 ≥ 2 type of
outliers

0 1 ≥ 2

φN 428 293 279 88 522 390
φvdW 98 822 80 27 909 64
φS 189 762 49 140 819 41
φSP Y+ 81 851 68 E+ 26 916 58
φh

vdW 95 831 74 29 926 45
φh

S 197 757 46 141 824 35
φh

SP 83 857 60 27 933 40

φN 672 180 148 77 520 403
φvdW 217 708 75 25 911 64
φS 290 662 48 133 817 50
φSP Y− 179 749 72 E− 25 916 59
φh

vdW 222 715 63 22 917 61
φh

S 294 663 43 134 827 39
φh

SP 185 754 61 26 919 55

Table 5: Under-identification (p = 0), correct-identification (p = 1), and over-identification (p ≥ 2)
frequencies (out of N = 1000 replications) in various perturbed Gaussian VAR(1) series. The
various order-identification procedures are based on the Gaussian parametric tests φN , the Tyler
signed-rank van der Waerden (φvdW ), Spearman (φSP ), and sign-test type (φS) tests, and their
hyperplane-based counterparts φh

vdW , φh
SP , and φh

S , at (asymptotic) probability level 5%; the series
length throughout is n = 120.

5 Conclusions

Rank-based methods for a long time have been confined to problems involving univariate inde-
pendent observations. We show, on the basis of two particular examples (the Durbin-Watson and
the autoregressive order selection problems), that rank methods also apply to serial (i.e., time
series) multivariate problems. Two concepts of signs and ranks are considered, mainly: the pseudo-
Mahalanobis or Tyler ones, and the hyperplane-based or Oja-Paindaveine ones. Theoretical results
establish that these methods are as efficient, locally and asymptotically, as their everyday-practice
parametric competitors based on cross-correlation matrices; their van der Waerden versions even
uniformly dominate them. Simulations moreover show that the rank-based procedures successfully
resist the presence of observation as well as innovation outliers, whereas traditional parametric
methods literally collapse under such perturbations.
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