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1 Introduction

Arellano and Bond (1991), Arellano and Bover (1995), and Ahn and Schmidt (1995) address

the question of efficient estimation in dynamic panel models by investigating the number

of moment conditions available under several sets of assumptions about the relationship

between the initial condition and the error terms, building on earlier work by Anderson and

Hsiao (1981, 1982). Once these moment conditions have been identified, the generalized

method of moments (GMM) technique can be applied to obtain efficient estimates, utilizing

the moment conditions described by Ahn and Schmidt, as well as those implied by exogeneity

assumptions on the other regressors in the model. The estimates are efficient as long as the

correct moment conditions are specified. A number of excellent surveys and monographs

have been written on the subject, mostly recently by Baltagi (1995) and Mátyás and Sevestre

(1996). These authors discuss a number of alternative estimators to be applied to random

effects models of the form we consider herein. The key differences among the various

estimators of the dynamic panel data model essentially involve the imposition of different

orthogonality conditions to yield different sets of instruments. Which estimator is better

in the sense of a smaller asymptotic variance is difficult to analyze. The class of GMM

estimators which are efficient (Ahn and Schmidt, 1995; Arellano and Bower, 1995) have

been shown to be difficult to implement in large data sets.

Building on previous work of Park and Simar (1994), and Park, Sickles, and Simar (1998,

2003) our paper utilizes a somewhat different approach than that of Ahn and Schmidt and

instead of finding the orthogonality conditions necessary to achieve the efficiency bound,

constructs the estimator which attains the semiparametric efficiency bound. Our semipara-

metric efficient estimator is developed under minimal assumptions when the panel model

contains a lagged dependent variable. Derivation of our new estimator is detailed in the

next section. Section 3 analyzes our estimator using Monte Carlo simulations and compares

it to alternative instrumental variables-based estimators. Our results suggest that our semi-

parametric efficient estimator may have advantages over parametric estimators in regard to

efficiency gains. In section 4 we illustrate our new estimator in an analysis of the structure

of dynamic demand for airline travel in markets (city-pairs) for selected U. S. airlines during

the period 1979 I to 1992 IV. Section 5 concludes. Proofs of main theorems are contained

in the Appendix.
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2 Main Results

The model we analyze in this paper is the dynamic panel data model that can be written

as:

Yit = γYi,t−1 + β ′Xit + αi + εit ; i = 1, . . . , n ; t = 1, . . . , r (2.1)

where Xit ∈ IRd, β ∈ IRd and εit are iid random variables from a N (0, σ2) with an un-

known σ2. We assume |γ| < 1 and Yi,0 = 0The random effects αi are assumed to be

independent and have an unknown common density function h. Write εi ≡ (εi1, . . . , εir)
′,

Xi ≡ (X ′i1, . . . , X
′
ir)
′, and Yi ≡ (Yi1, . . . , Yir)

′. The random covariates Xi are independent

and identically distributed with an unknown density function g defined on IRdr. It is assumed

that ε’s, α’s and X’s are independent. In this section we address efficient estimation of the

parameters β and γ in the presence of the nuisance parameters σ2, h and g. Note that the

parameter spaces for h and g are of infinite dimension while those for β, γ and σ2 are of

finite dimension, so the model (2.1) is semiparametric.

We speak of efficiency as n tends to infinity with the time period r being fixed. The no-

tion of efficiency in the semiparametric world is well explained in Bickel et al. (1993). There

is a Fisher-like information matrix, say I, such that all regular estimators have asymptotic

covariance matrices that are greater than or equal to I (Hájek-Le Cam’s Convolution The-

orem, see Theorem 2.3.1 of Bickel et al., 1993). Here, we say an estimator δ̂n of q(θ) is

regular if the law of
√
n(δ̂n− q(θn)) under Pθn converges to a limit law whenever

√
n|θn− θ|

stays bounded, and if the limit distribution does not depend on the choice of {θn}. We call

δ̂n efficient if its limit law is N (0, I−1). In the next subsection we exhibit the information

matrix I for estimating (β ′, γ)′ in the presence of the nuisance parameters σ2, h(·) and g(·),
and then in the second subsection we construct an efficient estimator of (β ′, γ)′.

2.1 Information bound

Let Z1t ≡ Z1t(β, γ) = Y1t − γY1,t−1 − β ′X1t and Z̄1 ≡ Z̄1(β, γ) =
∑r

t=1 Z1t(β, γ)/r. Define

σ̄2 = σ2/rThen we can write Z1t = α1 + ε1t, Z̄1 = α1 + ε̄1 and Z1t − Z̄1 = ε1t − ε̄1. The

probability density function for Z̄1 is given by

w(z) ≡ w(z; σ2, h(·)) =

∫
(2πσ̄2)−1/2 exp{−(z − u)2/(2σ̄2)}h(u) du.

Thus, the log-likelihood with a single observation (X1, Y1) is given by

L(β, γ, σ2, h(·), g(·);X1, Y1) = log g(X1)− r

2
log(2πσ2)−

r∑

t=1

Z2
1t

2σ2
+
Z̄2

1

2σ̄2
(2.2)

+ logw(Z̄1) +
1

2
log(2πσ̄2).
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Write Pβ,γ,σ2,h,g for the probability distribution of (X1, Y1) corresponding to β, γ, σ2, h

and g. Let β0, γ0, σ2
0, h0 and g0 be the true values and the true functions, thus the true

probability distribution is P0 = Pβ0,γ0,σ2
0 ,h0,g0

. For the time being, let us suppose the model

(2.1), denoted by P, is parametric. Let P = {Pβ,γ,σ2,h(·;η1),g(·;η2) : β ∈ IRd, γ ∈ IR, σ2 ∈
IR+, η1 ∈ S1, η2 ∈ S2} for some open S1, S2 ⊂ IR where h(·; η1) and g(·; η2) are known except

η1 and η2. If the maps η1 → h1/2(·; η1) and η2 → g1/2(·; η2) from IR to L2(µ) (µ is the Lebesgue

measure) are “smooth”, then the model P is regular. (See Ibragimov & Has’minskii, 1981,

Section 1.7, or Bickel et al., 1993, Section 2.1). For this regular parametric model P, the

information matrix, denoted by I(P0 | β, γ,P), for estimating β and γ in the presence of the

nuisance parameters σ2, η1 and η2 is well defined and can be computed in the following way.

Write L = L(β, γ, σ2, h(·; η1), g(·; η2);X1, Y1) and define `β = ∂L/∂β|β0,γ0,σ2
0 ,η10,η20

where

η10 and η20 are the parameter values such that h0 = h(·, η10) and g0 = g(·, η20). Define `γ,

`σ2 , `η1 and `η2 , likewise. Let [`σ2 , `η1, `η2 ] be the linear span generated by `σ2 , `η1 and `η2 .

Define `∗β = `β−Π(`β | [`σ2 , `η1, `η2 ]), and likewise define `∗γ, where Π(u | S) denotes the vector

of projections of each component of u onto the space S in L2(µ). Write `∗ = (`∗′β , `
∗
γ)
′. The

information matrix is then given by

I(P0 | β, γ,P) = EP0 `
∗`∗′. (2.3)

It is known that the right hand side of (2.3) equals the inverse matrix of the (d+ 1)× (d+ 1)

left-top block of the matrix {EP0 ` `
′}−1 where ` = (`′β, `γ, `σ2 , `η1 , `η2)′. It is also known that

if δ is a Gaussian regular estimator of (β ′0, γ0)′ with asymptotic covariance Σ(P0, δ) then

Σ(P0, δ) ≥ I−1(P0 | β, γ,P),

where A ≥ B for matrices A and B means that A−B is nonnegative definite (Bickel et al.,

1993, Section 2.3).

Now we go back to the original semiparametric model where the spaces for h and g

are of infinite dimension. Consider classes of functions h(·; η1) and g(·; η2) indexed by

η1, η2 ∈ IR such that h(·; 0) = h0 and g(·; 0) = g0. Form a parametric submodel P0 =

{Pβ,γ,σ2,h(·;η1),g(·;η2) : β ∈ IRd, γ ∈ IR, σ2 ∈ IR+, η1 ∈ IR, η2 ∈ IR}. If we choose h(·; ·) and

g(·; ·) so that the maps η1 → h1/2(·; η1) and η2 → g1/2(·; η2) from IR to L2(µ) are “smooth”,

then P0 is a regular parametric submodel of P and the information matrix I(P0 | β, γ,P0)

can be defined as at (2.3). Consider the class of all such regular parametric submodels, and

write it C. Suppose an estimator δ of (β ′0, γ0)
′ is Gaussian regular on P. Then it is Gaussian

regular on every regular parametric submodel P0, too. So, it satisfies

Σ(P0, δ) ≥ I−1(P0 | β, γ,P0), (2.4)
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for every regular parametric submodel P0. In view of (2.4) it is natural to define the infor-

mation bound for estimating (β ′, γ)′ in the semiparametric model by

I−1(P0 | β, γ,P) = sup{I−1(P0 | β, γ,P0) : P0 ∈ C}. (2.5)

A method of calculating I(P0 | β, γ,P) can be found in Bickel el al. (1993). The main

tasks are to find the tangent space of Pnu = {Pβ0,γ0,σ2,h,g : σ2 ∈ IR+,
∫
h = 1,

∫
g = 1, h, g ≥

0} at (σ2
0, h0, g0), and to calculate the orthogonal projection of the scores `β and `γ onto the

tangent space. Let `nu(P0) = (`σ2 , `η1 , `η2) be the vector of scores for the nuisance parameters

σ2, η1 and η2. We introduce P0 here to stress its dependence on the choice of parametric

submodel P0. Then, the tangent space of at (σ2
0, h0, g0) is nothing else than the closed linear

span of the union of [`nu(P0)] as P0 ranges over C. Write the tangent space as
·
Pnu. Define

`∗β = `β − Π(`β |
·
Pnu) and `∗γ, likewise. These are called the efficient score functions. Writing

`∗ = (`∗′β , `
∗
γ)
′, the information matrix in the semiparametric model is given by

I(P0 | β, γ,P) = EP0 `
∗`∗′.

In the discussion that follows we omit the subscript “0” in β0, γ0, σ2
0, h0 and g0 which has

been used to indicate they are the true values and functions. Also, we suppress the subscript

“P0” in EP0 .

The following theorem exhibits `∗β and `∗γ for estimating β and γ. To state the theorem,

let ct ≡ ct(γ) =
∑t−1

j=0 γ
j and c̃ ≡ c̃(γ) =

∑r−1
t=1 ct(γ)/r. Write Xw

1t ≡ Xw
1t(γ) =

∑t−1
j=0 γ

jX1,t−j

and X̃w
1 ≡ X̃w

1 (γ) =
∑r−1

t=1 X
w
1t(γ)/r. Similarly, let Zw

1t ≡ Zw
1t(β, γ) =

∑t−1
j=0 γ

jZ1,t−j and

Z̃w
1 ≡ Z̃w

1 (β, γ) =
∑r−1

t=1 Z
w
1t(β, γ)/r. Define X̄1 =

∑r
t=1 X1t/r.

Theorem 2.1 The efficient score functions for estimating β and γ are given by

`∗β =
r∑

t=1

(Z1t − Z̄1)X1t/σ
2 − {w(1)(Z̄1)/w(Z̄1)}(X̄1 − EX̄1)

`∗γ =
r∑

t=1

(Z1t − Z̄1)Y1,t−1/σ
2 + {c̃/(r − 1)σ2}

r∑

t=1

(Z1t − Z̄1)2

−{w(1)(Z̄1)/w(Z̄1)}{β ′(X̃w
1 − EX̃w

1 ) + Z̃w
1 − c̃Z̄1}

where w(1) denotes the first derivative of w.

The information matrix I(P0 | β, γ,P) can be calculated by using Theorem 2.1. Let

Σwtn =
∑r

t=1 E(X1t−X̄1)(X1t−X̄1)′ and Σbtn = var(X̄1). Define Iw =
∫
{(w(1)(z))2/w(z)} dz.

Then

E `∗β`
∗′
β = σ−2Σwtn + IwΣbtn. (2.6)
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Define ξ ≡ ξ(γ) =
∑r−1

t=1

∑r−1
s=1

∑t∧s−1
j=1 γ|t−s|+2j. It can be shown from a lengthy and cumber-

some calculation that

E `∗2γ = β ′E{
r−1∑

t=1

(Xw
1t − X̃w

1 )(Xw
1t − X̃w

1 )′}β/σ2 + 2 β ′
r−1∑

t=1

(ct − c̃)E(Xw
1t − X̃w

1 )E(Z̄1)/σ2

+
r−1∑

t=1

(ct − c̃)2E(Z̄2
1)/σ2 + Iw{(ξ − rc̃)σ2/r2 + β ′var(X̃w

1 )β} (2.7)

+(1− r−1)
r−1∑

t=1

t−1∑

j=0

γ2j −
r−1∑

t=1

c2
t/r − 2 c̃2/(r − 1).

E `∗β`
∗
γ = σ−2{

r−1∑

t=1

β ′EXw
1t(X1,t+1 − X̄1) +

r−1∑

t=1

ctE(X1,t+1 − X̄1)E(Z̄1)} (2.8)

+Iwβ
′E(X̃w

1 − EX̃w
1 )(X̄1 − EX̄1).

The information matrix is readily obtained from (2.6), (2.7) and (2.8).

2.2 Construction of efficient estimators

Let θ = (β ′, γ)′. Write I = I(P0 | β, γ,P). We construct an estimator θ̂n of θ such that
√
n(θ̂n− θ) converges in distribution to N (0, I−1). Define Zit as we define Z1t but replacing

the subscript “1” by “i”, i.e. Zit ≡ Zit(θ) = Yit−γYi,t−1−β ′Xit. Likewise, define Z̄i, X
w
it , X̃

w
i ,

Zw
it and Z̃w

i . Replace the subscript “1” by “i” in the formula for `∗β and `∗γ given at Theorem

2.1, and denote them by `∗β,i and `∗γ,i, respectively. Define `∗i = (`∗′β,i, `
∗
γ,i)
′. Instead of writing

just `∗i we will write `∗i (θ) to stress its dependence on θ and for notational convenience in

description of the efficient estimator given below. Note particularly that `∗i (θ) depends on

other parameters σ2, h and g, too. Efficient estimators θ̂n are characterized by the following

stochastic expansion:

θ̂n = θ + n−1I−1

n∑

i=1

`∗i (θ) + op(n
−1/2). (2.9)

We follow the usual one-step procedure for constructing an efficient estimator: (i) Find a√
n-consistent estimator θ̃n of θ. (ii) Assuming the true parameter value θ is known, find a

reasonable estimator of σ2, and using this construct an estimator of the density function w(·).
(iii) Substitute the estimators obtained at (ii) into `∗i (θ), and call it ˆ̀∗

i (θ). Also, construct

an estimator of I using the estimators obtained at (ii), and denote it by Î(θ). (iv) Construct

θ̂n by θ̂n = θ̃n + n−1Î−1(θ̃n)
∑n

i=1
ˆ̀∗
i (θ̃n).

First, we construct an initial estimator of θ which is
√
n-consistent. We take, as an initial

estimator θ̃n, the minimizer of
∑n

i=1

∑r
t=1

{
(Yit − Ȳi)− γ(Yi,t−1 − Ȳi)− β ′(Xit − X̄i)

}2
with
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respect to β and γ where X̄i =
∑r

t=1 Xit/r and Ȳi =
∑r

t=1 Yit/r. Write υit = (X ′it, Yi,t−1)′,

m =
∑n

i=1

∑r
t=1 υitYit and M =

∑n
i=1

∑r
t=1 υitυ

′
it. Then, the least squares initial estimator

can be written as

θ̃n =M−1m. (2.10)

It can be shown that θ̃n is
√
n-consistent.

Given the true value θ, we define σ̃2
n(θ) by

σ̃2
n(θ) =

n∑

i=1

r∑

t=1

{
(Yit − Ȳi)− γ(Yi,t−1 − Ȳi)− β ′(Xit − X̄i)

}2
/n(r − 1).

Next, we construct a density estimator ŵ(·; θ). Recalling that w is the density of Z̄i(θ), we

estimate it by a kernel estimator

ŵ(z; θ) = n−1
n∑

i=1

Kbn(z − Z̄i(θ)) + cn

where Kbn(u) = (1/bn)K(u/bn), K(u) = e−u(1 + e−u)−2 and bn is a constant converging to

zero at an appropriate rate to be described later. The constant cn is introduced here to avoid

technical difficulties due to zero denominators arising otherwise, and is taken to converge to

zero too as n tends to infinity, whose rate is also to be specified below.

Now, define ˆ̀∗
i (θ) = (ˆ̀∗′

β,i(θ),
ˆ̀∗
γ,i(θ))

′ where

ˆ̀∗
β,i(θ) =

r∑

t=1

{
Zit(θ)− Z̄i(θ)

}
Xit/σ̃

2
n(θ) (2.11)

−
{
ŵ(1)(Z̄i(θ); θ)/ŵ(Z̄i(θ); θ)

}
(X̄i −

n∑

i=1

X̄i/n)

ˆ̀∗
γ,i(θ) =

r∑

t=1

{
Zit(θ)− Z̄i(θ)

}
Y1,t−1/σ̃

2
n(θ) +

{
c̃(γ)/(r − 1)σ̃2

n(θ)
} r∑

t=1

{
Zit(θ)− Z̄i(θ)

}2

−
{
ŵ(1)(Z̄i(θ); θ)/ŵ(Z̄i(θ); θ)

}
{
β ′

(
X̃w
i (γ)−

n∑

i=1

X̃w
i (γ)/n

)
(2.12)

+Z̃w
i (θ)− c̃(γ)Z̄i(θ)

}
.

One may estimate I by n−1
∑n

i=1
ˆ̀∗
i (θ)

ˆ̀∗′
i (θ), or by substituting the unknown quantities,

except θ, in the expressions given at (2.6), (2.7) and (2.8). It is well known that the latter

approach yields more stable estimators, and so we proceed in that direction here. Denote

by I11 the d × d left-top block of the information matrix I, and by I12 and I22, the d × 1
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right-top and 1 × 1 right-bottom blocks, respectively. Let Σ̂wtn = n−1
∑n

i=1

∑r
t=1(Xit −

X̄i)(Xit − X̄i)
′ and Σ̂btn = n−1

∑n
i=1{X̄i −

∑n
i=1 X̄i/n}{X̄i −

∑n
i=1 X̄i/n}′. Let Îw(θ) =

n−1
∑n

i=1

{
ŵ(1)(Z̄i(θ); θ)/ŵ(Z̄i(θ); θ)

}2
. Define

Î11(θ) = σ̃−2(θ)Σ̂wtn + Îw(θ)Σ̂btn.

We estimate I12 by

Î12(θ) = σ̃−2(θ)

{
β ′n−1

n∑

i=1

r−1∑

t=1

Xw
it (γ)(Xi,t+1 − X̄i)

+

(
n−1

n∑

i=1

r−1∑

t=1

ct(γ)(Xi,t+1 − X̄i)

)(
n−1

n∑

i=1

Z̄i(θ)

)}

+β ′Îw(θ)n−1

n∑

i=1

{
X̃w
i (γ)− n−1

n∑

i=1

X̃w
i (γ)

}{
X̄i − n−1

n∑

i=1

X̄i

}
.

Finally, given the true value of θ, we construct an estimator of I22 by

Î22(θ) = σ̃−2
n (θ)β ′

{
n−1

n∑

i=1

r−1∑

t=1

(
Xw
it (γ)− X̃w

i (γ)
)(

Xw
it (γ)− X̃w

i (γ)
)′
}
β

+2 σ̃−2
n (θ)β ′

{
n−1

n∑

i=1

r−1∑

t=1

(ct(γ)− c̃(γ))
(
Xw
it (γ)− X̃w

i (γ)
)}{

n−1

n∑

i=1

Z̄i(θ)

}

+σ̃−2
n (θ)

{
n−1

n∑

i=1

r−1∑

t=1

(ct(γ)− c̃(γ))2 Z̄2
i (θ)

}

+Îw(θ)

{
(ξ(γ)− rc̃(γ)) σ̃2

n/r
2

+ β ′n−1
n∑

i=1

(
X̃w
i (γ)− n−1

n∑

i=1

X̃w
i (γ)

)(
X̃w
i (γ)− n−1

n∑

i=1

X̃w
i (γ)

)′
β

}

+(1− r−1)
r−1∑

t=1

t−1∑

j=0

γ2j −
r−1∑

t=1

c2
t (γ)/r − 2 c̃2(γ)/(r − 1).

Plugging the initial estimator θ̃n into ˆ̀∗
i (θ) and Î(θ), we obtain the following estimator

of θ:

θ̂n = θ̃n + n−1Î−1(θ̃n)
n∑

i=1

ˆ̀∗
i (θ̃n) (2.13)

The following theorem demonstrates that the estimator defined at (2.13) is a semiparametric

efficient estimator of θ.
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Theorem 2.2 Assume that E(et|X̄1|) < ∞ for some t > 0 and that
∫
|u|2h(u) du < ∞. If

bn → 0, cn → 0 and nc2
nb

6
n →∞ as n→∞, then

√
n(θ̂n − θ)→N (0, I−1)

in distribution as n tends to infinity.

3 Monte Carlo Simulations

The finite sample performances of the initial consistent 1 and the semiparametric efficient

estimator are compared through the following Monte-Carlo (MC) scenarios.

We simulated samples of size n = 20, 100, 1000 with r = 20, 50 in a model with d = 2

regressors. In each MC sample, the regressors were generated according to a bivariate VAR

model:

Xit = RXi,t−1 + ηit, where ηit ∼ IN2(0, σ2
XI2), (2.14)

σX = 1 and R =

(
0.4 0.05
0.05 0.4

)
.

The simulation was initialized as follows: we chose Xi1 ∼ N2(0, σ2
X (I2 − R2)−1) and start

the iteration (2.14) for t ≥ 2.

Then the obtained values of Xit were shifted around three different means to obtain

almost 3 balanced groups of cross-sectional units from smaller to larger. We fixed µ1 =

(5, 5)′, µ2 = (7.5, 7.5)′, µ3 = (10, 10)′. The idea is to generate a reasonable cloud of points

for X. Other scenarios have been tried: they influence the quality of the estimators jointly

but they do not change the conclusions on the comparison issue raised here.

The autoregressive AR(1) part of the model was generated with γ = 0.99, 0.90, 0.70, 0.10,

0.0, and σ = 0.5. For small values of γ we could expect that finite sample performances of

our efficient estimator could be questionable. Changing the value of σ would of course affect

jointly the quality of all the estimators but does not affect the comparisons done below.

Finally, the random effects αi were generated independently of the regressors as B −
Expo(µα) where we chose for the exponential distribution a mean µα = 1 and for the upper

boundary a value of B = 1. Although we do not pursue the interpretation of the effects

1In principal an efficient estimator designed along the lines of Ahn and Schmidt (1995) and Arellano and
Bover (1995) could be used as our initial consistent estimator. We found, however, that the instability of such
an estimator with the cross-section and time-series dimenions used in our Monte Carlo experiments rendered
these initial consistent estimators too unrealiable. Instead we utilized a classical instrumental variables
approach using lagged values of exogenous and endogenous variables and well as their first differences and
lags in first differences in the spirit of Ahn and Schmidt, Arellano and Bover, and Anderson and Hsiao (1981,
1982).
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in the empirical work below we have in the previous studies been interested in the use of

such models to estimate firm specific efficiency levels. Since in such models the y is often

measured in logarithms (like in Cobb Douglas production functions), this involves an average

inefficiency score E (exp{−Expo(µα)}) = 0.50. Here again, other scenarios for generating

the αi could be chosen but this does not affect the conclusions below. The values of β was

set equal to (1, 0.5)′.

Due to computing time limitations, most of the results were obtained from M = 500 MC

replications but when n = 1000 only M = 100 replications were performed. Some scenarios

(with smaller n) were done with M = 1000 confirming the reported results.

Since the VAR process generating the regressors Xi is symmetric in both components,

the MSE for the estimators of the two coefficients are of the same order of magnitude. In

the tables below, we display the sum of the two MC mean-squared errors for the β ′s:

MSE =
2∑

j=1

1

M

M∑

m=1

(θ0,m
j − θj)2,

and the mean-square error for γ

MSE =
1

M

M∑

m=1

(θ0,m
3 − θ3)2,

where θ0
j denotes either the initial estimator θ̃j or the semiparametric efficient θ̂j.

For the bandwidth b we selected an optimal fixed value b∗ by running the whole Monte-

Carlo experiment for a selected grid of 20 equally spaced values for b between 0.1 to 2.5. We

report in the tables the results corresponding to the optimal bandwidth b∗ which minimizes

the MSE. In all the tried scenarios, the results were not very sensitive to the choice of b

in the above grid. For the empirical analysis of the airline market data set in Section 4, we

propose a data driven cross-validation algorithm.

n r γ̃ γ̂ β̃ β̂ b∗

20 20 0.0032 0.0015 15.5502 8.8392 0.1
100 20 0.0006 0.0003 3.0454 1.8088 0.1
1000 20 0.0001 0.0000 0.2892 0.1687 0.1
20 50 0.0002 0.0001 7.5392 3.8261 0.1
100 50 0.0000 0.0000 1.6455 0.7319 0.1
1000 50 0.0000 0.0000 0.2387 0.0770 0.2

Table 1: Monte Carlo MSE of the estimators of θ with M=500 replications. The

figures for the MSE are multiplied by 103. Here γ = 0.99, σ = 0.5, and µα = 1.

For n=1000 only M=100 replications were performed.
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n r γ̃ γ̂ β̃ β̂ b∗

20 20 0.0228 0.0071 15.2719 8.9142 0.1
100 20 0.0044 0.0017 2.9824 1.8065 0.2
1000 20 0.0006 0.0002 0.2994 0.1699 0.1
20 50 0.0171 0.0029 8.6467 3.7017 0.1
100 50 0.0058 0.0006 2.0451 0.7543 0.1
1000 50 0.0030 0.0001 0.5500 0.0679 0.1

Table 2: Monte Carlo MSE of the estimators of θ with M=500 replications. The

figures for the MSE are multiplied by 103. Here γ = 0.90, σ = 0.5, and µα = 1.

For n=1000 only M=100 replications were performed.

n r γ̃ γ̂ β̃ β̂ b∗

20 20 1.0076 0.0980 20.8269 10.5991 0.2
100 20 0.4275 0.0194 5.8643 1.9396 0.1
1000 20 0.2959 0.0025 2.6676 0.1895 0.1
20 50 4.8821 0.2592 59.9342 4.4669 1.2
100 50 3.7212 0.0625 39.9281 0.9093 2.0
1000 50 3.4301 0.0300 36.7256 0.1089 1.4

Table 3: Monte Carlo MSE of the estimators of θ with M=500 replications. The

figures for the MSE are multiplied by 103. Here γ = 0.70, σ = 0.5, and µα = 1.

For n=1000 only M=100 replications were performed.

n r γ̃ γ̂ β̃ β̂ b∗

20 20 45.9048 7.6055 71.7682 15.6721 0.60
100 20 33.9708 1.6755 44.3691 3.4728 0.20
1000 20 32.3524 1.1484 39.8249 0.5260 1.60
20 50 177.2281 17.3109 251.9102 12.7766 0.40
100 50 166.2137 6.8044 225.0624 4.2812 1.30
1000 50 163.5490 4.7516 218.9318 2.4003 1.10

Table 4: Monte Carlo MSE of the estimators of θ with M=500 replications. The

figures for the MSE are multiplied by 103. Here γ = 0.10, σ = 0.5, and µα = 1.

For n=1000 only M=100 replications were performed.

n r γ̃ γ̂ β̃ β̂ b∗

20 20 58.4413 6.6230 76.3811 15.7628 0.50
100 20 43.0524 1.5662 46.4698 3.3897 0.20
1000 20 41.7777 0.8972 42.3493 0.4940 1.10
20 50 234.2394 17.0526 273.4654 13.1465 1.90
100 50 213.9966 5.5336 236.6754 3.9621 1.60
1000 50 210.3004 3.5021 229.8879 2.0487 2.00
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Table 5: Monte Carlo MSE of the estimators of θ with M=500 replications. The

figures for the MSE are multiplied by 103. Here γ = 0.00, σ = 0.5, and µα = 1.

For n=1000 only M=100 replications were performed.

As a global conclusion, it appears that our efficient estimator behaves well across the

different MC scenarios even if γ is small. When autocorrelation is present our estimator

increases the precision of the estimators of γ and β for the different sample sizes analyzed

here.

4 Empirical Illustration

4.1 Data

In this section we illustrate our new estimator by estimating dynamic demand equations for

airline travel, measured by revenue passenger mile, for a set of U. S. air carriers operating

in a number of different markets (city-pairs) over time. The data on which our empirical

illustration is based is a one in ten sample of all tickets issued from January 1979 through

December 1992 (DB1A). These are aggregated so that all tickets in the same quarter with

the same fare, airline, and plane changes are grouped together.

It is important to note that this study considers a market (route) to be neither the US

as a whole nor, as in most studies, a trip between origin and destination airports. Instead, a

market is considered to be a trip between origin and destination cities. Having the market

defined as all flights in the US could lead one to conclude, e.g., that regional carriers in

different regions compete with each other. However, defining a route by airports neglects

the competition that airlines face from carriers that fly from different airports within the

same city.

There are a number of factors for which controls other than standard demand variables

such as own price, price of competitors, income, etc. are necessary in order to model the

dynamic demand for airline travel. These are measured imperfectly. We imbed a number

of these in the construction of the price index itself, following the methods outlined by Good

et al. (2001). The factors can be categorized into five broad groups: Route specific effects,

ticket restrictions, yield management, zero coupon tickets and network effects.

4.1.1 Route Specific factors

There are clearly other variables which many have attempted to incorporate into modeling

the demand side of long distance travel. These include factors which are weather related,

such as mean temperature difference, in an attempt to capture vacation travel in the winter
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months. Others have collected additional variables which attempt to capture the demand

for business travel such as the number of white collar jobs in an area. We do have per capita

income in the SMSA that surrounds one of the largest 80 airports as well as population and

unemployment rate which we obtained from the BLS. We assume that other factors for

which we have no controls are slow to change or that they are proxied well in the variables

we do observed. The slowly moving factors that are markets (i.e., city–pair)-specific are

captured with the random route effects which describe the origin-destination pair.

4.1.2 Ticket restrictions

A major feature of airline fare structures is ticket restrictions. These either increase the

risk of travel for consumers (non-refundability) or provide the airlines with improved pre-

dictability about demand (advanced booking) and enhance their ability to provide price

discrimination information by separating price sensitive consumers from business travelers

with more inelastic demands (Saturday night stay-over). The major liability of using of

DOT’s DB1A as the primary source of ticket information is that it includes very incomplete

information on ticket restrictions. There is typically a lag between fare type innovations and

the way they are reported in DB1A. This makes it difficult to identify a consistent set of

conditions under which service was accepted.

4.1.3 Yield management

There is a great deal of competition in published fares. It is not at all uncommon for

different airlines providing service on the same route to offer similar fare classes (sets of fare

restrictions) at an identical price. However, fare structures may not correspond to published

fares, in part due to yield management practices. We attempt to capture the effect of yield

management by controlling for the percentage of first class, first class restricted, and coach

restricted tickets.

4.1.4 Zero coupon tickets

Frequent flyer miles were introduced in the mid 1980’s. The practice has proven so successful

that it has proliferated to other industries, even grocery stores offer discounts for frequent

shoppers. To control for the effects of zero coupon tickets markups above marginal cost, the

percentage of zero coupon tickets sold by the carrier for a particular route is controlled for

in the construction of the price index.
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4.1.5 Network Configuration

Much has been made out of changes in airline networks by increased use of hub-and-spoke

type networks. Airlines find these network configurations useful because they allow for higher

passenger densities on individual routes.

Indirect routing of passengers clearly benefits the airlines because they can provide travel

to passengers with fewer flights, potentially taking advantage of economies of equipment size

(larger aircraft tend to have lower costs per passenger mile) and higher load factors (filling

otherwise empty seats on an aircraft cost the airline very little).

Many of the different network characteristics can be measured at the individual ticket

level. The DB1A database allows identification of many of the characteristics of the trip.

Most fundamentally, the origin of a trip can be identified as well as the ultimate destination

as indicated by a trip break. Approximately 95% of trips are either one way or round trip

(depending on the year) with a small number of multi-break tickets involving as many as 23

different flights. More complex routings tend to be slightly more prevalent in later years than

in earlier ones. In order to gain an understanding of the bulk of trips, attention is limited

to either one way or round trip tickets which are weighted by travel distance. Information

from the DB1A also allows measurement of the number of segments in a ticket. To control

for the effect of the number of segments in the itinerary, we also control for the percentage

of tickets with any number of stops up to 5 stops.

4.2 Results

We utilize the following cross-validation method to select the bandwidth for our empirical

study. Define ŵ−i to be the density estimate constructed from all the Z̄j’s except Z̄i, that is

to say,

ŵ−i(z) =
1

(n− 1)b

∑

j 6=i
K

(
z − Z̄j
b

)
.

Then, the log likelihood is averaged over each choice of omitted Z̄i to give the score function

CV (b) =
1

n

n∑

i=1

log ŵ−i(Z̄i).

The likelihood cross-validation choice of b is then the value of b which maximizes the function

CV (b). Theoretical properties of this bandwidth selector was fully analyzed by Hall (1987).

We have analyzed the dynamic demands for upwards of 450 city-pair markets for 12

US carriers during the late 1970’s through the early 1990’s. These comprise the largest

80 markets in the US network. The demand model is based on equation (1) where Yit
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is ln(revenue passenger mile), Xit contains the ln(airline’s own ticket price/mile between a

city-pair), the ln(price of the airline’s competitors on that route), and the ln(population

of the the city from which the flight originated), and where αi represents route specific

unobserved effects. We examined the role that other variables such as levels or growth in

percapita income had in explaining dynamic demand but settled on this specification based

on parsimony and economic and statistical significance.

The airline carriers are: American, Continental, Delta, Northwest, Ozark, Piedmont,

Republic, TWA, United, and US Air. Different carriers moved in and out of different markets

during this period and we had to take this into account in selecting the periods and markets

that would allow us to balance our panels for each carrier. Our estimator in principle could

be modified to handle an unbalanced panel but we do not pursue that modification in this

paper. The periods under study for the carriers are provided in Table 6.

Airline N T Obs. Period
American 43 63 2709 79I − 94III
Continental 16 57 912 80III − 94III
Delta 44 63 2772 79I − 94III
Eastern 59 18 1062 83III − 87IV
Frontier 22 16 352 82I − 85IV
Northwest 23 61 1403 79I − 94I
Ozark 20 28 560 79I − 85IV
P iedmont 25 30 750 82I − 89II
Republic 35 21 735 81I − 86I
TWA 40 57 2280 80III − 94III
United 48 59 2832 80I − 94III
USAir 34 63 2142 79I − 94III

Table 6: Summary of airlines, number of markets (N), time periods (T) and time

intervals for the sample

Summary statistics for each carrier are in Table 7. Demand is measured in millions of

revenue passenger miles, the price is measured in terms of price/revenue passenger mile, and

population is in thousands.
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Airline ln(demand) ln(price) ln(population)
American 18.29(1.003) −2.723(0.199) 7.535(0.951)
Continental 18.22(1.108) −2.977(0.227) 7.603(0.669)
Delta 18.24(0.839) −2.587(0.256) 7.432(0.968)
Eastern 17.57(1.070) −2.632(0.338) 7.286(0.916)
Frontier 16.63(0.701) −2.710(0.179) 6.889(0.843)
Northwest 17.91(1.156) −2.895(0.237) 8.010(0.930)
Ozark 16.31(0.952) −2.527(0.183) 7.496(0.844)
Piedmont 17.32(0.773) −2.510(0.232) 7.619(0.907)
Republic 16.64(1.081) −2.459(0.273) 7.410(0.824)
TWA 17.57(0.946) −2.768(0.288) 7.591(0.913)
United 18.19(1.225) −2.816(0.266) 7.454(0.916)
USAir 17.53(0.962) −2.490(0.249) 7.591(0.918)

Table 7: Means and standard deviations(in parentheses) for the variables in the

demand equations by airline.

Results for the semi-parametric efficient estimator and the IV estimator are in Table 8

where ln(demand) is a function of ln(demand)−1, ln(own price), and ln(population) in the

originating city. City-pair characteristics as well as those portions of demand characteristics

for which we have no explicit controls are modeled as random effects. Our results suggest

that most city-pair markets have inelastic short-run of demand. (ηsr) ranging between about

0.2 to 0.6 (for all carriers except Continental (ηsr = 2.04). Long run demand elasticities

(ηlr), however, are all quite large and indicate substantial competitive pressures at the route

level. Competition from other carriers on a route in terms of significant cross elasticity of

demand cannot be identified. Our results are quite reasonable with no evidence that the

roots of the dynamic equation are unstable. Demand appears to adjust reasonably quickly

to price changes but there is scope for significant market power to be exercised in the short-

run. Parameter estimates for the lagged dependent variable and for the other exogenous

controls are more precisely estimated with our semiparametric efficient estimator that with

the inefficient IV estimator. We did attempt to utilize the GMM estimators of Ahn and

Schmidt and Arellano and Bond but found the results to be highly unstable and the results

to often have little economic meaning.
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Airline ln(demand)−1 ln(price) ln(price)comp ln(population)
American − spe 0.9146(0.0011) -0.4209(0.0345) -0.0345(0.0331) 0.0669(0.0081)
American − iv 0.9156(0.0071) -0.3524(0.0339) 0.0204(0.0405) 0.0367(0.0525)
Contintental − spe 0.6830(0.0091) -2.0407(0.1422) 0.2299(0.1575) 0.1650(0.0644)
Continental − iv 0.7182(0.0259) -1.3268(0.1480) 0.1633(0.1876) 0.1736(0.1244)
Delta− spe 0.8822(0.0009) -0.3686(0.0308) -0.1096(0.0275) 0.1177(0.0080)
Delta− iv 0.8855(0.0086) -0.3483(0.0301) -0.0326(0.0301) 0.0045(0.0399)
Northwest− spe 0.9231(0.0027) -0.2472(0.0733) -0.2809(0.0829) 0.1291(0.0220)
Northwest− iv 0.9297(0.0124) -0.1812(0.0764) -0.0832(0.0998) 0.0200(0.0650)
Ozark − spe 0.7551(0.0041) 0.1414(0.1221) -0.0797(0.1383) 0.0878(0.0337)
Ozark − iv 0.7646(0.0210) -0.6255(0.1276) 0.3016(0.1483) 0.0032(0.0801)
Piedmont− spe 0.9210(0.0019) -0.2361(0.0447) -0.0756(0.0638) 0.0016(0.0158)
Piedmont− iv 0.9219(0.0168) -0.1907(0.0514) -0.0756(0.0638) 0.0071(0.0198)
Republic− spe 0.8053(0.0037) -0.3271(0.1242) -0.2147(0.1476) 0.0773(0.0368)
Republic− iv 0.8133(0.0254) -0.5481(0.1239) 0.1571(0.1660) 0.0807(0.0563)
TWA− spe 0.8553(0.0019) -0.2696(0.0456) -0.0896(0.0556) 0.0347(0.0140)
TWA− iv 0.8578(0.0122) -0.2232(0.0467) -0.0654(0.0676) 0.0484(0.0313)
United − spe 0.9095(0.0014) -0.4475(0.0363) -0.0566(0.0360) 0.0470(0.0110)
United − iv 0.9124(0.0079) -0.3418(0.0369) 0.0212(0.0503) 0.0311(0.0254)
USAir − spe 0.9168(0.0013) -0.3937(0.0404) -0.1912(0.0492) 0.0099(0.0143)
USAir − iv 0.9197(0.0092) -0.3303(0.0410) -0.1274(0.0520) -0.0049(0.0557)

Table 8: Parameter Estimates and standard deviations for the dynamic demand

equations by airline.

5 Concluding Remarks

In this paper we have introduced a new class of estimator for the dynamic panel data models

Our semiparametric efficient estimator appears to perform well in finite sample Monte Carlo

comparisons with competing estimators. We illustrate its use in an analysis of dynamic

demands for airline service in selected city-pair markets in the US domestic industry. We

find evidence that firms are operating on the inelastic portion of the demand schedule, a

result consistent with significant short-run market power or collusive behavior. We also find

substantial differences between short-run and long-run estimated demands by consumers in

these markets, suggesting that such dynamic adjustments should be taken into consideration

in analyzing competition policy and market behavior models in this important and highly

litigious industry.
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Appendix

A.1 Proof of Theorem 2.1.

The score functions are given by

`β =

r∑

t=1

(Z1t − Z̄1)X1t/σ
2 − {w(1)(Z̄1)/w(Z̄1)}X̄1,

`γ =

r∑

t=2

(Z1t − Z̄1)Y1,t−1/σ
2 − {w(1)(Z̄1)/w(Z̄1)}Ỹ1,

`σ2 = (2σ2)−1

{
r∑

t=1

(Z1t − Z̄1)2/σ2

+

∫ (
σ̄−2(Z̄1 − u)2 − r

)
σ̄−1φ

(
(Z̄1 − u)/σ̄

)
h(u) du/w(Z̄1)

}
,

where Ỹ1 =
∑r−1

t=1 Y1t/r and φ(·) is the density function of the standard normal distribution.

The tangent space Ṗnu may be decomposed into V1, V2 and V3, i.e. Ṗnu = V1 +V2 +V3, where

V1 = [`σ2 ] and

V2 = {a(Z̄1) ∈ L2(P0) : Ea(Z̄1) = 0}, V3 = {b(X1) ∈ L2(P0) : Eb(X1) = 0}.

The following lemma shows that `β and `γ are perpendicular to V3.

Lemma A.1 E(`β |X1) = 0 and E(`γ |X1) = 0.

Proof. Note that {Z1t − Z̄1}, Z̄1 and X1 are independent. Since E(Z1t − Z̄1) = 0 and

E{w(1)(Z̄1)/w(Z̄1)} =
∫
w(1)(u) du = 0, we obtain E(`β |X1) = 0. Next, we prove the second

part. We can write Y1t = β ′Xw
1t + ctα1 +

∑t−1
j=0 γ

jε1,t−j. Thus

E(`γ |X1) = σ−2
r−1∑

t=1

t−1∑

j=0

γjE{ε1,t−j(ε1,t+1 − ε̄1)} − E{Ỹ1w
(1)(Z̄1)/w(Z̄1) |X1}. (A.1)

The first term in (A.1) equals σ−2
∑r−1

t=1

∑t−1
j=0 γ

j(−σ2/r) = −c̃. For the second term, note

Ỹ1 = β ′X̃w
1 + c̃Z̄1+r−1

∑t−1
j=0 γ

j(Z1,t−j−Z̄1). By this and the facts that E{w(1)(Z̄1)/w(Z̄1)} =

0 and that E(Z1,t−j − Z̄1) = 0, the second term equals

c̃E{Z̄1w
(1)(Z̄1)/w(Z̄1)} = c̃

∫
uw(1)(u) du = −c̃. (q.e.d.)

Lemma A.1 implies that writing W = [`σ2 − Π(`σ2 |V2)]

`∗β = `β − Π(`β |V2)− Π{`β − Π(`β |V2)|W}
`∗γ = `γ − Π(`γ |V2)− Π{`γ − Π(`γ |V2)|W}.
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We compute `∗β first. Note that Π(`β |V2) = E(`β |V2) = −E(X̄1)w(1)(Z̄1)/w(Z̄1). Thus

`β − Π(`β |V2) = σ−2
r∑

t=1

(Z1t − Z̄1)X1t − {w(1)(Z̄1)/w(Z̄1)}(X̄1 − EX̄1). (A.2)

Since E
∑r

t=1(Z1t − Z̄1)2 = (r − 1)σ2, we obtain

`σ2 − Π(`σ2 |V2) = (2σ4)−1{
r∑

t=1

(Z1t − Z̄1)2 − (r − 1)σ2}. (A.3)

Now by symmetry of the distribution of (Z1t− Z̄1) and by independence of Z1t− Z̄1, Z̄1 and

X1, it follows that E{∑r
t=1(Z1t − Z̄1)X1t}{

∑r
t=1(Z1t − Z̄1)2} = 0 and

E{w(1)(Z̄1)/w(Z̄1)}(X̄1 − EX̄1)}{
r∑

t=1

(Z1t − Z̄1)2 − (r − 1)σ2} = 0.

Thus, `β − Π(`β |V2) is perpendicular to `σ2 − Π(`σ2 |V2), which implies that `∗β = `β −
Π(`β |V2). The formula for `∗β follows from (A.2).

Next, we compute `∗γ. By independence of Z1t − Z̄1, Z̄1 and X1, we have

E(`γ |V2) = σ−2

r−1∑

t=1

t−1∑

j=0

γjE(ε1,t−j − ε̄1)(ε1,t+1 − ε̄1)− {w(1)(Z̄1)/w(Z̄1)}
{
β ′E(X̃w

1 ) + c̃Z̄1

}

= −c̃− {w(1)(Z̄1)/w(Z̄1)}
{
β ′E(X̃w

1 ) + c̃Z̄1

}
.

Thus, we obtain

`γ − Π(`γ |V2) = σ−2
r∑

t=2

(Z1t − Z̄1)Y1,t−1 + c̃

−{w(1)(Z̄1)/w(Z̄1)}
{
β ′(X̃w

1 − EX̃w
1 ) +

r−1∑

t=1

t−1∑

j=0

γj(Z1,t−j − Z̄1)/r
}
.

To calculate Π (`γ − Π(`γ |V2) |W ), we find

E{`γ − Π(`γ |V2)}{`σ2 − Π(`σ2 |V2)} = −c̃/σ2 (A.4)

E{`σ2 − Π(`σ2 |V2)}2 = (r − 1)/(2σ4). (A.5)

Denote the left hand sides of (A.4) and (A.5) by ζ12 and ζ22, respectively. Then from (A.3),

(A.4) and (A.5), we obtain

Π (`γ − Π(`γ |V2) |W ) = (ζ12/ζ22){`σ2 − Π(`σ2 |V2)}

= −{c̃/(r − 1)σ2}
r∑

t=1

(Z1t − Z̄1)2 + c̃,

which leads to the formula for `∗γ .
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A.2 Proof of Theorem 2.2

Define

wn(z) ≡ wn(z; σ2) ≡ wn(z; σ2, h) = Kbn ∗ w(z; σ2, h) + cn

where * denotes the convolution. We write r̂, rn and r for ŵ(1)/ŵ, w
(1)
n /wn and w(1)/w,

respectively. Define Iw,n =
∫
r2
n(z)w(z) dz. Define In as in the definition of the information

matrix I but with Iw being replaced by Iw,n. Following the arguments for the proof of (B.9)

in Park, Sickles and Simar (1998), one can verify

E {rn(Z̄1(θ))− r(Z̄1(θ))}2 → 0. (A.6)

It follows from (A.6) that In → I as n tends to infinity.

Now, it may be proved that

(
n−1

n∑

i=1

X̄i − EX̄1

)
n−1/2

n∑

i=1

rn(Z̄i(θ))→ 0 (A.7)

n−1/2

n∑

i=1

(X̄i − EX̄1){rn(Z̄i(θ))− r(Z̄i(θ))} → 0, (A.8)

both in the sense of convergence in probability. They follows since the left hand sides of

(A.7) and (A.8) have zero means by independence of X̄i and Z̄i(θ), and variances bounded by

n−1var(X̄1)Iw,n and var(X̄1)E{rn(Z̄1(θ))− r(Z̄1(θ))}2, respectively, both of which converge

to zero as n tends to infinity. Similarly, it can be shown that

(
n−1

n∑

i=1

X̃w
i (γ)− EX̃w

1 (γ)

)
n−1/2

n∑

i=1

rn(Z̄i(θ))→ 0 (A.9)

n−1/2

n∑

i=1

(
X̃w
i (γ)− EX̃w

1 (γ)
)
{rn(Z̄i(θ))− r(Z̄i(θ))} → 0, (A.10)

both in the sense of convergence in probability.

Define ˇ̀∗
β,i(θ) and ˇ̀∗

γ,i(θ) as in the definitions of ˆ̀∗
β,i(θ) and ˆ̀∗

β,i(θ) at (2.11) and (2.12),

respectively, with ŵ(Z̄i(θ); θ) being replaced by wn(Z̄i(θ); σ
2) and σ̃2

n by σ2, and let ˇ̀∗
i (θ) =

(ˇ̀∗′
β,i(θ),

ˇ̀∗
γ,i(θ))

′. Then, (A.7) ∼ (A.10) imply

n−1/2I−1
n

n∑

i=1

ˇ̀∗
i (θ)→N (0, I−1) (A.11)

in distribution as n tends to infinity. Now, it can be shown that as in the proofs of Lemma
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A.2 and (A.16) of Park and Simar (1994)

Î(θ̃n)− In → 0, (A.12)

n−1/2
n∑

i=1

(
X̄i − n−1

n∑

i=1

X̄i

){
r̂(Z̄i(θ̃n); θ̃n)− rn(Z̄i(θ̃n); σ2)

}
→ 0, (A.13)

n−1/2
n∑

i=1

(
X̃w
i (γ̃n)− n−1

n∑

i=1

X̃w
i (γ̃n)

){
r̂(Z̄i(θ̃n); θ̃n)− rn(Z̄i(θ̃n); σ2)

}
→ 0,(A.14)

n−1/2
n∑

i=1

(
Z̃w
i (θ̃n)− c̃(γ̃n)Z̄i(θ̃n)

){
r̂(Z̄i(θ̃n); θ̃n)− rn(Z̄i(θ̃n); σ2)

}
→ 0, (A.15)

all in the sense of convergence in probability. Since σ̃2
n(θ̃n) converges to σ2 in probability,

(A.13) ∼ (A.15) imply

n−1/2I−1
n

n∑

i=1

{
ˆ̀∗
i (θ̃n)− ˇ̀∗

i (θ̃n)
}
→ 0 (A.16)

in probability. The theorem follows then from (A.11), (A.12) and (A.16) since for any C > 0

sup
{∣∣∣n−1/2

n∑

i=1

{ˇ̀∗i (θ′)− ˇ̀∗
i (θ) + In(θ′ − θ)

∣∣∣ : n1/2|θ′ − θ| ≤ C
}
→ 0

in probability which can be proved as in Park and Simar (1994).
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