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Abstract

We provide a simple proof of two recent non-admissibility results in multivariate
location and serial problems. We also establish the Pitman non-admissibility of the
classical Wilks’ test in the problem of testing for multivariate independence.
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1 Introduction.

Chernoff and Savage (1958) established the amazing fact that the asymptotic
relative efficiency (ARE) of the two-sample van der Waerden (i.e., normal-
score) rank test with respect to the standard normal-theory competitor, namely
the two-sample t-test, is never less than one. The Pitman non-admissibility
of the two-sample t-test follows. This uniform dominance of van der Waerden
rank tests over classical Gaussian tests holds under the whole class of loca-
tion problems (one-sample and c-sample problems, ANOVA problems, and
regression problems). Of course, this striking result had quite an impact on
subsequent development of rank-based inference, an impact at least as impor-
tant as that of the celebrated Hodges-Lehmann (1956) “.864 result” showing
that the lower bound, still in location models, of the AREs of Wilcoxon tests
(linear scores) with respect to the normal-theory competitors is .864.
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Hallin and Paindaveine (2002a) developed optimal generalized signed-rank
tests for the multivariate (elliptically symmetric) one-sample location prob-
lem, and extended the Chernoff-Savage result to that setup, showing that
the classical Gaussian procedure—namely, the Hotelling (1931) T 2 test—is
uniformly dominated by the van der Waerden version of their tests, and, con-
sequently, is not admissible in the Pitman sense. In subsequent papers (see,
e.g., Hallin and Paindaveine (2003c)), they developed similar rank tests for
a variety of multivariate location testing problems (two-sample and c-sample
problems, ANOVA problems, and regression problems), and showed that the
AREs do coincide with those obtained in the one-sample problem, so that the
Pitman non-admissibility of the corresponding classical Gaussian tests (two-
sample Hotelling’s test and multivariate F -tests) follows.

One should not believe, though, that this Chernoff-Savage result is some kind
of miracle that is specific to location problems. Indeed, Hallin (1994) showed
that the van der Waerden version of the serial rank tests proposed by Hallin
and Puri (1994) also uniformly beats the corresponding everyday practice
parametric Gaussian test. The serial rank tests under consideration here al-
low to test for randomness against serial dependence, to test the adequacy of
an ARMA model, or to test linear restrictions on the parameter of an ARMA
model (allowing, e.g., for order identification procedures). Hallin and Pain-
daveine (2002b, 2003a and b) generalized these tests to the multivariate setup
(still in the elliptic case) and proved that the Pitman non-admissibility of the
Gaussian procedures extends to the multivariate case.

In this paper, we give an elementary proof of the above multivariate location
and serial non-admissibility results; the proof, which generalizes to the mul-
tivariate case the method used (a) in Gastwirth and Wolff (1968) to prove
the univariate location Chernoff-Savage (1958) result and (b) in Hallin (1994)
to establish its univariate serial counterpart, allows to avoid the variational
arguments used in Hallin and Paindaveine (2002a and b). We also provide an
elementary proof of an original non-admissibility result, showing that the van
der Waerden version of the rank-score tests of multivariate independence, re-
cently developed by Taskinen et al. (2003), uniformly dominates the classical
Wilks (1935) test, which establishes the Pitman-non-admissibility of the latter.
To the best of our knowledge, whether Wilks’ test is Pitman-non-admissible
or not was so far—even in the univariate case—an open problem.

The paper is organized as follows. In Section 2, we define the notation to be
used in the sequel and describe the elliptically symmetric location and serial
problems we will consider. In Section 3, we state the two non-admissibility re-
sults proved in Hallin and Paindaveine (2002a and b), and give the announced
elementary proof. In Section 4, we establish the Pitman non-admissibility of
Wilks’ test of multivariate independence. Several final comments are given in
Section 5.
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2 Elliptically symmetric serial and location problems.

We will discuss non-admissibility issues for several multivariate elliptically

symmetric testing problems. Recall that the distribution of the k-random vec-
tor X is said to be elliptically symmetric with “parameters” ΣΣΣ and f (we will
denote this distribution by Ek(ΣΣΣ, f)), iff its pdf is given by

f
ΣΣΣ;f

(x) := ck,f (detΣΣΣ)−1/2f
(

(

xTΣΣΣ−1x
)1/2

)

, x ∈ R
k, (1)

for some symmetric positive definite real k × k matrix ΣΣΣ and some function
f : R

+
0 −→ R

+ such that f > 0 a.e. and µk−1;f :=
∫ ∞

0 rk−1f(r)dr < ∞ (ck,f

is a normalization factor depending on the dimension k and f).

The shape parameter ΣΣΣ determines the orientation and shape of the associated
equidensity contours. Since every testing problem we will consider is invariant
under affine transformations, the AREs under study will not depend on the
value of ΣΣΣ, and consequently, we will restrict, without loss of generality, to
spherical distributions (for which ΣΣΣ coincides with the k-dimensional identity
matrix Ik).

Under Ek(Ik, f), the radial density f determines the distribution of ‖X‖. More
precisely, the pdf of ‖X‖ is f̃k(r) := (µk−1;f)

−1 rk−1f(r) I[r>0] (IA stands for the

indicator function of the set A). In the sequel, we denote by F̃k the distribution
function associated with f̃k.

To guarantee that (1) is a density, we need to assume that µk−1;f < ∞.
When discussing non-admissibility issues of the various parametric Gaussian
procedures (which require the underlying distribution to have a finite vari-
ance), we will restrict to radial densities satisfying the stronger condition
µk+1;f :=

∫ ∞

0 rk+1f(r)dr < ∞, under which second-order moments associ-
ated with the distribution in (1) are finite. One can associate with each ra-
dial density f the density type of f defined as the class {fa, a > 0}, where
fa(r) := f(ar), for all r > 0. By affine-invariance, one could restrict to cou-
ples of parameters of the form (ΣΣΣ, f) = (Ik, fa0

) for which the variance of the
associated elliptical distributions is equal to Ik. However, it will be convenient
in the sequel to consider all possible radial densities, so that we will only fix
ΣΣΣ = Ik. Some mild smoothness conditions on f—that we will throughout as-
sume to be fulfilled—are required to derive the AREs we will consider. We
refer to Hallin and Paindaveine (2002a and b) for details.

The radial density f is said to be Gaussian iff f = φa for some a > 0,
where φ(r) := exp(−r2/2). Under Ek(Ik, φ), the pdf of ‖X‖ is φ̃k(r) :=
(2(k−2)/2Γ(k/2))−1rk−1φ(r) I[r>0] (Γ(.) stands for the Euler gamma function),

and we will denote by Φ̃k the associated cdf. Under Ek(Ik, φ), the distribu-
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tion of ‖X‖2 = (Φ̃−1
k (U))2 (throughout U will stand for a random variable

that is uniformly distributed on ]0, 1[) is χ2
k, so that the cdf of ‖X‖ is simply

given by Φ̃k(r) = Ψk(r
2), where Ψk denotes the distribution function of the χ2

k

distribution.

The first problem we consider is the problem of testing for multivariate (el-
liptical) randomness against (elliptical) VARMA dependence. More precisely,
we want to test the null hypothesis that the k-variate sample X1,X2, . . . ,Xn

is the realization of an i.i.d. process; under the alternative, the sample is gen-
erated by some non-trivial VARMA process of the form

Xt −
p

∑

i=1

AiXt−i = εεεt +
q

∑

i=1

Biεεεt−i,

where A1, . . . ,Ap,B1, . . . ,Bq are k × k real matrices and where the εεεt’s are
i.i.d. elliptically symmetric k-vectors. Hallin and Paindaveine (2002b) pro-
posed multivariate signed-rank procedures for this problem, and showed that
the ARE, under radial density f , of the van der Waerden version of their tests,
with respect to the classical parametric Gaussian procedure (a multivariate
Portmanteau test), is given by

ARE
(ser)
k,f (φvdW /φN ) =

1

k4

[

Dk(φ, f)
]2 [

Ck(φ, f)
]2

,

where we let

Ck(φ, f) := E
[

Φ̃−1
k (U) ϕf (F̃

−1
k (U))

]

, and Dk(φ, f) := E
[

Φ̃−1
k (U) F̃−1

k (U)
]

;

see Hallin and Paindaveine (2002b).

The second problem we will consider is the multivariate elliptically symmetric
one-sample location problem, for which, on the basis of the sample Xi = θθθ+εεεi,
i = 1, . . . , n, where the εεεi’s are i.i.d. elliptically symmetric k-vectors, one
wants to test θθθ = θθθ0 against θθθ 6= θθθ0, for some fixed k-vector θθθ0. The classical
parametric Gaussian test for this problem is Hotelling’s T 2 test. Hallin and
Paindaveine (2002a) defined optimal signed-rank competitors of Hotelling’s
test. The ARE of the van der Waerden version of their tests, with respect to
Hotelling’s test, under radial density f , is given by

ARE
(loc)
k,f (φvdW /φN ) =

1

k3
Dk(f)

[

Ck(φ, f)
]2

,

where

Dk(f) := E
[(

F̃−1
k (U)

)2]

;

see Hallin and Paindaveine (2002a).
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In the next section, we give an elementary proof showing that both above fam-
ilies of AREs are uniformly larger than 1, showing that the classical Gaussian
procedures are not admissible in the Pitman sense. In the multivariate case,
this result was first established in Hallin and Paindaveine (2002a and b) for
the location and serial case, respectively.

3 An elementary proof of two recent non-admissibility results.

We start with the non-admissibility of the parametric Gaussian (everyday
practice) procedure allowing to test for multivariate randomness, i.e., the mul-
tivariate Portmanteau test (see Hallin and Paindaveine (2002b)).

Theorem 1 For all radial density f such that µk+1;f < ∞ and all positive

integer k, we have ARE
(ser)
k,f (φvdW /φN ) ≥ 1, where equality holds iff f is Gaus-

sian.

Let us now give the elementary proof we propose for this result, which allows
to avoid variational arguments, such as those used in Hallin and Paindav-
eine (2002b). The proof, which is based on the method developed in Gast-
wirth and Wolff (1968), does only make use of Jensen’s inequality and—in the

multivariate case—of the arithmetic-harmonic inequality.

Proof of Theorem 1. First rewrite the functional f 7→ Ck(φ, f) as

Ck(φ, f)=
∫ ∞

0
Φ̃−1

k (F̃k(r)) ϕf(r) f̃k(r) dr

=
1

µk−1;f

∫ ∞

0
Φ̃−1

k (F̃k(r)) (−f
′

(r)) rk−1 dr

=
∫ ∞

0

[

f̃k(r)

φ̃k(Φ̃
−1
k (F̃k(r)))

+ (k − 1)
Φ̃−1

k (F̃k(r))

r

]

f̃k(r) dr,

where the last equality follows by integrating by parts. Applying successively
Jensen’s inequality (with convex function g(x) = 1/x) and the arithmetic-
harmonic mean inequality, one obtains

Ck(φ, f)≥







∫ ∞

0

[

f̃k(r)

φ̃k(Φ̃
−1
k (F̃k(r)))

+ (k − 1)
Φ̃−1

k (F̃k(r))

r

]−1

f̃k(r) dr







−1

≥ k2







∫ ∞

0

[

φ̃k(Φ̃
−1
k (F̃k(r)))

f̃k(r)
+ (k − 1)

r

Φ̃−1
k (F̃k(r))

]

f̃k(r) dr







−1

.(2)
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Now, integrating by parts again yields

∫ ∞

0
φ̃k(Φ̃

−1
k (F̃k(r))) dr =−

∫ ∞

0
r

φ̃′
k(Φ̃

−1
k (F̃k(r)))

φ̃k(Φ̃
−1
k (F̃k(r)))

f̃k(r) dr

=
∫ ∞

0
r

[

Φ̃−1
k (F̃k(r)) −

k − 1

Φ̃−1
k (F̃k(r))

]

f̃k(r) dr.

Substituting in (2), we obtain

Ck(φ, f) ≥ k2







∫ ∞

0
r Φ̃−1

k (F̃k(r)) f̃k(r) dr







−1

= k2
[

Dk(φ, f)
]−1

,

which establishes the inequality in Theorem 1.

Now, for the equality to hold, Jensen’s inequality and the arithmetic-harmonic
inequality need to be degenerate, i.e., we need to have

f̃k(r)

φ̃k(Φ̃
−1
k (F̃k(r)))

+ (k − 1)
Φ̃−1

k (F̃k(r))

r
= c, ∀ r > 0, (3)

and
φ̃k(Φ̃

−1
k (F̃k(r)))

f̃k(r)
=

r

Φ̃−1
k (F̃k(r))

, ∀ r > 0, (4)

respectively. Equation (3) can be rewritten

r1−k
[

rk−1 Φ̃−1
k (F̃k(r))

]′

= c, ∀ r > 0,

and holds iff rk−1 Φ̃−1
k (F̃k(r)) = ark+b, for all r > 0, for some real numbers a, b.

Since the limit of rk−1 Φ̃−1
k (F̃k(r)) as r goes to 0 is 0, we must have b = 0. This

implies that Φ̃−1
k (F̃k(r)) = ar, for all r > 0, that is, Φ̃−1

k (u) = aF̃−1
k (u) for all

0 < u < 1, which means that f is Gaussian (with arbitrary scale).

Finally, (4) is successively equivalent to

f̃k(F̃
−1
k (u))F̃−1

k (u) = φ̃k(Φ̃
−1
k (u)) Φ̃−1

k (u), ∀ 0 < u < 1,

⇔
[

F̃−1
k (u)

]′

/F̃−1
k (u) =

[

Φ̃−1
k (u)

]′

/Φ̃−1
k (u), ∀ 0 < u < 1,

⇔ F̃−1
k (u) = aΦ̃−1

k (u), ∀ 0 < u < 1,

so that (4) holds iff f is Gaussian (still with arbitrary scale). 2

An important corollary is the non-admissibility of Hotelling’s T 2 test for the
multivariate one-sample location problem. More precisely, we have the follow-
ing :
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Corollary 1 For all radial density f such that µk+1;f < ∞ and all positive

integer k, we have ARE
(loc)
k,f (φvdW /φN ) ≥ 1, where equality holds iff f is Gaus-

sian.

Proof of Corollary 1. Cauchy-Schwarz inequality yields

[

Dk(φ, f)
]2

≤ Dk(φ)Dk(f) = k Dk(f), (5)

so that ARE
(loc)
k,f (φvdW /φN ) ≥ ARE

(ser)
k,f (φvdW /φN ) for all radial density f .

Consequently, the result follows from Theorem 1. Equality holds iff we have
equality in (5), i.e., iff F̃−1

k (u) = aΦ̃−1
k (u) ∀ 0 < u < 1 for some a > 0, that is,

iff f is Gaussian (with arbitrary scale). 2

4 Pitman non-admissibility of Wilks’ test of multivariate indepen-

dence.

We now consider the problem of testing for multivariate independence. More
precisely, consider a sample of i.i.d. (k + l)-random vectors (XT

1 ,YT
1 )T ,

(XT
2 ,YT

2 )T , . . . , (XT
n ,YT

n )T . We want to test the null hypothesis of indepen-
dence between the k-subvector X1 and l-subvector Y1. We restrict to the
elliptic version of this problem, for which the distributions of the subvectors
are elliptically symmetric. In the sequel, f (resp. g) will stand for the radial
density of X1 (resp. of Y1). Since the problem is invariant under block-diagonal
affine transformations, we still restrict to spherically symmetric marginal dis-
tributions.

Taskinen et al. (2003) recently proposed rank-score competitors of the classical
Gaussian procedure, namely Wilks’ test. Considering quite specific local al-
ternatives (see Taskinen et al. (2003) for details), they showed that the ARE,
under radial density f , of the van der Waerden version of their tests with
respect to Wilks’ test is given by

ARE
(ind)
f,k;g,l(φvdW /φN ) =

1

4k2l2

(

Dk(φ, f)Cl(φ, g) + Dl(φ, g)Ck(φ, f)
)2

.

Some numerical values of the AREs are provided in Table 1. All these values
are larger or equal than 1, and seem to be equal to 1 only if the marginals
are both Gaussian. This is actually an empirical verification of the following
result which establishes the Pitman-non-admissibility of Wilks’ test.

Corollary 2 For all integers k, l ≥ 1 and all radial densities f, g such that

µk+1;f < ∞ and µl+1;g < ∞, we have ARE
(ind)
f,k;g,l(φvdW /φN ) ≥ 1, where equality

holds iff f and g do coincide and are Gaussian.
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Proof of Corollary 2. The proof is based on the decomposition

(

Dk(φ, f)Cl(φ, g) + Dl(φ, g)Ck(φ, f)
)2

= Af,k;g,l + Bf,k;g,l,

where we let

Af,k;g,l := 4 Dk(φ, f)Ck(φ, f)Dl(φ, g)Cl(φ, g), and

Bf,k;g,l :=
(

Dk(φ, f)Cl(φ, g)− Dl(φ, g)Ck(φ, f)
)2

.

It directly follows from Dk(φ, f)Ck(φ, f) ≥ k2 (see Theorem 1) that

ARE
(ind)
f,k;g,l(φvdW /φN ) ≥

1

4k2l2
Af,k;g,l ≥ 1. (6)

Let us now show that equality holds iff f and g are Gaussian. For the equality
to hold, we need to have Af,k;g,l = 4k2l2 and Bf,k;g,l = 0. From Theorem 1,
Af,k;g,l = 4k2l2 implies that both f and g are Gaussian (f = φa and g = φb,
say). Now, since Dk(φ, φa) = a−1Dk(φ) = a−1k and Ck(φ, φa) = aCk(φ) =
aDk(φ) = ak, we have Bφa,k;φb,l = k2l2((b/a) − (a/b))2, which is equal to zero
iff a = b. Consequently, equality holds iff f = g = φa, for some a > 0. 2

5 Final comments.

We would like to stress that the non-admissibility results in Theorem 1 and
Corollary 1 are not confined to the problem of testing for multivariate ran-
domness and to the multivariate one-sample location problem, respectively. In-
deed, in a series of papers, Hallin and Paindaveine (2003a, b, and c) extended
their generalized signed-rank tests to more complicated models culminating
in the multivariate general linear model with VARMA errors. The problems
that can be dealt with are either associated with simple null hypotheses or
with null hypotheses that are linear restrictions on the parameter of that very
general model. Hallin and Paindaveine (2003c) showed that the AREs of the
van der Waerden version of their tests with respect to normal-theory competi-
tors are convex linear combinations of the AREs obtained in the one-sample
location case and the problem of testing for randomness. Consequently, the
Pitman non-admissibility of parametic Gaussian procedures extends to that
very broad class of problems, which contains problems of high practical rele-
vance, such as multivariate Durbin Watson problems, ANOVA problems, the
problem of testing the orders of a VARMA series, etc.
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νk νk

l νl 3 4 6 12 ∞ l νl 3 4 6 12 ∞

1 3 1.378 1.295 1.266 1.281 1.339 4 3 1.430 1.332 1.292 1.298 1.348

4 1.293 1.190 1.141 1.135 1.167 4 1.336 1.223 1.167 1.156 1.183

6 1.267 1.144 1.078 1.054 1.067 6 1.294 1.165 1.096 1.069 1.080

12 1.285 1.141 1.058 1.019 1.016 12 1.295 1.149 1.064 1.024 1.020

∞ 1.343 1.174 1.072 1.017 1.000 ∞ 1.343 1.174 1.072 1.017 1.000

2 3 1.400 1.311 1.277 1.289 1.343 6 3 1.448 1.345 1.301 1.304 1.351

4 1.311 1.204 1.152 1.144 1.174 4 1.353 1.236 1.177 1.163 1.189

6 1.277 1.152 1.085 1.060 1.072 6 1.306 1.175 1.103 1.075 1.085

12 1.289 1.144 1.060 1.021 1.017 12 1.300 1.153 1.068 1.027 1.023

∞ 1.343 1.174 1.072 1.017 1.000 ∞ 1.343 1.174 1.072 1.017 1.000

3 3 1.417 1.323 1.286 1.294 1.346 10 3 1.471 1.361 1.312 1.311 1.353

4 1.325 1.214 1.161 1.150 1.179 4 1.375 1.252 1.190 1.173 1.196

6 1.286 1.159 1.091 1.065 1.076 6 1.323 1.188 1.114 1.084 1.092

12 1.292 1.146 1.062 1.023 1.019 12 1.308 1.159 1.073 1.032 1.027

∞ 1.343 1.174 1.072 1.017 1.000 ∞ 1.343 1.174 1.072 1.017 1.000

Table 1
AREs of the van der Waerden version of Taskinen et al. (2003) rank-score tests for
multivariate independence with respect to Wilks’ test, under standard multivariate
Student (with 3, 4, 6, and 12 degrees of freedom) and standard Gaussian densities,
respectively, for subvector dimensions k = 2 and l = 1, 2, 3, 4, 6, and 10.


