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Abstract

One important issue in statistical inference is to provide confidence intervals for the
parameters of interest. Once the statistical properties of the estimators have been es-
tablished, the corresponding asymptotic results can be used for constructing confidence
intervals. However, in nonparametric efficiency estimation, the asymptotic properties
of DEA estimators are only available for the bivariate case (Gijbels et al., 1999). An
appealing alternative is the bootstrap method and a general methodology for applying
bootstrap in nonparametric frontier estimation is provided by Simar and Wilson (1998,
2000b). Nevertheless, all the procedures involving bootstrap method are based on a
large number of data replications, and in frontier estimation this approach also implies
performing DEA (i.e. solving linear programs) a large number of times. Hence, a more
simple and less computing intensive technique is always welcome.

In this paper we propose a simple procedure for constructing confidence intervals
for the efficiency scores. We consider some classical confidence intervals for an end-
point of a distribution and we show how these results can be adapted to the problem
of frontier estimation. We provide an algorithm for constructing similar confidence
intervals for the efficiency scores. Then some Monte Carlo experiments estimate the
coverage probabilities of the obtained intervals. The results are quite satisfactory even
for small samples. We then illustrate the approach with a real data set when analyzing
the efficiency of 36 Air Controllers in Europe.
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1 Introduction

The efficiency scores of economic producers are usually evaluated by measuring the radial

distance, either in the input space or in the output space, from each producer to an es-

timated production frontier. The nonparametric approach known as Data Envelopment

Analysis (DEA) is based on the idea of enveloping the data, under specific assumptions on

the technology such as free disposability, convexity, scale restrictions, without imposing any

uncertain parametric structure. However, the method gives only point estimates for the true

efficiency scores which are unknown, since the true frontier is unknown.

It turns out that DEA measures efficiency relative to a nonparametric, maximum like-

lihood estimate of the frontier, conditional on observed data resulting from an underlying

data-generating process (DGP). These methods have been widely applied to examine tech-

nical and allocative efficiency in a variety of industries; see Lovell (1993) and Seiford (1996,

1997) for comprehensive bibliographies of these applications. Aside from the production

setting, the problem of estimating monotone concave boundaries also naturally occurs in

portfolio management. In capital asset pricing models (CAPM), the objective is to analyze

the performance of investment portfolios. Risk and average return on a portfolio are analo-

gous to inputs and outputs in models of production; in CAPM, the attainable set of portfolios

is naturally convex and the boundary of this set gives a benchmark relative to which the

efficiency of a portfolio can be measured. These models were developed by Markovitz (1959)

and others; Sengupta (1991) and Sengupta and Park (1993) provide links between CAPM

and nonparametric estimation of frontiers as in DEA.

Although labeled deterministic, statistical properties of DEA estimators are now available

(see Simar and Wilson, 2000a). Banker (1993) proved the consistency of the DEA efficiency

estimator, but without giving any information on the rate of convergence. Korostelev et

al. (1995a, 1995b) proved the consistency of DEA estimators of the attainable set and also

derived the speed of convergence and Kneip et al. (1998) proved the consistency of DEA

in the multivariate case, providing the rates of convergence as well. Gijbels et al. (1999)

derived the asymptotic distribution of DEA estimators in the bivariate case (one input and

one output).

We begin by introducing some basic concepts of nonparametric efficiency measurement

in the spirit of Simar and Wilson (2000a). Suppose producers use input vector x ∈ Rp+ to

produce output vector y ∈ Rq+. The production set of the feasible input-output combinations

can be defined as:

Ψ =
{

(x, y) ∈ Rp+q+ | x can produce y
}
. (1.1)

For any y ∈ Rq+ we denote by X (y) the input requirement set, i.e. the set of all input
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vectors which yield at least y :

X (y) = {x∈Rp+| (x, y) ∈ Ψ} .

The input efficient frontier is a subset of X (y) and is given by:

∂X (y) = {x ∈ Rp+| x ∈ X (y) , θx/∈X (y) ∀θ ∈ (0, 1)} .

Now, the corresponding Farrell input-oriented measure of technical efficiency can be defined

as:

θ (x, y) = inf {θ| θx ∈ X (y)} . (1.2)

A value θ(x, y) = 1 means that producer (x, y) is input efficient, while a value θ(x, y) < 1

suggests the radial reduction in all inputs that producer (x, y) should perform in order to

produce the same output being input-efficient. For a given level of output and an input

direction, the efficient level of input is defined by:

x∂ (x, y) = θ(x, y)x. (1.3)

The basic definition of radial technical efficiency dates back to Debreu (1951) and Farrell

(1957). Based on Farrell’s idea, Charnes et al.(1978) proposed a linear programming model

for evaluating the technical efficiency assuming convexity of the set of feasible input-output

combinations and free disposability of inputs and outputs. This approach is known as Data

Envelopment Analysis (DEA).

Suppose the sample of observed producers is X = {(xi,yi) , i = 1, ..., n}. The idea of the

DEA method is to estimate the technical efficiency of a producer (x0,y0) , by measuring its

radial distance to the boundary of the conical hull1 of X . The DEA estimator of Ψ is defined

by:

Ψ̂DEA =

{
(x, y) ∈ Rp+q+ | y ≤

n∑

i=1

γiyi, x ≥
n∑

i=1

γixi, γi ≥ 0, i = 1, ..., n

}
. (1.4)

Replacing Ψ with its DEA estimate yields:

X̂ (y) =
{
x∈Rp+| (x, y) ∈ Ψ̂DEA

}
,

∂X̂ (y) =
{
x ∈ Rp+| x ∈ X̂ (y) , θx/∈X̂ (y) ∀θ ∈ (0, 1)

}
,

1 We consider here a technology with constant returns to scale. The procedure below will also be valid with
varying returns to scale. In this case, in equations (1.4) and (1.5), we must add the constraint

∑n
i=1 γi = 1.
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and the corresponding DEA estimator of the input efficiency score of the producer (x0, y0)

is obtained by solving the following linear program:

θ̂DEA(x0, y0) = min

{
θ > 0| y0 ≤

n∑

i=1

γiyi, θx0 ≥
n∑

i=1

γixi, γi ≥ 0, i = 1, ..., n

}
. (1.5)

The efficient level of input is obtained from (1.3):

x̂∂ (x0, y0) = θ̂DEA(x0, y0)x0. (1.6)

The DEA method has become very popular and widely used due to its nonparametric

nature which requires very few assumptions on technology. Consistency and asymptotic

distribution are now available for DEA estimators. However, the asymptotic distribution of

DEA estimator is available only in the bivariate case, therefore the bootstrap remains the

single tool for statistical inference in a more general setting.

Under some specific regularity assumptions on the data generating process (DGP), Simar

and Wilson (1998, 2000b) propose two bootstrap procedures: one based on resampling the

efficiency scores (homogeneous bootstrap) and the other, based on resampling the observed

input-output pairs (heterogeneous bootstrap). Both allow estimating the bias and construct-

ing confidence intervals for the efficiency scores.

The most critical aspect when applying bootstrap method in nonparametric frontier

estimation is to correctly simulate the underlying DGP in order to produce a consistent

bootstrap distribution estimator. Since the naive bootstrap is not consistent here, it is

recommended to resample from a smooth, consistent estimator of either the density of the

scores or, the joint density of the input-output pairs. Each procedure is very intensive in

terms of computing time, since it involves many bootstrap replications with many DEA

efficiency estimation as well. Hence, a more simple and less computing intensive technique

for providing confidence intervals for the efficiency scores is welcome.

In this paper we propose some easy way to build confidence intervals for the DEA-

type efficiency scores and present Monte Carlo evidence on the coverage probabilities of

the estimated intervals. The intervals are based on asymptotic arguments but seem to

perform satisfactory even for small samples. The paper is organized as follows. Section 2

reviews some classical results of extreme value theory and addresses the issue of confidence

intervals estimation of an endpoint of a distribution. We focus on the problem of constructing

confidence intervals for the lower bound of the support of a distribution using resampling

techniques. In Section 3 we show how these intervals can be adapted to the problem of

frontier estimation: we provide an algorithm for constructing confidence intervals for the

input efficiency scores. Section 4 presents numerical results. First we discuss the results
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from some Monte Carlo experiments (estimated coverages of the obtained intervals), then

we illustrate the approach with a real data set on 36 Air Controllers in Europe. The paper

ends with some conclusions. Throughout the paper, we consider only the input orientation,

but the results can be easily adapted for the output-oriented case.

2 Inference for an Endpoint of a Distribution

The problem of estimating an endpoint or a truncation point of a distribution has attracted

a lot of attention since many practical situations deal with variables that are restricted to a

finite domain.

In this section we first review some classical results of extreme value theory and we focus

afterward on inference for an endpoint using bootstrap method and random subsampling.

2.1 Some classical results of extreme value theory

Let X1, ...Xn be independent identically distributed random variables with cumulative dis-

tribution F (x) whose support is bounded below and suppose we are interested in estimating

φ, the lower endpoint of the support of F. If X(1) ≤ ... ≤ X(n) are the order statistics, the

most intuitive estimator of φ is X(1), the sample minimum, which is the closest observation

to φ. However, since X(1) is always larger than the lower bound of the support, it is biased.

As far as confidence intervals will be of concern, asymptotic distributions will be useful.

One of the most remarkable results of extreme value theory is due to Gnedenko (1943).

According to Gnedenko (1943), a distribution F (x) belongs to the domain of attraction of

a Weibull-type limiting law if and only if:

(i) the support is bounded below by a real number φ = inf {x : F (x) > 0} ∈ R, F (φ) = 0;

(ii) for each c > 0, and for some δ > 0,

lim
x→0+

F (cx + φ)

F (x + φ)
= cδ. (2.1)

The parameter δ in (2.1) is called the index of variation and it also represents the shape

parameter of the limiting Weibull distribution. The Weibull-type limiting law can be in-

troduced as follows: assuming there are sequences of real numbers an and bn such that the

limit distribution of the normalized minimum Yn =
(
X(1) − bn

)
/an is non-degenerate, then

under (i) and (ii), this limit distribution is:

Λ (y) =

{
1− exp

(
−yδ

)

1
y > 0
y ≤ 0

Weibull
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Under assumptions (i) and (ii), one can provide asymptotically valid confidence intervals

for φ, as well as tests of hypothesis about φ, based on the quantiles of the Weibull distribution.

Note that in many applications (and in particular for the frontier framework analyzed below),

the value of δ will be known. Indeed, as pointed by Loh (1984), for all distribution F such

that the density at the frontier point φ is finite and > 0, δ = 1.

For δ = 1, Robson and Whitlock (1964) proposed the one sided confidence interval for φ:

(
X(1) −

1− α
α

(
X(2) −X(1)

)
, X(1)

)
(2.2)

with asymptotic coverage 1−α. This result was generalized by Cooke (1979), who obtained

under (2.1) the interval:

(
X(1) −

(1− α)1/δ

1− (1− α)1/δ

(
X(2) −X(1)

)
, X(1)

)
, (2.3)

which also has asymptotic coverage 1− α.

2.2 Inference for an endpoint with resampling methods

Another approach to the estimation of an endpoint is to use resampling methods to estimate

the distribution of the normalized extreme involved and to approximate numerically this

distribution and the quantiles required for constructing confidence intervals.

Bickel and Freedman (1981) noticed the failure of bootstrap method when attempting to

estimate the uniform distribution by bootstrapping the normalized maximum. Addressing a

similar problem, Loh (1984) pointed out that even if bootstrap distribution is not consistent,

the bootstrap confidence intervals may still be consistent in some situations. The problem

of endpoint estimation with resampling methods was further investigated by Swanepoel

(1986) who proved that weak consistency can be achieved by choosing an appropriate size

m = m (n) for the bootstrap samples, such that m → ∞ and m/n → 0. Deheuvels et al.

(1993) refined Swanepoel’s result by deriving as well the range of rates for m (n) which ensure

the strong consistency of bootstrap distribution. They defined the bootstrap distribution

using an unified form of extreme value distributions. On the contrary, Athreya and Fukuchi

(1997) defined consistent bootstrap distributions with associated resample sizes for each of

the three types of domain of attraction. They also constructed confidence intervals for the

lower bound based on bootstrap versions of Weissman’s (1982) statistics.

We focus in the following on inference for the lower bound φ using bootstrap method

and Hartigan’s (1969) random subsampling. We shall describe in more detail the method

proposed by Loh (1984) in order to apply the same idea in frontier framework.
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Suppose {X1, ..., Xn} is a random sample from a distribution F which satisfies (i) and

(ii) and let X(1) ≤ ... ≤ X(n) be the order statistics. Let {X∗1 , ..., X∗n} be a bootstrap sample

with the corresponding order statistics X∗(1) ≤ ... ≤ X∗(n) and denote by P∗ the associate

resampling probability. Consider also the natural estimator of φ, φ̂ = X(1) and its bootstrap

correspondent φ̂∗ = X∗(1). If the bootstrap sample is obtained by sampling with replacement

from the original data, then P∗ simply corresponds to the empirical distribution and we have:

P∗
(
φ̂∗ < X(j+1)|X1, ..., Xn

)
= 1−

(
1− j

n

)n
→ 1− e−j, (2.4)

for j = 1, ..., n−1. Now, if we consider a random subsample, that is any arbitrary nonempty

subset of random size from the original sample {X1, ..., Xn} , then the random subsampling

probability PRS gives:

PRS

(
φ̂∗ < X(j+1)|X1, ..., Xn

)
= 1− 2n−j − 1

2n − 1
→ 1− 2−j, (2.5)

for j = 1, ..., n− 1.

Loh (1984) proves that the conditional distribution of n1/δ
(
φ̂∗ − φ̂

)
under (2.4) or

(2.5) does not have a weak limit, therefore it can not approximate the true distribution

of n1/δ
(
φ̂− φ

)
not even in the limit. Consequently, confidence intervals based on the per-

centiles of these distributions will not be consistent.

Still, Loh (1984) proposes another method, initially criticized by Efron (1979) and derives

consistent confidence intervals based on bootstrap and random subsampling. Let t1−α be

the 100 (1− α) percentile of the bootstrap distribution of φ̂∗. We have:

P∗
(
φ̂∗ < t1−α

)
= P∗

(
φ̂∗ − φ̂ < t1−α − φ̂

)

= P∗
(
φ̂− t1−α < φ̂− φ̂∗

)
= 1− α.

According to the bootstrap principle, the distribution of φ̂− φ̂∗ could be an approximation

of the true distribution of φ− φ̂, therefore:

P
(
φ̂− t1−α < φ− φ̂

)
' 1− α.

The latter approximation is equivalent to:

P
(
φ > 2φ̂− t1−α

)
' 1− α,

which gives the following approximate 1− α confidence interval for φ:

(
2φ̂− t1−α, φ̂

)
. (2.6)
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However, it turns out that the asymptotic validity of the intervals and the coverage proba-

bility as well, depend on the value of δ.

Weissman (1981) considered the following pivotal quantity:

Rk,n =
X(1) − φ
X(k) −X(1)

, k ≥ 2

and derived its asymptotic distribution

P (Rk,n ≤ x)→ 1−
(

1−
(

x

1 + x

)δ)k−1

, x ≥ 0. (2.7)

From (2.7) with x = 1, for each fixed 1 ≤ j ≤ n− 1, as n→∞ we have:

P

(
φ̂− φ

X(1+j) −X(1)

< 1

)
→ 1−

(
1− 2−δ

)j

and equivalently

P
(
φ > 2X(1) −X(1+j)

)
→ 1−

(
1− 2−δ

)j
.

Since an attempt to bootstrap Weissman’s pivotal quantity could produce an undefined quan-

tity, one may choose to bootstrap only the numerator, keeping the denominator unchanged.

Then the bootstrap and random subsampling distributions of the resulting statistic give

respectively:

P∗

(
φ̂∗ − φ̂

X(1+j) −X(1)

< 1

)
= P∗

(
φ̂∗ < X(1+j)

)
→ 1− e−j, (2.8)

PRS

(
φ̂∗ − φ̂

X(1+j) −X(1)

< 1

)
= PRS

(
φ̂∗ < X(1+j)

)
→ 1− 2−j. (2.9)

It can be proved (Loh, 1984) that if 1 − α = 1 − e−j, for some j (1 ≤ j ≤ n− 1), then(
2φ̂−X(1+j), φ̂

)
is an approximate 1− α bootstrap confidence interval for φ if and only if

δ = ln (1− e−1) / ln 2−1, which is obtained by solving:

1−
(
1− 2−δ

)j
= 1− e−j.

Similarly, if 1 − α = 1 − 2−j, then
(

2φ̂−X(1+j), φ̂
)

is an approximate 1 − α random

subsampling confidence interval for φ if and only if δ = 1, i.e. the solution of:

1−
(
1− 2−δ

)j
= 1− 2−j.

7



Therefore,
(
2X(1) −X(1+j), X(1)

)
is an asymptotically valid confidence interval for φ, with

associated confidence coefficient 1− e−j, if and only if δ = ln (1− e−1) / ln 2−1, and 1− 2−j

if and only if δ = 1.

The appealing thing about this interval is that, although resampling arguments are used

to derive its asymptotic confidence coefficient, there is in fact no need to resample. Moreover,

assuming F satisfies (i) and (ii) with δ known, using a ”generalized bootstrap” defined by

resampling so that:

P∗
(
φ̂∗ < X(j+1)

)
= 1−

(
1− 2−δ

)j
, (2.10)

the interval

(
2X(1) −X(1+j), X(1)

)
(2.11)

has asymptotic confidence coefficient 1 − α = 1 −
(
1− 2−δ

)j
(Loh, 1984). When δ is un-

known, the results for the generalized bootstrap can be made adaptive by replacing δ with

a consistent estimate. But remember that in most applications, and in particular in frontier

estimation, δ = 1.

So, in the next section, we show how the two main results provided so far, the Cooke

(2.3) and the Loh (2.11) confidence intervals for boundary points, can be adapted to the

problem of finding confidence intervals for efficiency scores.

3 Confidence Intervals for Efficiency Scores

3.1 A “toy” problem: a univariate frontier

Let us come to the problem of frontier estimation and connect it with the issues discussed

previously. Consider the one-dimensional frontier problem and suppose each firm produces

one unit of output using input X, where X is a random variable with values in (φ,∞),

φ > 0. We are interested in estimating φ, the lower boundary of the support of X, based on

a sample X = {(xi, 1) , i = 1, ..., n}. In terms of frontiers, φ can be interpreted as the lowest

level of input required to produce one unit of output and can be defined as:

φ = inf {x|FX (x) > 0} ,

where FX (x) = P (X ≤ x). According to (1.3), for an arbitrary fixed point (x0, 1) ∈ X we

have:

x∂ (x0, 1) = θx0 = φ. (3.1)
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This is also the input efficient frontier which is unknown and has to be estimated.

Assuming further that FX (·) satisfies (ii), we are just in the situation described in the

previous section and we can provide asymptotically valid confidence intervals for the efficient

level of input. We shall consider the interval based on asymptotic theory defined in (2.3)

and the interval (2.11) based on resampling methods. Let x(1) ≤ ... ≤ x(n) be the ordered

values of the inputs. The point estimator for the efficient level of input is φ̂ = x(1) and the

intervals:

I1 =

(
x(1) − (1− α)1/δ

(
1− (1− α)1/δ

)−1 (
x(2) − x(1)

)
, x(1)

)
(3.2)

I2 =
(
2x(1) − x(1+j), x(1)

)
(3.3)

are approximate 1− α and 1−
(
1− 2−δ

)j
confidence intervals for φ.

From (3.1), replacing φ with φ̂, we obtain an estimator for the input efficiency score of

producer (x0, 1):

θ̂0 =
x(1)

x0

(3.4)

which is simply the DEA input efficiency score. Consequently, dividing the endpoints of the

intervals (3.2) and (3.3) by x0, we obtain:

(
x(1)

x0

− (1− α)1/δ
(

1− (1− α)1/δ
)−1

(
x(2)

x0

− x(1)

x0

)
,
x(1)

x0

)
(3.5)

(
2
x(1)

x0
− x(1+j)

x0
,
x(1)

x0

)
. (3.6)

If θ̂(1) ≤ ... ≤ θ̂(n) = 1 are the ordered values of the estimated efficiency scores, then

θ̂(n−j) = x(1)/x(1+j), j = 0, ..., n− 1 and the intervals (3.5) and (3.6) become:

J1 =

(
θ̂0 − (1− α)1/δ

(
1− (1− α)1/δ

)−1 (
θ̂0/θ̂(n−1) − θ̂0

)
, θ̂0

)
(3.7)

J2 =
(

2θ̂0 − θ̂0/θ̂(n−j), θ̂0

)
. (3.8)

The intervals J1 and J2 are approximate 1 − α and 1 −
(
1− 2−δ

)j
confidence intervals for

the efficiency score θ0.
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3.2 Multivariate situation

Suppose we observe a sample of n producers X = {(xi, yi) , i = 1, ..., n}, where xi ∈ Rp is the

input vector and yi ∈ Rq is the output vector of producer i and the production possibilities

set is Ψ, defined in (1.1). The nonparametric approach to efficiency measurement, so-called

deterministic, assumes that all the observations are attainable, that is Prob((xi, yi) ∈ Ψ) = 1

for i = 1, ..., n. In order to define a statistical model in this multivariate setting, we need

to make some economic assumptions and, also, appropriate assumptions on the DGP. We

adopt here the statistical model defined in Simar and Wilson (2000a).

ASSUMPTION 1 Ψ is convex and inputs and outputs in Ψ are freely disposable i.e. if

(x, y) ∈ Ψ, then (x̃, ỹ) ∈ Ψ for all (x̃, ỹ) such that x̃ ≥ x and ỹ ≤ y.

ASSUMPTION 2 The sample observations in X are realizations of iid random variables

on Ψ with pdf f(x, y) and the structure of inefficiency is homogeneous.

Since we are dealing with radial distances, it is useful to describe the position of (x, y)

in terms of the polar coordinates of x:

modulus : ω = ω(x) ∈ R+

angle : η = η(x) ∈ [0, π
2
]p−1

and consequently, using cylindrical coordinates we have (x, y) ⇔ (ω, η, y), which allows us

to decompose the density f(x, y) as follows:

f (x, y) = f (ω|η, y)f (η|y) f (y) , (3.9)

assuming that all the conditional densities exist.

For a given (η, y), the efficient level of input has modulus

ω
(
x∂ (x, y)

)
= inf {ω ∈ R+| f (ω|η, y)} ,

so that we have θ(x, y) = ω
(
x∂ (x, y)

)
/ω (x).

The conditional density f (ω|η, y) on
[
ω
(
x∂ (x, y)

)
,∞
)

induces a density f (θ|y, η) on

[0, 1]. The homogeneity assumption on the structure of inefficiency implies

f(θ|η, y) = f(θ). (3.10)

ASSUMPTION 3 There is a probability mass in a neighborhood of the true frontier,

that is, for all y ≥ 0 and η ∈ [0, π
2
]p−1, there exist ε1 > 0 and ε2 > 0 such that ∀

ω ∈ [ω(x∂(x, y)), ω(x∂(x, y)) + ε2], f(ω|η, y) ≥ ε1.
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We know, (Kneip et al. (1998), that under Assumptions 1–3, the DEA efficiency score

θ̂(x0, y0) is a consistent estimator of θ(x0, y0), where (x0, y0) is the producer of interest. In

this multivariate setup, we can come back to the one-dimensional “toy” problem described

above by focusing on the modulus of the frontier point.

Consider the true pseudo-data generated on the ray passing through the point of interest

(x0, y0) as follows. Due to the homogeneity assumption in (3.10), we can consider the set of

pseudo-data defined for i = 1, . . . , n as

x̃i = θ0x0/θi

yi = y0, (3.11)

where θi = θ(xi, yi) are the true but unknown efficiency scores of the data points (xi, yi).

These pseudo-true data are n pseudo observations generated on the ray of interest and having

the same efficiency distribution as the original data cosidered in the DGP defined above.

The frontier point on this ray has modulus ω(x∂(x0, y0)) = ω(x0)θ0, therefore, in terms

of the modulus, the pseudo data defined in (3.11) can be written:

ω̃i = ω(x∂(x̃i, y0)) =
θ0ω(x0)

θi
, for i = 1, ..., n. (3.12)

Since θi are unknown, a naive approach would be to plug the (consistent) estimated values

θ̂0 and θ̂i in (3.12) to obtain

ω∗i =
θ̂0ω(x0)

θ̂i
, for i = 1, ..., n. (3.13)

These ω∗i can play the same role as the observations xi in the univariate “toy” problem

above, yielding the order statistics ω∗(i) = θ̂0x0/θ̂(n−i+1) for i = 1, ...n, where θ̂(1) ≤ ... ≤ θ̂(n)

are the ordered DEA scores.2

This would allow one to find, as above, confidence intervals for ω(x∂0) as those obtained

in (3.2) and (3.3) for φ, then dividing the endpoints by ω(x0), this would provide the same

confidence intervals for θ0 as given in (3.7) and (3.8). Namely, the confidence intervals for

ω(x∂0) with asymptotic level 1− α and 1−
(
1− 2−δ

)j
, would be:

I1 =

(
ω∗(1) − (1− α)1/δ

(
1− (1− α)1/δ

)−1 (
ω∗(2) − ω∗(1)

)
, ω∗(1)

)
(3.14)

I2 =
(
2ω∗(1) − ω∗(1+j), ω

∗
(1)

)
(3.15)

2Remember that θ̂(n) = 1, therefore ω∗(1) = θ̂0ω(x0) = ω
(
x̂∂0
)
.
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Dividing the endpoints of the intervals (3.14) and (3.15) by ω(x0) we would obtain the

corresponding confidence intervals for θ0:

J1 =


θ̂0 −

(1− α)1/δ

(
1− (1− α)1/δ

)
(
θ̂0/θ̂(n−1) − θ̂0

)
, θ̂0


 (3.16)

J2 =
(

2θ̂0 − θ̂0/θ̂(n−j), θ̂0

)
. (3.17)

The latter procedure can certainly be used in the very particular case of p = q = 1 under

CRS (constant returns to scale), because the frontier is a straight line and its estimator has

only one support point, so that only one θ̂i will be equal to 1 (with probability 1). The

finite sample performances of the procedure, in this very particular case, will be investigated

in the Monte-Carlo experiment in Section 4.1. The procedure is quite satisfactory even in

small samples.

Unfortunately, in the multivariate case, the DEA estimator always produces more than

one efficient unit and the number of such units increases with p+ q and also with the sample

size. It will also increase under the VRS (varying returns to scale) hypothesis. Consequently,

the estimated efficiency scores involved in the lower bound of our confidence intervals may

be equal to 1, even for, say, j = 7, constraining the intervals to be empty. This comes

from the spurious discretization at one of the DEA estimators, whereas, the density of θ is

continuous.

To overcome this drawback, instead of providing our pseudo-true data by plugging the

DEA efficiency estimates of θ in (3.11), we will simulate pseudo-data by generating values

of θ from a smooth estimate of the continuous density of θ and keeping in mind that by

definition, θ̂(n) = 1. This can be viewed as adapting the smoothed bootstrap, as proposed in

Simar and Wilson (1998), but used here in a different context.

To achieve this, we first eliminate from our pseudo-sample all the spurious efficiency

scores equal to 1, then we estimate f(θ̂) from the remaining θ̂ and generate B samples of

size n − 1 ,
{
θ̂∗b1 , ..., θ̂

∗b
n−1

}B
b=1

from f(θ̂). Here all the generated values are < θ̂(n) = 1.

Then we approximate θ(n−j) for some j (1 ≤ j ≤ n− 1) by the average of θ̂∗b(n−j) over the B

simulations:

θ̃(n−j) =
1

B

B∑

b=1

θ̂∗b(n−j). (3.18)

Thus we avoid the discretization problem and we attempt to provide a better approximation

for θ(n−j), j ≥ 1 in this multivariate setup. We know from the literature that the non-

parametric estimation of a density near a boundary point is a difficult problem and so, we
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can think that the performances of our estimators θ̃(n−j) could be poor for small values of

j, as j = 1, 2. However, the Monte-Carlo experiments below will show a quite satisfactory

behavior.

A kernel density estimator for f (z) , based on observations z1, ..., zn is defined by:

f̂ (z) =
1

nh

n∑

i=1

K

(
z − zi
h

)
(3.19)

where K (·) is the kernel function and h is the bandwidth parameter. Usually, the kernel

function is a probability density function, symmetric around zero. To obtain a good estimate

in terms of mean integrated square error and of course a consistent estimator, the bandwidth

parameter has to be chosen appropriately. If the distribution of the data is approximately

normal, then K could be the standard normal density function and h could be chosen

according to the normal reference rule, or a more robust choise could be

h = 0.79Rn−1/5, (3.20)

where R is the interquartile range of the data (Silverman, 1986). Another approach is to

use a data driven bandwidth h. For instance, the least squares cross-validation method

determines the value of h that minimizes an approximation to mean integrated square error.

In order to estimate f(θ̂) taking into account the boundary condition θ̂ < 1, we employ

the reflection method (Silverman, 1986), using as kernel the standard normal density function

φ (·). We follow the same idea as in Simar and Wilson (1998).

Suppose we have m inefficient producers and denote Sm =
{
θ̂1, ..., θ̂m

}
. Let each point

θ̂j < 1 be reflected in the boundary by 2−θ̂j > 1 and consider the 2m points
{
θ̂1, ..., θ̂m, 2− θ̂1, ..., 2− θ̂m

}
.

If ĝh (z) is a kernel density estimate constructed from the 2m points

ĝh (z) =
1

2mh

m∑

j=1


φ
(
z − θ̂j
h

)
+ φ



z −

(
2− θ̂j

)

h




 ,

then a consistent estimator of f(θ̂) is:

f̂h (z) =

{
2ĝh (z)

0
if z < 1,

otherwise.

Since the Gaussian kernel has unbounded support, the truncation of ĝh (z) on the right

at unity provides a density estimate f̂h (z) with support on (−∞, 1). The input efficiency

estimates are also bounded below by 0, but since there will be no values near 0, we ignore

the effect of the left boundary and we focus on the upper bound of the support.
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Now sampling from f̂h (z) is very simple and does not require the calculation of f̂h (z) .

Let
{
β∗1 , ..., β

∗
n−1

}
be a bootstrap sample, obtained by sampling with replacement from Sm

and
{
ε∗1, ..., ε

∗
n−1

}
a random sample of standard normal deviates. By the convolution formula,

we have:

θ̃∗i = β∗i + hε∗i ∼
1

m

m∑

j=1

1

h
φ

(
z − θ̂(j)

h

)
,

for i = 1, ..., n− 1. Using the same convolution formula we get also:

2− θ̃∗i = 2− (β∗i + hε∗i ) ∼
1

m

m∑

j=1

1

h
φ



z −

(
2− θ̂(j)

)

h


 .

Define now for i = 1, ...n− 1 the bootstrap data:

θ∗i =

{
θ̃∗i

2− θ̃∗i
if θ̃∗i < 1,
otherwise.

(3.21)

It is easy to prove that θ∗i defined in (3.21) are random variables distributed according

to f̂h (z).

To rescale the bootstrap data so that the variance is approximately the sample variance

of θ̂i, we employ the following transform:

θ̂∗i = θ̂ +
(
1 + h2/σ̂2

)−1/2
(
θ∗i − θ̂

)
, (3.22)

where θ̂ = 1
n

∑n
j=1 θ̂j and σ̂2 = 1

n

∑n
j=1

(
θ̂j − θ̂

)2

.

The method described above is synthesized in the following algorithm.

Algorithm:

[1] For each observed producer (xi, yi) ∈ Xn, compute the DEA estimator of the efficiency

score θ̂i = θ̂DEA (xi, yi), i = 1, ..., n.

[2] If (x0, y0) /∈ Xn repeat step [1] for (x0, y0) to obtain θ̂0 = θ̂DEA (x0, y0).

[3] Define Sm =
{
θ̂1, ..., θ̂m

}
where m = #

{
θ̂i < 1

}
1≤i≤n

, i.e. the number of inefficient

producers.

[5] Determine the bandwidth h based on Sm, via (3.20) or least-squares cross-validation

method.
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[6] Draw n− 1 bootstrap values θ̂∗i , i = 1, ..., n− 1 from the kernel density estimate of f(θ̂)

and sort in ascending order: θ̂∗(1) ≤ ... ≤ θ̂∗(n−1).

[7] Repeat step [6] B times, to obtain a set of B bootstrap estimates
{
θ̂∗b(n−j)

}B
b=1

, for some

1 ≤ j ≤ n− 1.

[8] Compute θ̃(n−j) by bagging the B estimates obtained on step [7]:

θ̃(n−j) =
1

B

B∑

b=1

θ̂∗b(n−j).

[9] The confidence intervals for θ0 are:

J1 =


θ̂0 −

(1− α)1/δ

(
1− (1− α)1/δ

)
(
θ̂0/θ̃(n−1) − θ̂0

)
, θ̂0


 (3.23)

J2 =
(

2θ̂0 − θ̂0/θ̃(n−j), θ̂0

)
. (3.24)

One possible shortcoming of both intervals J1 and J2 is that the scale factors involved in

the lower bound of the intervals are the same whatever be (x0, y0), the point of interest, but

this is a consequence of the homogeneity assumption regarding the structure of inefficiency.

Note that the computational burden of our smooth bootstrap is much less than the full

homogeneous bootstrap as proposed in Simar and Wilson (1998), because we only compute

once the DEA scores at the first step of the algorithm. In the full bootstrap, a DEA linear

program has to be performed for each bootstrap replication, and as pointed in Simar and

Wilson (1998), the procedure has to be repeated a large number of times (say, above 2000).

Note that here, the widths of the two confidence intervals can be written as:

width(J1) =
(1− α)1/δ

(
1− (1− α)1/δ

) × θ̂0

(
1

θ̃(n−1)

− 1

)

width(J2) = θ̂0

(
1

θ̃(n−j)
− 1

)
.

We do not have a proof that the asymptotic coverage probabilities obtained by the

two intervals are the nominal ones, but in the next section, we investigate by a Monte-

Carlo experiment how they behave in small to moderate sample sizes. As pointed above

the non-parametric estimation of θn−j is quite difficult for small j. This is confirmed by

the Monte-Carlo experiments: the confidence intervals based on the Cooke (3.23) are not
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reliable because the estimates θ̃n−1 turned out to be too small, giving too large intervals with

estimated coverage generally near to one. However, as shown below, the confidence intervals

adapted from the Loh idea (3.24) behave quite well for j larger than 3, which is typically

the range of interest in many applications (nominal confidence levels above 0.8750). So we

will only focus on the Loh approach when smoothing is required (VRS and/or p+ q > 2).

4 Numerical Illustrations

4.1 Monte-Carlo evidence

• Model 1

We performed Monte Carlo experiments to analyze the coverage probabilities of the esti-

mated confidence intervals. We considered a true technology which exhibits constant returns

to scale and in the case p = q = 1 we simulated data according to the model:

y = xe−|v|, (4.1)

with x ∼ Uniform (1, 9) and the inefficiency term v ∼ Exp (1) and v ∼ N (0, 1). The

producer under evaluation was chosen (x0, y0) = (5, 2). The true technical efficiency score

according to (4.1) is θ0 = y0/x0 = 0.4.

Table 1 and Table 2 present the results of our Monte Carlo experiments through 2000

trials with v ∼ Exp (1) and v ∼ N (0, 1) respectively. The confidence levels considered as

benchmarks are 1− α = 1−
(
1− 2−δ

)j
, with j = 3, 4, 5, 6, 7 and δ is obviously equal to 1.

Since we are in a CRS scenario with p = q = 1 we can use the simple confidence intervals

provided in (3.16) and (3.17). We see that the procedure provides intervals with estimated

coverage close to the desired confidence level even with only 25 observations. For n ≥ 100

the estimated coverages are almost exact. The performances of our procedure are slightly

better than the reported performances, with similar scenarios, in Simar and Wilson (2000a)

and (2003). As pointed there, the bootstrap procedure lead generally to underestimated

coverage probabilities and so, too narrow confidence intervals.

Figure 1 depicts a sample of 100 observations generated from model (4.1) with v ∼
Exp(1). The true frontier is y = x and is represented by the dashed line. The estimated

DEA frontier is an inward-biased estimator of the true frontier and is represented by the

continuous line. The fixed point is (x0, y0) and the dots (x∗i , 2), i = 1, ..., 100 define the

pseudo-data, with x∗i given by (3.11).
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• Model 2

The second model considered is also a CRS technology with two inputs and one output:

y = x
1/3
1 x

2/3
2 e−|v| (4.2)

where v ∼ N (0, (1/2)2), and x1, x2 are independently generated from Uniform (1, 9). The

fixed point considered here is (x01, x02, y0) =
(
5, 8/
√

5, 3
)

with a true technical efficiency score

θ0 = 0.75. Here again, δ = 1. We performed simulations only for estimating the coverages of

J2 and we report the results for three confidence levels obtained from 1−α = 1− (1− 2−j),

for j = 5, 6, 7. For step [5] of Algorithm 2 we used the bandwidth given by (3.20) and for

step [7] we performed B = 200 bootstrap replications.

The results are presented in Table 3. Again, in this case, the results are quite reliable

even with moderate sample sizes. They are less good than in the preceding model, since we

have a slower rate of the DEA estimators in this setup and we use the smoothing technique

to estimate the order statistics of the efficiency scores. However, the performances of our

procedure overcome slightly those of the bootstrap as reported in similar setup in Simar and

Wilson (2003). Note also that we have, as expected, better performances for higher j (higher

confidence levels). A look to the column average widths shed some lights on the precision of

the obtained confidence intervals and also on the role of the sample size in this precision.

4.2 An Empirical illustration

We illustrate the approach with real data coming from the efficiency analysis of Air Con-

trollers in Europe (Mouchart and Simar, 2002). We have data on activity of 36 european

air controllers in the year 2000. The activity of each controller can be described by one

input (an aggregate factor of different kind of labor) and one output (an aggregate factor of

the activity produced, based on the number of air movements controlled, the number flight

hours controlled, . . . ).

The observations and the VRS-DEA nonparametric frontier estimates appear in Figure 2.

The efficiency scores are naturally input oriented (the activity of an Air Controler is typically

exogeneous): they are provided in Table 4, second column. So, for instance, the unit #1

should reduce its labor by a factor of 0.6458 for being considered as efficient, comparing to

the others units.

• The efficient units are units #7, #9, #14 and #26. They define the efficient frontier

in Figure 2.

• The “‘Loh” confidence intervals are computed according the procedure described above

(see (3.24)), with a bandwidth selected as in (3.20).
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• The bootstrap confidence intervals are the one-sided confidence intervals obtained by

the Simar and Wilson (1998) procedure (homogeneous bootstrap).

We can see that the results are very similar: we have the same order of magnitude of the

intervals but the bootstrap intervals are slighly narrower. This might be an advantage of

our procedure since we know from reported Monte-Carlo experiments in the literature (see

above) that the bootstrap confidence intervals have a tendency of being too narrow.

The computing time for the Loh method (with B = 100), was only 0.14 seconds (Pentium

III, 450 Mghz processor), whereas, for the bootstrap (with B = 2000 loops, necessary for

such confidence intervals), it increases to 19 minutes: so we have a factor of more than

8000 in favor of the procedure developped in this paper. This would be particularly useful

when working with larger data sets and/or when performing Monte-Carlo experiments in

this framework.

5 Conclusions

We proposed in this paper a simple and fast way of constructing confidence intervals for the

efficiency scores. The Monte-Carlo evidence confirms that the method provides satisfactory

results even for small samples. The alternative approach is the full bootstrap approach, which

is much more computer intensive. Note that our attained coverage probabilities reported in

our Monte-Carlo experiments, are at least as good as those reported in similar Monte-Carlo

experiments for the full bootstrap approach (see Simar and Wilson , 2000a and 2003).

Our approach focuses on confidence intervals. The main advantage of the bootstrap

over our approach is that symmetric confidence intervals of any level can be produced. The

widths of the intervals seem also to be narrower, but at a cost of computing time which

turned out to be a factor 10000 in our empirical illustration. For giving an idea, the last

Monte-Carlo scenario of Table 3 took 5 hours on a Pentium III, 450 Mghz machine: an

equivalent bootstrap experiment would be impossible on such a machine when applying a

factor still greater than 8000 (here p = 2, q = 1).

Note also that the bootstrap remains the only available approach if one wants to estimate

the bias and/or the standard deviation of the estimators of the efficiency scores. Also the

approach here relies strongly on the homogeneous assumption. In a heteregenous case, the

only alternative is the heterogeneous bootstrap of Simar and Wilson (2000b). Similarly, in

testing issues, estimation of p-values needs also the use of the full bootstrap as in Simar and

Wilson (1999), (2001) and (2002).
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TABLE 1

Monte Carlo estimates of confidence intervals coverages

One Input, One Output (p = q = 1), v ∼ Exp(1), CRS

n
Significance

level

Estimated
coverage
J1

Estimated
coverage
J2

10 0.8750 0.8895 0.9450
0.9375 0.9505 0.9865
0.9688 0.9695 0.9960
0.9844 0.9860 0.9990
0.9922 0.9930 0.9995

25 0.8750 0.8745 0.8930
0.9375 0.9380 0.9555
0.9688 0.9685 0.9820
0.9844 0.9845 0.9940
0.9922 0.9925 0.9980

50 0.8750 0.8835 0.8865
0.9375 0.9455 0.9565
0.9688 0.9745 0.9760
0.9844 0.9860 0.9905
0.9922 0.9935 0.9965

100 0.8750 0.8815 0.8795
0.9375 0.9410 0.9395
0.9688 0.9740 0.9745
0.9844 0.9860 0.9905
0.9922 0.9935 0.9945

200 0.8750 0.8740 0.8630
0.9375 0.9375 0.9295
0.9688 0.9730 0.9705
0.9844 0.9860 0.9850
0.9922 0.9940 0.9955

400 0.8750 0.8670 0.8735
0.9375 0.9360 0.9370
0.9688 0.9685 0.9725
0.9844 0.9810 0.9865
0.9922 0.9905 0.9940
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TABLE 2

Monte Carlo estimates of confidence intervals coverages

One Input, One Output (p = q = 1), v ∼ N(0, 1), CRS

n
Significance

level

Estimated
coverage
J1

Estimated
coverage
J2

10 0.8750 0.8940 0.9435
0.9375 0.9480 0.9805
0.9688 0.9745 0.9930
0.9844 0.9870 0.9990
0.9922 0.9950 1.0000

25 0.8750 0.8810 0.8970
0.9375 0.9450 0.9595
0.9688 0.9700 0.9830
0.9844 0.9850 0.9945
0.9922 0.9910 0.9985

50 0.8750 0.8865 0.8890
0.9375 0.9435 0.9580
0.9688 0.9725 0.9795
0.9844 0.9890 0.9915
0.9922 0.9935 0.9955

100 0.8750 0.8755 0.8835
0.9375 0.9360 0.9400
0.9688 0.9735 0.9695
0.9844 0.9845 0.9865
0.9922 0.9935 0.9935

200 0.8750 0.8800 0.8750
0.9375 0.9365 0.9355
0.9688 0.9650 0.9695
0.9844 0.9825 0.9890
0.9922 0.9930 0.9925

400 0.8750 0.8815 0.8755
0.9375 0.9395 0.9420
0.9688 0.9695 0.9715
0.9844 0.9810 0.9855
0.9922 0.9915 0.9920
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TABLE 3

Monte Carlo estimates of confidence intervals coverages

Two Inputs, One Output (p = 2, q = 1), B = 200, CRS

n
Significance

level
Estimated
coverage

Average
widths

10 0.8750 0.7515 0.1845
0.9375 0.8695 0.2401
0.9688 0.9320 0.3030
0.9844 0.9710 0.3791
0.9922 0.9895 0.4808

25 0.8750 0.7620 0.0826
0.9375 0.8570 0.1018
0.9688 0.9230 0.1215
0.9844 0.9550 0.1418
0.9922 0.9725 0.1627

50 0.8750 0.7840 0.0503
0.9375 0.8600 0.0593
0.9688 0.9200 0.0684
0.9844 0.9555 0.0776
0.9922 0.9740 0.0870

100 0.8750 0.8280 0.0337
0.9375 0.8810 0.0381
0.9688 0.9295 0.0426
0.9844 0.9570 0.0472
0.9922 0.9750 0.0518

200 0.8750 0.8870 0.0235
0.9375 0.9195 0.0257
0.9688 0.9465 0.0279
0.9844 0.9690 0.0302
0.9922 0.9805 0.0324

400 0.8750 0.9445 0.0169
0.9375 0.9640 0.0180
0.9688 0.9755 0.0191
0.9844 0.9840 0.0203
0.9922 0.9875 0.0214
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TABLE 4

The Air Controlers efficiency levels and confidence intervals of level 0.9688. The bandwidth

for the Loh approach is 0.0996. For the bootstrap approach, the homogeneous bootstrap

from Simar and Wilson (1998) has been used (2000 replications).

Units Eff. Scores Loh Lower Loh Upper Boot. Lower Boot. Upper

1 0.6458 0.5389 0.6458 0.5689 0.6458
2 0.4862 0.4057 0.4862 0.4286 0.4862
3 0.5333 0.4450 0.5333 0.4682 0.5333
4 0.4694 0.3917 0.4694 0.4130 0.4694
5 0.5340 0.4456 0.5340 0.4707 0.5340
6 0.7174 0.5986 0.7174 0.6328 0.7174
7 1.0000 0.8344 1.0000 0.8803 1.0000
8 0.9366 0.7815 0.9366 0.8265 0.9366
9 1.0000 0.8344 1.0000 0.8701 1.0000

10 0.7249 0.6049 0.7249 0.6369 0.7249
11 0.6137 0.5121 0.6137 0.5409 0.6137
12 0.7594 0.6337 0.7594 0.6661 0.7594
13 0.7658 0.6390 0.7658 0.6736 0.7658
14 1.0000 0.8344 1.0000 0.8677 1.0000
15 0.6633 0.5535 0.6633 0.5818 0.6633
16 0.7936 0.6622 0.7936 0.6972 0.7936
17 0.6573 0.5485 0.6573 0.5791 0.6573
18 0.3553 0.2965 0.3553 0.3127 0.3553
19 0.4344 0.3625 0.4344 0.3822 0.4344
20 0.4213 0.3515 0.4213 0.3715 0.4213
21 0.6838 0.5706 0.6838 0.6008 0.6838
22 0.3029 0.2527 0.3029 0.2663 0.3029
23 0.5218 0.4354 0.5218 0.4601 0.5218
24 0.4355 0.3634 0.4355 0.3832 0.4355
25 0.9375 0.7823 0.9375 0.8258 0.9375
26 1.0000 0.8344 1.0000 0.8696 1.0000
27 0.6592 0.5501 0.6592 0.5798 0.6592
28 0.8472 0.7069 0.8472 0.7472 0.8472
29 0.6439 0.5373 0.6439 0.5669 0.6439
30 0.6832 0.5701 0.6832 0.5998 0.6832
31 0.5750 0.4798 0.5750 0.5070 0.5750
32 0.8725 0.7280 0.8725 0.7671 0.8725
33 0.8196 0.6839 0.8196 0.7229 0.8196
34 0.6632 0.5534 0.6632 0.5852 0.6632
35 0.9253 0.7721 0.9253 0.8152 0.9253
36 0.8309 0.6933 0.8309 0.7317 0.8309
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Figure 1: Sample of 100 observations generated from model (4.1) and their projections
according to (3.11) for (x0, y0) = (5, 2). Dashed line - true frontier, solid line - DEA frontier.
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Figure 2: Data on the Air Controlers: the solid line is the VRS-DEA frontier.
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