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Abstract

We introduce a wavelet-based model of local stationarity. This model enlarges the class of
locally stationary wavelet processes and contains processes whose spectral density function may
change very suddenly in time. A notion of time-varying wavelet spectrum is uniquely defined as
a wavelet-type transform of the autocovariance function with respect to so-called autocorrelation
wavelets. This leads to a natural representation of the autocovariance which is localised on scales.
One particularly interesting subcase arises when this representation is sparse, meaning that the
nonstationary autocovariance process may be decomposed in the autocorrelation wavelet basis
using few coefficients. We present a new test of sparsity for the wavelet spectrum. It is based
on a non-asymptotic result on the deviations of a functional of a periodogram. The power of
the test is discussed. We also present another application of this result given by the pointwise
adaptive estimation of the wavelet spectrum. Properties of this estimator in homogeneous and
inhomogeneous regions of the wavelet spectrum are studied.
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1 Introduction

The spectral analysis of time series is a large field presenting a great interest from both theoretical
and practical viewpoints. The fundamental starting point of this analysis is the Cramér repre-
sentation, stating that all second-order zero-mean stationary process Xt, t ∈ Z may be written

Xt =

∫

[−π,π)
A(ω) exp(iωt)dZ(ω), t ∈ Z , (1.1)

where A(ω) is the amplitude of the process Xt and dZ(ω) is an orthonormal increment process, i.e.
E(dZ(ω), dZ(µ)) = δ0(ω − µ), see Priestley (1981). Correspondingly, under mild conditions, the
autocovariance function can be expressed as

cX(τ) =

∫

[−π,π)
fX(ω) exp(iωτ)dω,

where fX is the spectral density of Xt.
There is not a unique way to relax the assumption of stationarity, i.e. to define a second-order

process with a time-depending spectrum. However, this modelling is a theoretical challenge which
may be helpful in practice, since a lot of studies have shown that models with evolutionary spectrum
or time-varying parameters are necessary to explain some observed data, even over short periods
of time. Examples may be found in numerous fields, such as economics (Swanson and White, 1997;
Los, 2000), biostatistics (Ombao et al., 2002) or meteorology (Nason and Sapatinas, 2002) to name
but a few.

Among the different possibilities for modelling nonstationary second-order processes, we can
emphasize the approaches consisting in a modification of the Cramér representation (1.1). Different
modifications of (1.1) are possible. First, we can replace the process dZ(ω) by a nonorthonormal
process, leading for instance to the harmonizable processes (Lii and Rosenblatt, 2002). A second
possibility is to replace the amplitude function A(ω) by a time-varying version At(ω) and assume a
slow change of At(ω) over time. Such approach is followed to define oscillatory processes (Priestley,
1965).

However, a major statistical drawback of the oscillatory processes is the intrinsic impossibility to
construct an asymptotic theory for consistency and inference. To overcome this problem, Dahlhaus
(1997) introduced the class of locally stationary processes, in which the transfer function is rescaled
in time. In this approach, a doubly-indexed process is defined as

Xt,T =

∫

[−π,π)
A

(

t

T
, ω

)

exp(iωt)dZ(ω), t = 0, . . . , T − 1, T > 0 , (1.2)

where the transfer function A(z, ω) is defined on (0, 1)×[−π, π). Dahlhaus (1997, 2000) investigated
statistical inference for such processes, with a discussion on maximum likelihood, Whittle and least
squares estimates, and showed that asymptotic results when T tends to infinity can be considered.
However, in this setting, letting T tends to infinity has not the usual meaning of “looking into the
future”, but means that we have in the sample X0,T , . . . , XT−1,T more information about the local
structure of A(z, ω). This formalism is analogous to the nonparametric regression problems, for
which “asymptotic” means an ideal knowledge about the local structure of the underlying curve.

In this article, we focus on a class of doubly-indexed locally stationary processes defined by
replacing the harmonic system {exp(iωt)} in (1.2) by a wavelet basis. By this way, we move from a
time-frequency representation to a time-scale representation of the nonstationary process. Because
wavelets systems are well localized in time and frequency, they appear more natural to model the
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time-varying spectra of nonstationary processes. Indeed, by the uncertainty principle, allowing the
spectrum to be time-varying implies that we lose resolution in the frequency domain. As wavelets
decompose the frequency domain into discrete scales, they offer a well-adapted system to achieve
the trade-off resolution between time and frequency (Vidakovic, 1999).

The class of locally stationary wavelet processes studied in this article was initially introduced
by Nason, von Sachs and Kroisandt (2000). Their definition of wavelet processes involves a time-
varying amplitude which is smoothly varying and continuous as a function of time. One first goal
of this article is to extend this definition to the the case of time-varying amplitudes with possibly
discontinuous behaviour in time. This adds some technical difficulties in the proof of our results
but we believe the gain due to this extension to be crucial. Our new definition now includes more
important examples of nonstationary processes. For instance, this extension of the definition is
needed if we wish to model a nonstationary process built as a concatenation of different stationary
processes. Moreover, wavelet processes can now be used for the analysis of intermittent phenomena,
such as transients followed by regions of smooth behaviour.

Our definition of wavelet processes is presented in Section 2, where we also define their evolu-
tionary spectrum. This spectrum is a function of time and scales, and measures the power of the
process at a particular time and scale.

In Section 3, we recall that the simultaneous localisation of wavelets in time and scale leads
to possibly very sparse representations of evolutionary spectra. A precise explanation of this phe-
nomenon is given in Section 3, but we want now to mention that by “sparsity”, we mean that
only few segments of the time-scale spectrum are nonzero. This knowledge is important for the
exploratory analysis of nonstationary signals, because, at a given time, the analyst can focus on
active scales only. Moreover, a scale may be active (i.e. nonzero) at a given time and not active at
an other time, and this evolution corresponds to physical changes in the process.

We derive a test statistic, based on a functional of the so-called wavelet periodogram. The
test statistic is actually a quadratic form of the increments, which are assumed to be Gaussian,
and the test rule is provided through a nonasymptotic result on the deviation of the quadratic
form of Gaussian processes. However, the variance of the test statistic depends crucially on the
unknown spectrum, and we present a pre-estimator of this nuisance parameter. Finally, we establish
a nonasymptotic approximation of the distribution of the test statistics. This approximation is
constructed with our pre-estimator of the variance. A theoretical study of the power of the test
concludes Section 3. In particular, we discuss the consistency and the local alternatives of the
proposed test procedure.

In the following Section 4, we show how the result of Section 3 may be useful for other tasks, as
the pointwise adaptive estimation of the wavelet spectrum. In this section, we derive an estimation
procedure following the local adaptive method of Lepski (1990). The behaviour of this estimator
is briefly studied in the case where the evolutionary wavelet spectrum is regular or irregular near
the point of estimation.

Finally, some possible applications and extensions are presented in Section 5. The proofs are
deferred to appendices. In particular, Appendix A derives some properties of the autocorrelation
wavelet system, which are of independent interest.

2 Locally stationary wavelet processes

The wavelet system used to build locally stationary processes is a non-decimated system of com-
pactly supported and discrete wavelets. We first briefly recall some points about this system of
wavelets, and then give a definition of the wavelet processes and wavelet spectra.
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2.1 Nondecimated wavelet system

The local basis functions used in the representation of LSW processes are a set of discrete non-
decimated wavelets {ψjk, j = −1,−2, . . . ; k ∈ Z}. We refer to Vidakovic (1999) for a review on
wavelet theory and its applications in statistics, and to Nason and Silverman (1995) for a detailed in-
troduction to the non-decimated wavelet transform. Let us simply recall that, in contrast to the dis-
crete wavelet transform, the discrete non-decimated wavelets at all scales j < 0 can be shifted to any
location defined by the finest resolution scale, determined by the observed data. As a consequence,
this construction leads to an overcomplete system of the space of square summable sequences `2(Z).
The wavelets considered in this article are assumed to be compactly supported in time and we will
denote by Lj the length of the support of ψj0, i.e. Lj := | suppψj0|. Straightforward consequences
of the non-decimated wavelet system imply that | suppψjk| = Lj = (2−j − 1)(L−1 − 1) + 1 for all
j < 0. Observe also that, as in Nason et al. (2000), we departed from the usual wavelet numbering
scheme. The data live on scale zero, and scale −1 is the scale which contains the finest resolution
wavelet detail. Then, the support of the wavelet on the finest scale remains constant with respect
to T .

For ease of presentation, recall the simplest discrete non-decimated system, called the Haar
system, given by

ψj0(t) = 2j/2
I{0,1,...,2−j−1−1}(t) − 2j/2

I{2−j−1 ,...,2−j−1}(t) for j = −1,−2, . . . and t ∈ Z,

where IA(t) is 1 if t ∈ A and 0 otherwise. The shifted version of ψj0(t) is given by ψjk(t) = ψj0(t−k)
for all k ∈ Z.

2.2 The process and its evolutionary wavelet spectrum

As we will note below, our definition of locally stationary wavelet processes differs from the original
definition of Nason et al. (2000) as we only impose a total variation condition on the amplitudes
instead of a Lipschitz condition.

Definition 1. A sequence of doubly-indexed stochastic processes Xt,T (t = 0, . . . , T −1, T > 0) with
mean zero is in the class of locally stationary wavelet processes (LSW processes) if there exists a
representation in the mean-square sense

Xt,T =

−1
∑

j=−∞

T−1
∑

k=0

wjk;T ψjk(t) ξjk, (2.1)

where {ψjk(t) = ψj0(t− k)}jk with j < 0 is a discrete non-decimated family of wavelets based on a
mother wavelet ψ(t) of compact support, and such that:

1. ξjk is a random orthonormal increment sequence with Eξjk = 0 and Cov (ξjk, ξ`m) = δj` δkm

for all j, `, k,m, where δj` = 1 if j = ` and 0 elsewhere;

2. For each j 6 −1, there exists a function Wj(z) on (0, 1) possessing the following properties:

(a)
∑−1

j=−∞ |Wj(z)|2 <∞ uniformly in z ∈ (0, 1),

(b) There exists a sequence of constants Cj such that for each T

sup
k=0,...,T−1

∣

∣

∣

∣

w2
jk;T −W 2

j

(

k

T

)∣

∣

∣

∣

6
Cj

T
, (2.2)
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(c) W 2
j (z) is bounded by Lj in the total variation norm, i.e.

TV
(

W 2
j

)

:= sup

{

I
∑

i=1

∣

∣

∣
W 2

j (ai) −W 2
j (ai−1)

∣

∣

∣
: 0 < a0 < . . . < aI < 1, I ∈ N

}

6 Lj, (2.3)

(d) The constants Cj and Lj are such that

−1
∑

j=−∞
Lj(LjLj + Cj) 6 ρ <∞ (2.4)

where Lj = | suppψj0| = (2−j − 1)(L−1 − 1) + 1.

LSW processes use wavelets to decompose a stochastic process with respect to an orthogonal
increment process in the time-scale plane. Due to the overcompleteness of the non-decimated basis,
LSW processes are not uniquely determined by the sequence {wjk;T }. However, we can build a
theory which ensures the existence of a unique wavelet spectrum. This property is a consequence
of the local stationarity setting which introduces a rescaled time z = t/T ∈ (0, 1) on which Wj(z) is
defined. The rescaled time permits increasing amounts of data about the local structure of Wj(z)
to be collected as the observed time T tends to infinity. Even though LSW processes are not
uniquely determined by the sequence {wjk;T}, the model allows to identify (asymptotically) the
model coefficients determined by uniquely defined Wj(z). Then, the evolutionary wavelet spectrum
of an LSW process {Xt,T }t=0,...,T−1, with respect to ψ, is given by

Sj(z) = |Wj(z)|2 , z ∈ (0, 1) (2.5)

and is such that, by definition of the process, Sj(z) = limT→∞ |wj,[zT ];T |2 for all z ∈ (0, 1), and by

Definition 1,
∑−1

j=−∞ Sj(z) <∞ uniformly in z ∈ (0, 1).
The evolutionary wavelet spectrum Sj(z) is related to the time-depending autocorrelation func-

tion of the LSW process. Observe that the autocovariance function of an LSW process can be
written as

cX,T (z, τ) = Cov
(

X[zT ],T , X[zT ]+τ,T

)

for z ∈ (0, 1) and τ in Z, and where [ · ] denotes the integer part of a real number. The next result
shows that this autocovariance converges asymptotically to a local covariance defined by

cX (z, τ) =

−1
∑

j=−∞
Sj(z)Ψj (τ) (2.6)

where Ψj(τ) =
∑∞

k=−∞ ψjk(0)ψjk(τ) is the autocorrelation wavelet function.

Proposition 1. Under the assumptions of Definition 1, if T → ∞
∞
∑

τ=−∞

∫ 1

0
dz |cX,T (z, τ) − cX (z, τ)| = O

(

T−1
)

for all LSW process.
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Appendix A presents some properties of the autocorrelation wavelet system appearing in (2.6).
Like wavelets themselves, this system enjoys good localisation properties. Consequently, we observe
that equation (2.6) is a multiscale decomposition of the autocovariance structure of the process over
time: The larger the wavelet spectrum Sj(z) is at a particular scale j and point z in the rescaled
time, the more dominant is the contribution of scale j in the variance at time z. Thus, the
evolutionary wavelet spectrum describes the distribution of the (co)variance at a particular scale
and time location.

It is worth mentioning that a stationary process with an absolutely summable autocovariance
function is an LSW process (Nason et al., 2000, Proposition 3). Stationarity is characterized by
a wavelet spectrum which is constant over time: Sj(z) = Sj for all z ∈ (0, 1). However, our
motivation to study LSW processes lies in the modelling of time-varying spectra. The regularity of
the wavelet spectrum in time is determined by the smoothness of Wj(z) with repect to z. In Nason
et al. (2000), this function is assumed to be Lipschitz continuous in time. In our definition of LSW
processes, we only require the total variation norm of W 2

j to be bounded. This weaker assumption
is not only considered in order to work with minimal assumptions, but also to allow a discontinuous
evolution of the wavelet spectrum in time. Consequently, our definition of nonstationary processes
includes many interessing processes, as piecewise stationary signals for instance. Figure 1 shows a
simulated example of such a nonstationary process.

Figure 1 about here

3 Testing sparsity of a wavelet spectrum

3.1 Sparsity

It is well-known that wavelets are suited to decompose certain inhomogeneous signals into a sparse
wavelet coefficients vector. One goal of this article is to study how this important property of
wavelets may be exploited in our context of nonstationary covariance modelling.

In the multiscale representation (2.6) the coefficients Sj(z) are depending on the continuous
recaled time z ∈ (0, 1). As Ψj(0) = 1 for all scales j, (2.6) decomposes the instantaneous variance
as

cX(z, 0) =

−1
∑

j=−∞
Sj(z). (3.1)

If we assume this variance to be non zero, it then follows that, at each time z, there exists a scale
j where Sj(z) is non zero. If only few scales are non zero for each z, we say that the wavelet
spectrum is sparse. There are many approaches in the literature where the notion of sparsity is
quantified. In the context of wavelet decomposition of signals, we refer to Abramovich et al. (2000)
and the references therein for some possible definitions. In the present work, we do not need a
precise definition for quantifying the sparsity. We only think about wavelet spectra Sj(z) which
are non zero along only some segments of a few scales as in Figure 1.

As already observed in Nason et al. (2000), the possibility of having a sparse representation of
wavelet spectra is a major advantage of LSW processes, in comparison with other locally stationary
models. Sparsity is a very attractive property since only few coefficients in the multiscale represen-
tation have to be estimated. Moreover, the analysis of sparse wavelet spectra is easier, for instance
if we want to detect significant variations in the multiscale structure of the process (co)variance.
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In this section, we want to develop and study a statistical test of sparsity for a wavelet spectrum.
This test is local in the sense that we will test the null hypothesis

H0 : Sj(z) = 0 for a fixed scale j < 0 and for all z ∈ R, (3.2)

where R ⊆ (0, 1) is an interval with non zero measure. It is then possible to test if, for instance, a
whole scale is “active” or not, or if it is non zero before or after a fixed time point.

The next subsection defines a preliminary estimator of the wavelet spectrum. Then, derivation
of a test statistic is considered in subsections 3.3 and 3.4. This test is discussed in Subsection 3.5,
where we also study its power under some alternatives.

3.2 A preliminary estimate: The corrected wavelet periodogram

An estimator of the wavelet spectrum is constructed by taking the squared empirical coefficients
from the non-decimated transform:

Ij;T

(

k

T

)

=

(

T−1
∑

t=0

Xt,Tψjk(t)

)2

j = −1, . . . ,− log2 T ; k = 0, . . . , T − 1.

Ij;T (z) is called the wavelet periodogram, as it is analogous to the formula for the classical peri-
odogram in traditional Fourier spectral analysis of stationary processes (Brillinger, 1975).

Some asymptotic properties of this estimator have been studied by Nason et al. (2000), who
showed that the wavelet periodogram is not an asymptotic unbiased estimator of the wavelet spec-
trum. Indeed, Proposition 4 of Nason et al. (2000) states that, for all fixed scales j < 0,

E





−1
∑

`=− log2 T

A−1
j` I`;T (z)



− Sj(z) = O(T−1), (3.3)

uniformly in z ∈ (0, 1), where the matrix A = (Aj`)j,`<0 is defined by

Aj` := 〈Ψj ,Ψ`〉 =
∑

τ

Ψj(τ)Ψ`(τ).

Note that the matrix Aj` is not simply diagonal since the autocorrelation wavelet system {Ψj}
is not orthogonal. Nason et al. (2000) proved the invertibility of A if {Ψj} is constructed using
Haar wavelets. If other compactly supported wavelets are used, numerical results suggest that the
invertibility of A still holds, but a complete proof of this result has not been established yet. As
we need the invertibility of A in our following results, from now on we restrict ourselves to Haar
wavelets, but we conjecture that all results remain valid for more general Daubechies wavelets.

Equation (3.3) motivates the definition of a corrected wavelet periodogram

Lj;T

(

k

T

)

=

−1
∑

`=− log2 T

A−1
j`

(

T−1
∑

t=0

Xt,Tψ`k(t)

)2

(3.4)

which is an asymptotically unbiased estimator for the evolutionary wavelet spectrum.

Remark 1. The asymptotic bias of the wavelet periodogram is a consequence of the overcom-
pleteness of the non-decimated wavelet system {ψjk}. One could ask if it would not be easier to
define LSW processes using a decimated wavelet system because, for this system, the matrix A
reduces to the identity. Unfortunately, the answer is negative: The use of non-decimated wavelets,
as described in von Sachs et al. (1997), would not allow to write the local autocovariance function
as a wavelet-type transform of an evolutionary spectrum, as in (2.6). Moreover, classical stationary
processes are not included in the model based on decimated wavelets.
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3.3 Derivation of the test statistic and its properties

Suppose we want to test (3.2), i.e. to check if the wavelet spectrum is zero at a fixed scale j and
on a given segment of time R = (s1, s2) ⊆ (0, 1) for s1 < s2. Under the null (3.2), the averaged
wavelet spectrum

Qj,R = |R|−1

∫

R
dz Sj(z) (3.5)

is zero. If we observe XT = (X0,T , . . . , XT−1,T )′, a natural estimate of Qj,R is

Qj,R;T = |RT |−1
∑

k∈RT

Lj;T

(

k

T

)

(3.6)

where Lj;T (k/T ) is the corrected wavelet periodogram (3.4) and k ∈ RT means k/T ∈ R. Qj,R;T

is the test statistic we use to test H0. In this section, we will study the statistical properties of
Qj,R;T under a set of assumptions.

Assumption 1. The autocovariance function cX,T and the local autocovariance function cX of the
LSW process are such that

‖cX,T ‖1,∞ :=
∞
∑

τ=−∞
sup

t=0,...,T−1

∣

∣

∣
cX,T

(

t

T
, τ

)

∣

∣

∣
is uniformly bounded in T, (3.7)

and

‖cX‖1,∞ :=
∞
∑

τ=−∞
sup

z∈(0,1)
|cX(z, τ)| <∞. (3.8)

This assumption is needed to control the spectral norm of the covariance matrix of the process
(Lemma 5 in Appendix B). For a stationary process, it reduces to absolute summability of the
autocovariance of the process (short memory property).

Assumption 2. There exists an ε > 0 such that, for all z ∈ (0, 1),
∑−1

j=−∞ Sj(z) > ε.

According to equation (3.1), the sum over scales of Sj(z) is the local variance of the process at
time [zT ], and this assumption says that the local variance of the process is nowhere zero.

Assumption 3. The increment process {ξjk} in Definition 1 is Gaussian.

This assumption allows substantial simplifications in the proofs. It is also assumed to establish
some results in Nason et al. (2000) and Fryźlewicz et al. (2003). However, Fryźlewicz (2002) men-
tions that non-Gaussian increment processes would be more appropriate to capture some stylised
facts of economic processes, such as the leptokurtic behaviour of the data. To this end, the ex-
tension of our results to non-Gaussian processes would be a feasible task using the methodology
presented in Neumann and von Sachs (1997) or Spokoiny (2001) for instance.

The following proposition describes the asymptotic properties of Qj,R;T .

Proposition 2. Suppose Assumption 1 to 3 hold true. For all LSW process (Definition 1), and
for all R ⊆ (0, 1),

EQj,R;T −Qj,R =
K0 2j/2

√
T

−1
∑

m=− log2 T

Lm TV (Sm) +O
(

2j/2 |RT |−1
)

(3.9)

= O

(

2j/2

√
T

)

,
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for all j = −1, . . . ,−JT with JT = oT (log2 T ), and where K0 is a constant independent of j, T and
|R|. Moreover, if Assumptions 1 to 3 hold, then there exists T0 > 1 such that, for all T > T0,

K1 22j |RT |−1 (1 + oT (1)) 6 VarQj,R;T 6 K2 2j |R|−2T−1

for all j = −1, . . . ,−JT with JT = oT (log2 T ), and where K1 and K2 are two constants independent
of j, T and |R|.

The proof of this proposition is in Appendix B.2. Note that the squared bias and the variance
of the estimator have the same rate of convergence. This phenomenon is due to the nonstationary
behaviour of the process. Indeed, for a stationary process, the total variation norm of Sm is zero
at all scales, and then the rate of the bias is T−1. This is not the case for a general nonstationary
process: When the wavelet spectrum is not constant over time, an additional term resulting from
nonstationarity reduces considerably this rate of convergence. Moreover, even we are dealing with
a local estimator of the wavelet spectrum at a fixed scale j < 0 and a fixed time interval R, the
nonstationarity term in the bias involves the variation of the global wavelet spectrum. This may
be observed in equation (3.9), which involves a sum over all scales m = −1, . . . ,− log2 T and the
total variation norm of all Sm over the whole rescaled time interval (0, 1).

This slow rate of convergence of the bias poses a problem to establish the asymptotic normality
of Qj,R;T . In the next proposition, we circumvent this problem and derive a non asymptotic
exponential bound for the deviation of Qj,R;T .

Proposition 3. Assume that (3.7) and Assumption 1 to 3 hold. If σ2
j,R,T = VarQj,R;T , then, for

all η > 0 and for all scales j = −1, . . . ,−JT , where JT = oT (log2 T ),

Pr (|Qj,R;T −Qj,R| > σj,R,Tη)

6 c0 exp







−1

8
· η2

1 + η
|RT |σj,R,T

Lj + 2j/2ην

|R|
√

Tσj,R;T
(‖cX‖1,∞ + c1ρ)







with the positive constants c0 = 1 + e and c1 = (2 +
√

2)/2, where ρ is given in Definition 1 and
where ν is a universal positive constant depending only on the wavelet ψ.

The proof of this proposition is to be found in Appendix B.3. This proposition gives a non
asymptotic approximation for the distribution of the test statistics Qj,R;T . It can be used in order
to construct a test rule, i.e. to choose η such that the exponential function in the proposition
is the nominal level of the test (see Section 3.5 below, where the test rule is given explicitely).
From an asymptotic viewpoint, i.e. as T → ∞, we note that this exponential bound does not tend
to zero, meaning that the standardised statistic Qj,R,T is asymptotically non degenerated. This
phenomenon is well-known in the context of pointwise estimation, see Lepski (1990) and Brown
and Low (1996). In order to have a consistent result when T → ∞, it is then necessary to impose
that η = ηT grows with T . The appropriate rate for ηT is derived in the next corollary. The proof
is given in Appendix B.3 and is essentially based on the bounds derived in Proposition 2.

Corollary 1. Under the assumptions of Propositions 2 and 3, if kT tends to infinity and is such
that

k−1
T 2JT /2 log2 JT = oT (1), (3.10)

then there exists a T0 > 1 such that, for all T > T0,

Pr

(

sup
−JT 6j<0

|Qj,R;T −Qj,R| > kT

√

K2|RT |−1

)

= oT (1)

where K2 is as in the assertion of Proposition 2.
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Remark 2. An example of admissible rates is JT ∼ log2 log2
2 T and kT ∼ log2

2 T . The sequence kT

will play a crucial role in Section 4.

3.4 Estimation of the variance

If we want to use Proposition 3 to test H0, an estimator of the variance σ2
j,R,T = VarQj,R;T is

needed. This variance depends on the unknown autocovariance function of the LSW process in the
following way (see Lemma 3 with equation (B.9)):

σ2
j,R,T = 2 ‖U ′

j,R;T ΣT ‖2
2,

where ΣT is the T × T (non-Toeplitz) covariance matrix of the LSW process (X0,T , . . . , XT−1,T )′,
and Uj,R;T is the T × T matrix with entry (s, t) equal to

U
(j)
st = |RT |−1

−1
∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t).

We also denote by σs,s+u the entry (s, s+ u) of the matrix ΣT .
We will estimate σ2

j,R,T by:

σ̃2
j,R,T = 2 ‖U ′

j,R;T Σ̃T ‖2
2

where Σ̃T is an estimate of the covariance matrix ΣT . A first idea is to define the elements σ̃s,s+u

of Σ̃T by plugging Qj,R;T into the local autocovariance function (2.6), i.e.

σ̃s,s+u =

−1
∑

j=− log2 T

Qj,R(s);T Ψj(u),

where R(s) denotes an interval which contains the time point s/T . However, the convergence in
probability of σ̃s,s+u to σs,s+u is not faster than the rate of σs,s+u itself, and we need to modify the
estimator in two ways.

(i) Assumption 1 indicates that the covariance |σs,s+u| is small for large |u|. Then, following the
method of Giurcanu and Spokoiny (2002), we set σ̃s,s+u to zero when |u| > MT , for an
appropriate sequence MT tending to infinity with T ;

(ii) It is necessary to control the distance in rescaled time between the spectrum Sj(z), for z ∈ R(s),
and Sj(s/T ). To do so, we allow the window R(s) to depend on T , which is denoted by RT (s),
in such a way that its length |RT | shrinks to zero when T tends to infinity. This is analogous
to the estimation of a regression function by kernel smoothing, where the window usually
depends on the length of the data set.

With these two ingredients, we propose to estimate σs,s+u by

σ̃s,s+u =

−1
∑

j=− log2 T

Qj,RT (s);T Ψj(u)I|u|6MT
, (3.11)

and the following assumption makes precise the appropriate rates for the sequences |RT | and MT .
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Assumption 4. |RT | tends to zero such that |RT | = oT (2−JT ), where JT = oT (log2 T ) and MT

tends to infinity such that 2JT |RTT |−1/2MTkT log3
2 T = oT (1).

With the rates given in Remark 2, admissible rates are |RT | ∼ log−3
2 T and MT ∼ logα

2 T with
α > 0. It is worth mentioning that, with this assumption, |RT | shrinks to zero in the rescaled time,
whereas, in the observed time, the interval length |TRT | tends to infinity. This means that our
estimate of Sj(s/T ) is built using an increasing amount of data in the observed time, but, at the
same time, with an average around Sj(s/T ) in the rescaled time on a shrinking segment around
s/T .

The next proposition shows that on the random set where the estimator Qj,RT (s);T is near
Qj,RT (s), the estimator (3.11) has a good quality. Our proof of this proposition may be found in
Appendix B.4 and needs the following technical assumption, which is a slightly stronger condition
than the point 2(a) of Definition 1, in the sense that we need to control the decay of Sj(z) with
respect to j and uniformly in z.

Assumption 5. The evolutionary wavelet spectrum Sj(z) is such that

− log2(T )−1
∑

`=−∞
sup

z∈(0,1)
S`(z) = O

(

T−1
)

.

Recall that the estimator (3.11) involves the scales −1 up to − log2 T . However, an explicit
computation of the covariance Cov(Xs,T , Xs+u,T ) may be written along the lines of the proof of
Proposition 2 and shows that this covariance involves all scales j = −1,−2, . . .. Then, when
we estimate this covariance function by σ̃s,s+u, Assumption 5 helps to control the reminder of
approximation at all scales lower than − log2 T .

Assumption 6. The local autocovariance function c(z, τ) is such that

∞
∑

u=−∞
sup

z
|cX(z, u)|I|u|>MT

= oT

(

2−JT
)

.

This last assumption on the decay of the local autocovariance function uniformly in z, is very
sensible in a context of short-memory processes, i.e. when c(z, u) does not depend on z. With the
rates specified above, a typical condition is to assume |cX(z, u)| 6 c · 2−|u| uniformly in z ∈ (0, 1).

Proposition 4. Suppose Assumptions 1 to 6 hold and kT is such that

k−1
T 23JT /2 log2 JT = oT (1). (3.12)

Then, there exists a positive number T0 and a random set A independent of j and such that Pr(A) >

1 − oT (1) and

|Qj,RT (s);T −Qj,RT (s)| 6 kT

√

K2

|RTT |

for all T > T0. Moreover, on A,

2JT −j T |σ̃2
j,R,T − σ2

j,R,T | = oP (1) (3.13)

holds for all j = −1, . . . ,−JT , where oP (1) does not depend on R.
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Finally, Proposition 4 together with Proposition 3 leads to the following result, which will be
used to construct the test in practice.

Theorem 1. Suppose Assumptions 1 to 6 hold. Then, there exists a ϕT = oT (2jT−1) and a positive
number T0 such that, for all T > T0,

Pr
(

|Qj,R;T −Qj,R| > σ̃j,R,Tη
′)

6 c0 exp







−1

8
· η2

1 + η
|RT |σj,R,T

Lj + 2j/2ην

|R|
√

Tσj,R;T
(‖cX‖1,∞ + c1ρ)







+ oT (1)

for all j = −1, . . . ,−JT , where η′ = η(1−ϕT /σ
2
j,R;T )1/2, and the positive constants c0, c1 are defined

in the assertion of Proposition 3.

Remark 3. Theorem 1 gives an approximation of the distribution of the normalized loss |Qj,R;T −
Qj,R|/σ̃j,R,T . This depends on the unknown quantities ‖cX‖1,∞ and ρ, cf. (2.4). These two
quantities may be understood as nuisance parameters of the problem, depending on the global
sprectrum. The estimation of these quantities is based on a preliminary smoothing of Lj;T (z)
with respect to z, which we denote by L∗

j;T (z). Here, we think about using a kernel smoothing
procedure, or a wavelet transform shrinkage as studied in Nason et al. (2000). Then, a preliminary
estimate of ‖cX‖1,∞ is obtained by plugging L∗

j;T (z) into ‖cX‖1,∞, cf. (2.6) and (3.8). Next, the
preliminary estimation of ρ necessitates the estimation of TV(Sj), cf. (2.3). We estimate TV(Sj)
by
∑

i |L∗
j;T (zmax

i ) − L∗
j;T (zmin

i )|, where the sum is over the local minima and maxima of L∗
j;T (z),

with zmax
i < zmin

i+1 < zmax
i+1 for all i.

3.5 Discussion of the test procedure

We now propose our test procedure. Under H0, see (3.2), the approximate distribution of the test
statistic is given by

Pr
(

|Qj,R;T | > η′σ̃j,R,T

∣

∣

∣H0

)

6 h(η′) (3.14)

for T sufficiently large, and where h is the exponential function following from Theorem 1. Let α
be the nominal level of the test. We reject H0 if

|Qj,R;T | > η?σ̃j,R,T , (3.15)

where η? is such that h(η?) = α.
We now discuss the power of this test and, for this, we need to be more specfic about the

alternative hypothesis H1. We will work with the sensible alternative hypothesis that there exists
a strictly positive real number θ and a measurable set with a non zero measure U ⊆ R such that
Sj(z) > θ for all z in U . Formaly, if |U| denotes the Lebesgue measure of U :

H1 : ∃ θ > 0 and U ⊆ R with |U| > 0 and Sj(z) > θ ∀z ∈ U . (3.16)

The next proposition evaluates the type II error of the test. The proof is to be found in Appendix
B, Section B.6.

Proposition 5. Suppose Assumption 1 to 6 hold true. Let the null hypothesis (3.2) against the
alternative hypothesis (3.16) be given and consider the test rule (3.15) with

η? < 2(1−j)/2‖cX‖−1
1,∞|RT |1/2Qj,R.
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Then, there exists T0 > 1 such that, for all T > T0, the type II error of the test is bounded as
follows:

Pr
(

H0 is not rejected
∣

∣

∣
H1

)

6 C ′ · exp

[

−c′ T

log2
2 T

θ2|U|2
|R|2

]

+ C ′′ · exp

[

−c′′
√
T

log2
2 T

θ|U|
|R|

]

+ oT (1),

where the positive constants c′, C ′, c′′, C ′′ and the oT (1) term do not depend on R, U and θ.

The last result shows the consistency of the test procedure. Moreover, it allows to discuss the
local alternative of the test. We first note that the alternative hypothesis (3.16) depends on the two
parameters θ and U . Consequently, to study the local alternative of the test, we need to investigate
both cases θ = θT → 0 and U = UT such that |UT | → 0. However, the upper bound of the type
II error in Proposition 5 depends on the product θT |UT |, and then the local alternative of the test
is studied when this product tends to 0 when T → ∞. By straightforward considerations, we see
that if

log2
2 T

θT |UT |
√
T

tends to zero as T → ∞, then the type II error of the test aymptotically vanishes.

4 Pointwise adaptive estimation

Theorem 1 may be also useful for other statistical applications. In this section, we derive one
important application given by the pointwise estimation of the wavelet spectrum.

Indeed, the estimator Qj,R;T may be seen as a smoothing over time of the inconsistent corrected
wavelet periodogram. It can then be used for the pointwise estimation of the wavelet spectrum.
In this problem, we want to estimate Sj(z0) at a fixed point z0. This estimation can be done by
computing the histogram Qj,R;T constructed on a segment R containing the fixed time point z0.
Consequently, the question how to choose the best segment R arises, and the goal of this section
is to provide a data-driven procedure to select R automatically.

The proposed method goes back to the pointwise adaptive estimation theory of Lepski (1990),
see also Lepski and Spokoiny (1997) and Spokoiny (1998). Suppose that the wavelet spectrum at
Sj(z0) is well approximated by the averaged spectrum Qj,U for a given interval U containing the
reference point z0. The idea of the procedure is to consider a second interval R containing U and
to test if Qj,R differs significantly from Qj,U . As we describe below, this test procedure is based on
Proposition 3 or Theorem 1. If there exists a subset U of R such that |Qj,R −Qj,U | is significantly
different from zero, then we reject the hypothesis of homogeneity of the wavelet spectrum Sj(z)
on z ∈ R. Finally, the adaptive estimator corresponds to the largest interval R such that the
hypothesis of homogeneity is not rejected.

This section contains a formal description of this algorithm and derives some properties of the
estimator.

4.1 Testing homogeneity

Let R be an interval containing z0, U a subset of R and define

∆j(R,U) = |Qj,R −Qj,U |. (4.1)

Under assumptions 1 to 3, Proposition 3 implies

Pr [|Qj,R,T −Qj,U ,T | > ∆j(R,U) + η (σj,R,T + σj,U ,T ) kT ] 6 h(U , η) + h(R, η)
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with

h(R, η) = c0 exp











−1

8
· η2k2

T

1 + ηkT
|RT |σj,R,T

Lj + 2j/2ηkT ν√
|RT |σj,R;T

(

‖cX‖1,∞ + c1ρ|R|−1/2
)











and where the sequence kT is such that (3.10) holds. Under the assumption that the wavelet
spectrum Sj is homogeneous on the segment R, the difference ∆j(R,U) is negligeable. Then, as
a test rule, we reject the homogeneity hypothesis on R if there exists a subset U ⊂ R such that
|Qj,R;T −Qj,U ;T | > η(σj,R,T + σj,U ,T )kT for a given η.

In the case where the variances σj,R,T and σj,U ,T are unknown, they may be estimated as in
Section 3.4 above. In that case, the homogeneity test is based on Theorem 1 and the modification
of the following results is straightforward.

In practice, we choose a set Λ of interval-candidates R. Then, for each candidate R, we apply
the homogeneity test with respect to a given set ℘(R) of subintervals U of R.

Assumption 7. In the estimation procedure described below, we assume the following properties
on the test sets Λ and ℘(R):

1. For all R, the shortest interval of ℘(R) is of length at least δ > 0,

2. The cardinality of ℘(R) is such that ](℘(R)) 6 |RT |κα
√

δ for some 0 < α < 1 and κ 6√
K1/[ν(‖c‖1,∞ + c1ρ)],

3. When we test the homogeneity of the wavelet spectrum on R, we assume that there exists a
subinterval U ∈ ℘(R) such that U ⊂ R and U contains z0.

Remark 4 (Test sets). In this remark, we give one example of sets Λ and ℘(R). For each scale
j < 0, the corrected wavelet spectrum (3.4) is evaluated on a grid k/T , r = 0, . . . , T − 1 in time.
Then, we can choose the set Λ as

Λ = {[r0/T, r1/T ] : r0 < [z0T ] < r1}

for r0, r1 ∈ {0, T − 1}. Nevertheless, in order to reduce the computational effort, we shrink the
cardinality of Λ following the method of Spokoiny (1998). More precisely, we first select two sets
Km = {rm : rm 6 [z0T ]} and Kn = {rn : rn > [z0T ]} which both contain less than T points, and
we set

Λ = {[rm/T, rn/T ] : rm ∈ Km, rn ∈ Kn} .
Then, one possibility to define ℘(R) is to consider

℘(R) = {[r−/T, r+/T ] : r−, r+ ∈ Km ∪Kn} .

We refer to Spokoiny (1998) for details about this construction.

4.2 The estimation procedure

The estimation procedure simply starts with the smallest interval in Λ, assuming that the wavelet
spectrum is homogeneous on this short interval. Then, it selects iteratively longer intervals in Λ
until the homonegeneity assumption is rejected. Finally, the adaptive segment R̃ is the longest
segment R of Λ for which the homogeneity test is not rejected:

R̃ = arg max
R∈Λ

{|R| such that |Qj,R;T −Qj,U ;T | 6 η(σj,R,T + σj,U ,T )kT for all U ⊂ ℘ (R)} . (4.2)
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The adaptive estimator of Sj(z0) is then defined by

S̃j(z0) = Qj,R̃,T . (4.3)

4.3 Properties of the estimator in homogeneous regions

The next result quantifies the `p risk (p > 2) when the wavelet spectrum Sj(z) is homogeneous on
z ∈ R. To define this concept of homogeneity, we introduce the bias

b(R) :=
∑

z∈R
|Sj(z) −Qj,R|,

which measures how well the wavelet spectrum Sj is approximated by Qj,R on z ∈ R. We say that
the spectrum is homogeneous (or regular) on R, if the inequality

b(R) 6 Cj σj,R,T kT (4.4)

holds with
Cj = 2−j/2√α+ p. (4.5)

In the inequality (4.4), σj,R,T is the squared root of the variance of the estimator Qj,R;T of Sj(z),
z ∈ R. As in Spokoiny (1998), (4.4) can be viewed as a balance relation between the bias and
the variance of this estimate. The kT term then appears as the correction term necessary in the
pointwise estimation in order to bound the normalized loss (see Lepski (1990), Lepski and Spokoiny
(1997)). In the following results, we set kT proportional to log2

2 T .
To write the `p risk in the regular case, we need also the following assumption.

Assumption 8. Qj,U ,T is uniformly bounded by a constant S.

Observe that, due to the Total Variation constraint on the wavelet spectrum, Sj(z) is also uni-
formly bounded, and we assume that it is uniformly bounded by S. On the other hand, Proposition
2 shows that σj,U ,T is uniformly bounded as well.

Proposition 6. Let R be an interval of (0, 1) and consider the test rule (4.2). If the wavelet
spectrum Sj is regular on R in the sense of conditions (4.4)—(4.5), then, with λ = η = 2−j/25(2α+
p) and kT ∼ log2

2 T ,

Pr (R is rejected) = O
(

T−cp
√

δ
)

for some positive constant c = c(ν, ‖c‖1,∞, ρ) depending on ν, ‖c‖1,∞ and ρ only.

Using this proposition, we can evaluate an upper bound for the `p risk associated to our esti-
mator.

Theorem 2. Assume that the wavelet spectrum at scale j, Sj(z), is homogeneous on the segment
R in the sense of (4.4)–(4.5) with

kT ∼ log2
2 T.

If S̃j(z) is the pointwise estimator of the wavelet spectrum obtained by the estimation procedure
(4.2)–(4.3) with

η = 2−j/25(2α + p),

then there exists T0 such that the pointwise `p-loss is bounded as follows

E|S̃j(z) − Sj(z)|p 6 c|UT |−p/2
[

21+j/2δ−1 + 11(2α + p) log2
2 T
]p

with a positive constant c.

The proof is to be found in Appendix B.8.
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4.4 Properties of the estimator in inhomogeneous regions

We now describe the behaviour our estimator near a breakpoint located at a time point z?. We
first need to be more specific about the definition of a breakpoint in the evolutionary spectrum.

For a fixed scale j ∈ {−1, . . . ,−JT }, assume the evolutionary wavelet spectrum to be homoge-
neous on R0 = [z0, z?) and on R1 = (z?, z1]. Let us denote R = R0 ∪R1 = [z0, z1] and

θT := E [Qj,R;T −Qj,R0;T ]

To prove the next proposition, we assume that the estimation procedure is such that R0 and R1

are in ℘(R).

Proposition 7. If the evolutionary wavelet spectrum at scale j contains a breakpoint at z? as
described above and if kT ∼ log2

2 T , then

Pr (R is not rejected) = O

(

exp

[

−Tθ
2
T (|R0| ∨ |R1|)

log2
2 T

]

+ exp

[

−
√
TθT

log2
2 T

])

.

where c is a positive constant and x ∨ y = max(x, y).

The proof of this proposition is given in Appendix B.9. In this result, θT may be seen as the
level of a jump in the wavelet spectrum. Then, Proposition 7 informs about the minimal amplitude
of the jump which may be detected by the estimation procedure. If θT is such that

log2
2 T

θT

√
T

→ 0,

then the estimation procedure is consistent in the sense that Pr(R is not rejected) is asymptotically
zero.

5 On the application of the results

Above, we have considered two main problems, namely a local test of sparsity (3.2) for a locally
stationary wavelet process, and the pointwise estimation of its evolutionary spectrum. From a
theoretical viewpoint, there exists a link between the solution of these two problems, since they are
based on a non-asymptotic result on the deviation of a linear functional of the wavelet periodogram
(Theorem 1).

However, each solution is devoted to a specific class of statistical problems. On one hand, the
test of sparsity is of use when we would like to measure a change of regime in an observed process.
Many examples arise where the effect of an input is measured on a time series, for instance the effect
of a drug on the heart rate measured by an electrocardiogram recording. The resulting time series
is expected to be globally nonstationary, and we think our test procedure may be used to detect
if a scale that is not active before the input becomes active after the input. Moreover, as already
said above, the test of sparsity may be applied on a whole scale, in order to test the significance of
one given scale in an observed process. Another application is the use of the results of Section 3
in order to construct tests of second-order stationarity. This will lead to a procedure with multiple
tests, and a comparison with existing work in this direction could be done.

On the other hand, the pointwise adaptive estimator of the wavelet spectrum may be applied
time point by time point, leading to an estimator of the whole wavelet spectrum of the process. An-
other extension is to replace the histogram-based pointwise estimation by a smooth kernel estimate.
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Behaviour of the estimator in terms of the smoothness of the kernel would be of interest. As our
procedure is based on nonasymptotic approximations and is fully adaptive, a practical evaluation
of the kernel-based estimator may also be provided through simulations.

Finally, we mention the possibility to combine the two procedures. For instance, the signifi-
cance of some whole scales over the whole time may be statistically tested, before performing the
estimation procedure on the scales which are significantly different from zero.

APPENDICES

A Properties of the autocorrelation wavelet system

This section summaries useful results on the system {Ψj} and the operator A. Recall that we
have denoted by Lj the length of | suppψj | for all j = −1,−2, . . . and then it holds Lj = (2−j −
1)(L−1 − 1) + 1 6 2−jL−1. We have also recalled the definition of the autocorrelation wavelet
system {Ψj; j = −1,−2, . . .} which is the convolution of the non-decimated wavelet system:

Ψj(τ) =

∞
∑

k=−∞
ψjk(0)ψjk(τ).

It is straightforward to check that Ψj is compactly supported for all j < 0 and the length of its
support is bounded by 2Lj − 1.

Our autocorrelation wavelet system is related to the continuous autocorrelation functions of
wavelets studied by Saito and Beylkin (1993) and defined as

Ψ(x) =

∫ ∞

−∞
du ψ(u)ψ(u − x)

for a continuous compactly supported wavelet ψ. Indeed, following Berkner and Wells (2002,
Lemma 4.2), it can be shown that the equation

Ψj(τ) = Ψ
(

2j |τ |
)

holds for all j = −1,−2, . . . and τ ∈ Z.
The following Lemma recalls other useful results on the autocorrelation wavelet system.

Lemma 1. (a) For all scales j and for all τ , Ψj(τ) = Ψj(−τ).

(b) The autocorrelation wavelet system {Ψj; j = −1,−2, . . .} is linearly independent.

(c) The identity
−1
∑

j=−∞
2jΨj(τ) = δ0(τ) (A.1)

holds for all τ ∈ Z.

Property (a) is obvious and implies the symmetry of the local autocorrelation function, i.e.
c(z, τ) = c(z,−τ), as expected. Property (b) is proved in Nason et al. (2000, Theorem 1) and
shows that the local autocovariance function is univoquely defined. Finally, property (c) is proved
in Fryźlewicz et al. (2003, Lemma 6) and implies, for instance, that the wavelet spectrum of a
White Noise process is proportional to 2j for all scales j < −1.

As the autocorrelation wavelet system is not orthogonal, we introduce the Gram matrix A
defined by Aj` =

∑

τ Ψj(τ)Ψ`(τ). The following properties of A are used thereafter.
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Lemma 2. For Haar and Shannon wavelets, there exists a finite positive constant ν such that the
matrix A fulfills the following properties for all j = −1, . . . ,− log2 T :

−1
∑

`=− log2 T

A−1
j` = 2j +O

(

2j/2T−1/2
)

(A.2)

−1
∑

`=− log2 T

|A−1
j` | 6 ν(1 +

√
2)2j/2 (A.3)

−1
∑

`=− log2 T

2−`/2|A−1
j` | 6 ν · 2j/2 log2 T,

−1
∑

`=− log2 T

2−`|A−1
j` | 6 ν(2 +

√
2)2j/2T 1/2. (A.4)

For all compactly supported wavelets, the matrix A fulfills the following property:

Aj` 6 (2Lj − 1) ∧ (2L` − 1) ∧
√

L`Lm (A.5)

where x ∧ y = min(x, y).

Proof. The following argument shows that the main term in (A.2) is 2j : Using that Ψ`(0) = 1 for
all ` < 0 and the identity (A.1), we may write

−1
∑

`=−∞
A−1

j` =

−1
∑

`=−∞
A−1

j`

∞
∑

m,u=−∞
2mΨm(u)Ψ`(u) =

−1
∑

m=−∞
2mδ0(j −m) = 2j

from the definition of A. Observe that this argument holds for all compactly supported wavelets.
To compute the remainder of (A.2), we introduce the auxiliary matrix Γ = D ′ ·A ·D with diagonal
matrix D = diag(2`/2)`<0, i.e. Γj` = 2j/2Aj`2

`/2. Nason et al. (2000, Theorem 2) have proven that
the spectral norm of Γ−1 is bounded for Haar and Shannon wavelets. Then, we get

− log2(T )−1
∑

`=−∞
A−1

j` = 2j/2

− log2(T )−1
∑

`=−∞
2`/2Γ−1

j` = O
(

2j/2T−1/2
)

To prove (A.3),
−1
∑

`=− log2 T

|A−1
j` | =

−1
∑

`=− log2 T

2j/22`/2|Γ−1
j` | 6 2j/2(1 +

√
2)ν

using supj` |Γ−1
j` | 6 ν. (A.4) is obtained similarly, using the approximation

∑−1
j=− log2 T 2−j/2 6

(2 +
√

2)
√
T . (A.5) follows from the definition of Aj` and the support of the autocorrelation

wavelets, using |Ψj(τ)| 6 1 uniformly in j and τ . �

B Proofs

Suppose M is an n× n matrix and M ? is the conjugate transpose of M . We denote

‖M‖2 :=
√

tr (M?M)

the Euclidean norm of M and

‖M‖spec := max{
√
λ : λ is eigenvalue of M ?M}
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the spectral norm of M . If M is symmetric and nonnegative definite, by standard theory we have
‖M‖spec = sup{‖Mx‖2

2 : x ∈ C
n, ‖x‖2 = 1}. We will also use the following standard relations which

hold for all symmetric matrices B,C:

‖B‖spec 6 ‖B‖2 (B.1)

‖B‖spec = max{λ : λ is eigenvalue of B} (B.2)

‖BC‖spec 6 ‖B‖spec‖C‖spec (B.3)

‖BC‖2 6 ‖B‖spec‖C‖2 6 ‖B‖2‖C‖2 (B.4)

Moreover, if we suppose that the elements of the matrix B are continuously differentiable
functions of t, then we shall also use

∂

∂t
log detB = tr

(

B−1 ∂

∂t
B

)

. (B.5)

In the sequel, we use the convention wjk;T = 0 for k < 0 and k > T , which leads to helpful
simplifications in the following proofs.

B.1 Proof of Proposition 1

On one hand, due to Definition 1, and equation (2.2), we have

cX,T (z, τ) = Cov
(

X[zT ],T , X[zT ]+τ,T

)

=

−1
∑

j=−∞

∞
∑

k=−∞
|wj,k+[zT ];T |2ψjk(0)ψjk(τ)

=

−1
∑

j=−∞

∞
∑

k=−∞
Sj

(

k + [zT ]

T

)

ψjk(0)ψjk(τ) + RestT (z, τ)

where the remainder is such that |RestT (z, τ)| 6 T−1
∑−1

j=−∞
∑∞

k=−∞Cj |ψjk(0)ψjk(τ)| by As-

sumption (2.2). On the other hand, we have cX(z, τ) =
∑−1

j=−∞
∑∞

k=−∞ Sj (z)ψjk(0)ψjk(τ). Then,

∞
∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ) − cX(z, τ)|

6

∞
∑

τ=−∞

∫ 1

0
dz

∞
∑

k=−∞

−1
∑

j=−∞

∣

∣

∣
Sj

(

k + [zT ]

T

)

− Sj (z)
∣

∣

∣
|ψjk(0)ψjk(τ)| +

∞
∑

τ=−∞

∫ 1

0
dzRestT (z, τ)

With appropriate changes of variables, this bound may be written

∞
∑

τ=−∞

−1
∑

j=−∞

∞
∑

k=−∞

T−1
∑

t=0

∫ 1/T

0
dz
∣

∣

∣
Sj

(

k + [zT ] + t

T

)

− Sj

(

z +
t

T

)

∣

∣

∣
|ψjk(0)ψjk(τ)|

+

∞
∑

τ=−∞

∫ 1

0
dzRestT (z, τ)

which is bounded by

T−1
∞
∑

τ=−∞

−1
∑

j=−∞

∞
∑

k=−∞
|k|TV (Sj) |ψjk(0)ψjk(τ)| +

∞
∑

τ=−∞

∫ 1

0
dzRestT (z, τ)
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where we have used the following property of the Total Variation norm:

T−1
∑

t=0

∣

∣

∣Sp

(

t

T
+
α

T

)

− Sp

(

t

T
+
β

T

)

∣

∣

∣ 6 |α− β|TV (Sp) for all α, β ∈ N. (B.6)

As the support of ψjk(0) is of length Lj, we get |k| 6 Lj. Together with condition (2.3) of Definition
1, this leads to

∞
∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ) − cX(z, τ)| 6 T−1

−1
∑

j=−∞
(Cj + LjLj)

∞
∑

τ=−∞

∞
∑

k=−∞
|ψjk(0)ψjk(τ)|.

The compact support of ψjk limits the sums over k and τ as follows:

∞
∑

τ,k=−∞
|ψjk(0)ψjk(τ)| =

Lj−1
∑

τ=−Lj+1

∞
∑

−∞
|ψjk(0)ψjk(τ)| 6 2Lj − 1 (B.7)

by the Cauchy-Schwarz inequality for the sum over k. We get the result by Assumption (2.4). �

B.2 Proof of Proposition 2

Our proof of Proposition 2 needs the following Lemma quoted from Neumann and von Sachs (1997).

Lemma 3. Let Zn = (Z1, . . . , Zn)′ be a vector of iid Gaussian random variables with zero mean
and VarZ1 = 1. If Mn is an n× n matrix, then

E
(

Z ′
nMnZn

)

= trMn,

Var
(

Z ′
nMnZn

)

= 2 trM?
nMn = 2‖Mn‖2

2,

and, for all r > 2, if Cumr denotes the rth cumulant, we have

|Cumr

(

Z ′
nMnZn

)

| 6 2r−1(r − 1)! ‖Mn‖2
2 {λmax (Mn)}r−2 .

Define XT = (X0,T , . . . , XT−1,T )′. By definition, Qj,R;T is the quadratic form

Qj,R;T = X ′
TUj,R;TXT (B.8)

where Uj,R;T is the T × T matrix with entry (s, t) equal to

Ust = |RT |−1
−1
∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t).

For notational convenience, we omit the dependence of Ust in j and R. Assuming that the or-
thonormal increment processes {ξjk} in Definition 1 are Gaussian, XT is a multivariate Gaussian
random variable with covariance matrix ΣT = Cov(XTX

′
T ). In that case, Qj,R;T is a quadratic

form of Gaussian variables and we can apply Lemma 3 with

Mj,R;T = Σ
′1/2
T Uj,R;T Σ

1/2
T (B.9)

in order to prove Proposition 2. The following lemmas derive some bounds for the Euclidean and
the spectral norm of Uj,R;T and ΣT .
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Lemma 4. With fixed R ⊆ (0, 1), there exists a T0 such that, uniformly in T > T0,

K1 22j |RT |−1(1 + oT (1)) 6 ‖Uj,R;T ‖2
2 6 K2 2j |R|−2T−1

for all j = −1, . . . , JT = oT (log2 T ), where K1 and K2 are two constants independent of j, T and
|R|.

Proof. The proof is straightforward when R = (0, 1). However, one technical difficulty is to deal
with a general interval R = (r1, r2) ⊂ (0, 1). A simple remark which simplifies the proof is to
observe that the quadratic form (B.8) involves X[r1T ],T , . . . , XT−1,T only. Consequently, the matrix
Uj,R;T is a (T − [r1T ] + 1) × (T − [r1T ] + 1) matrix, and we can write, from direct computations,

‖Uj,R;T ‖2
2 = |RT |−2

T−1
∑

s,t=[r1T ]





−1
∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t)





2

The compact support of ψ`k(s) implies that 0 6 k− s, and, as k 6 [r2T ], we can limit the sum over
s, t as follows:

‖Uj,R;T‖2
2 = |RT |−2

∑

s,t∈RT





−1
∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t)





2

. (B.10)

If we split the sum over ` at point `T such that |L`| 6 |RT | for all ` = −1,−2, . . . , `T , then
|`T | = O(log2 |RT |) and

‖Uj,R;T‖2
2 = |RT |−2

∑

s,t∈RT





−1
∑

`=−`T

A−1
j` Ψ`(s− t) +

−`T−1
∑

m=− log2 T

A−1
jm

∑

k∈RT

ψmk(s)ψmk(t)





2

.

Expanding the square, we get three terms, herewith denoted by IT , IIT and IIIT . By definition of
Ψ` and Aj`, the first squared term is

IT = |RT |−2
∑

s,t∈RT





−1
∑

`=−`T

A−1
j` Ψ`(s− t)





2

= |RT |−1
−1
∑

`,m=−`T

A−1
j` A

−1
jmAm`.

If we write the sum over −`T 6 ` 6 −1 as the sum over − log2 T 6 ` 6 −1 minus the sum over
− log2 T 6 ` 6 −`T − 1, then we get

IT = |RT |−1





−1
∑

m=−`T

A−1
j` δjm −

−1
∑

m=−`T

−`T−1
∑

`=− log2 T

A−1
j` A

−1
jmAm`





= |RT |−1



A−1
jj I{j>`T } −

−`T−1
∑

`=− log2 T

A−1
j` δj` +

−`T−1
∑

m,`=− log2 T

A−1
j` A

−1
jmA`m



 ,

and, using that the last sum over m, ` contains log2(T ) − `T = O(log2 |R|) elements,

IT 6 |RT |−1
[

A−1
jj I{j>`T } +A−1

jj I{j<`T } + 2j+1 log(|R|)ν2
]

6 2j+2ν|RT |−1.
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In order to compute a bound for the double product IIT , we exploit the compact support of ψ`k(s)
implying that k 6 s+ Lm 6 [r2T ] + Lm, and then

IIT = 2|RT |−2
∑

s,t∈RT

−1
∑

`=−`T

−`T−1
∑

m=− log2 T

A−1
j` A

−1
jmΨ`(s− t)

[r2T ]+Lm
∑

k=[r2T ]+1

ψmk(s)ψmk(t).

With u := s− t,

IIT = 2|RT |−2
−1
∑

`=−`T

−`T−1
∑

m=− log2 T

A−1
j` A

−1
jm

|RT |
∑

u=0

Ψ`(u)

[r2T ]
∑

s=u+[r1T ]

[r2T ]+Lm
∑

k=[r2T ]+1

ψmk(s)ψmk(s− u)

+ 2|RT |−2
−1
∑

`=−`T

−`T−1
∑

m=− log2 T

A−1
j` A

−1
jm

−1
∑

u=−|RT |
Ψ`(u)

u+[r2T ]
∑

s=[r1T ]

[r2T ]+Lm
∑

k=[r2T ]+1

ψmk(s)ψmk(s− u)

and, applying the Cauchy-Schwarz inequality for the sum over s, we finally get

IIT 6 4|RT |−2





−1
∑

m=−`T

Lm|A−1
jm|









−`T −1
∑

`=− log2 T

L`|A−1
j` |



 6 2(6 + 2
√

2)|R|−2L2
−1ν

22jT−1

using (A.4). Similar calculations lead to IIIT 6 (2 +
√

2)νL2
−1|R|−22jT−1. Putting these bounds

together gives the upper bound of ‖Uj,R;T ‖2
2.

On the other hand, from (B.10), we can write

‖Uj,R;T ‖2
2 > |RT |−2

∑

s∈RT





−1
∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ2
`k(s)





2

.

If we split the sum over ` at point `T such that |L`| 6 |RT | for all ` = −1,−2, . . . , `T , then
|`T | = O(log2 |RT |) and, as |k − s| 6 |RT | and by definition of `T ,

∑

k∈RT ψ
2
`k(s) = 1 in the first

term of the parenthesis, and we obtain

‖Uj,R;T ‖2
2 > |RT |−2

∑

s∈RT





−1
∑

`=`T

A−1
j` + RestT





2

.

with |RestT | 6
∑`T −1

`=− log2 T |A−1
j` | = O(ν · 2j/2|RT |−1/2|), where the rate follows using the same

techniques to prove (A.3), except that here the sum over ` goes from − log2 T to `T − 1 with
`T = O(log2 |RT |). On the other hand, (A.2) implies that

∑−1
`=`T

A−1
j` = 2j + O(|RT |−1), and we

get the result. �

Lemma 5. Under Assumption (3.7)

‖ΣT ‖spec = ‖Σ1/2
T ‖2

spec 6 ‖cX‖1,∞ <∞.

On the other hand, under Assumption 2, ‖Σ−1
T ‖spec is uniformly bounded in T .
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Proof. For x ∈ C
T with ‖x‖2 = 1 and if σs,t denotes the element (s, t) of the matrix ΣT ,

‖Σ1/2x‖2
2 =

T−1
∑

s,t=0

xsxtσs,t 6

T−1
∑

s=0

T−1
∑

u=−(T−1)

|xsxs+uσs,s+u| 6

T−1
∑

u=−(T−1)

sup
s=0,...,T−1

|σs,s+u|

which gives the first result using (3.7). The proof on the inverse matrix is similar to the proof of
Fryźlewicz et al. (2003, Lemmas A.1 and A.2), itself based on a technique developed in Dahlhaus
(1996, Section 4) for approximating covariance matrices of locally stationary Fourier processes. In
the present case, an additional difficulty occurs since we are assuming a total variation constraint
on the spectrum, instead of the Lipschitz continuity in the cited articles. To deal with the total
variation norm, we can use the techniques of approximation developed in our proof of Proposition
4 below. For the sake of presentation, we do not explicitly give the details of this proof here. �

We can now prove Proposition 2.

Expectation

EQj,R;T = |RT |−1
∑

k∈RT

−1
∑

`=− log2 T

A−1
j`

T−1
∑

s,t=0

ψ`k(s)ψ`k(t)
−1
∑

m=−∞

∞
∑

n=−∞
w2

mn;Tψmn(s)ψmn(t)

= |RT |−1
∑

k∈RT

−1
∑

`=− log2 T

A−1
j`

−1
∑

m=−∞

∞
∑

n=−∞
w2

mn;T

(

T−1
∑

s=0

ψ`k(s)ψmn(s)

)2

defining u := n− k,

= |RT |−1
∑

k∈RT

−1
∑

m=−∞

∞
∑

u=−∞
w2

m,u+k,T

−1
∑

`=− log2 T

A−1
j`

( ∞
∑

s=−∞
ψ`k(s)ψm,u+k(s)

)2

.

By Definition 1, we can write w2
m,u+k,T = Sm(k/T ) +RT (m,u, k) with

|RT (m,u, k)| 6

∣

∣

∣Sm

(

u+ k

T

)

− Sm

(

k

T

)

∣

∣

∣+
Cm

T

which leads to

EQj,R;T = |RT |−1
∑

k∈RT

−1
∑

m=−∞
Sm

(

k

T

) −1
∑

`=− log2 T

A−1
j`

∞
∑

u=−∞

( ∞
∑

s=−∞
ψ`k(s)ψm,u+k(s)

)2

+ RestT

By construction of the matrix A, we observe that

A`m =

∞
∑

u=−∞

( ∞
∑

s=−∞
ψ`k(s)ψm,u+k(s)

)2

(B.11)

which implies

EQj,R;T = |RT |−1
∑

k∈RT

Sj

(

k

T

)

+ RestT = |R|−1

∫

R
dz Sj (z) +O

(

|RT |−1Lj

)

+ RestT (B.12)
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where the last equality is a standard result on the Total Variation norm (see Brillinger (1975,
Lemma P5.1) for instance).

We now bound |RestT |. As s goes from −∞ to ∞, we have

|RestT | 6

−1
∑

m=−∞

−1
∑

`=− log2 T

|A−1
j` |

∞
∑

u=−∞
|RT |−1

∑

k∈RT

[

∣

∣

∣Sm

(

u+ k

T

)

− Sm

(

k

T

)

∣

∣

∣+
Cm

T

]

( ∞
∑

s=−∞
ψ`0(s)ψmu(s)

)2

.

Using (B.6) for the sum over k, |RestT | is bounded by

−1
∑

m=−∞

∞
∑

u=−∞

[

|u|TV (Sm)

|RT | +
Cm

T

] −1
∑

`=− log2 T

|A−1
j` |
( ∞
∑

s=−∞
ψ`0(s)ψmu(s)

)2

In this last expression, the compact support of ψ`0 and ψmu implies that |u| 6 L` ∨ Lm. Together
with (B.11), we get

|RestT | 6 |RT |−1
−1
∑

m=−∞

−1
∑

`=− log2 T

(TV(Sm)(L` ∨ Lm) + Cm)|A−1
j` |A`m

with (A.5) and where x ∨ y = max(x, y),

6 |RT |−1
−1
∑

m=−∞

−1
∑

`=− log2 T

(TV(Sm)L`(2Lm − 1) + TV(Sm)Lm(2L` − 1) +Cm(2Lm − 1))|A−1
j` |

= (2 +
√

2)ν2j/2|RT |−1
√
T

−1
∑

m=−∞
(2Lm − 1)TV(Sm) +O

(

2j/2|RT |−1
)

(B.13)

using (A.4) and (2.4).

Variance

Using Lemma 3 with (B.4), Lemma 4 and Lemma 5, we get the upper bound as follows

VarQj,R;T = 2‖Mj,R;T ‖2
2 6 2‖Σ1/2

T ‖4
spec‖Uj,R;T‖2

2

6 ‖cX‖2
1,∞ 2j |RT |−1 (B.14)

To obtain the lower bound, we use twice (B.4) on Uj,R;T = Σ
−1/2
T Mj,R;T Σ

−1/2
T :

VarQj,R;T = 2‖Mj,R;T ‖2
2 > 2‖Σ−1/2

T ‖−4
spec‖Uj,R;T‖2

2. (B.15)

Since ΣT is a symmetric matrix, ‖Σ−1/2
T ‖2

spec = ‖Σ−1
T ‖spec and Lemma 5 shows that ‖Σ−1

T ‖ is
uniformly bounded under Assumption 2. A lower bound for ‖Uj,R;T‖2

2 is stated in Lemma 4 and
the result follows. �
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B.3 Proof of Proposition 3 and its consequences

Our proof of Proposition 3 needs the use of an exponential bound for quadratic forms of Gaussian
random variables. For sake of presentation, we recall now this result and refer to Dahlhaus and
Polonik (2002, Proposition 6.1).

Proposition 8. Let Zn = (Z1, . . . , Zn)′ be a vector of iid Gaussian random variables with zero
mean and VarZ1 = 1. If Mn is an n× n matrix such that ‖Mn‖spec 6 τ∞ and σ2

n = 2‖Mn‖2
2, then

for all λ > 0

Pr
(

(Z ′
nMnZn − trMn) > σnλ

)

6 exp

(

−1

2
· λ2

1 + 2λ τ∞
σn

)

.

As in the proof of Proposition 2, equation (B.9), we write Qj,R;T as a quadratic form of Gaussian
variables in order to apply Proposition 8 with

Mj,R;T = Σ
′1/2
T Uj,R;T Σ

1/2
T (B.16)

to prove the assertion.

Proof of Proposition 3. Lemma 4 and 5 imply with (B.1) and (B.3):

‖Mj,R;T ‖spec 6 2j/2ν‖cX‖1,∞|R|−1T−1/2 (B.17)

which, using Proposition 8, implies

Pr ((Qj,R;T −Qj,R) > ησj,R,T )

6 Pr ((Qj,R;T − EQj,R;T ) > ησj,R,T/2) + Pr ((EQj,R;T −Qj,R) > ησj,R,T /2)

6 exp



−1

8
· η2

1 + η
2j/2ν‖cX‖1,∞

|R|T 1/2σj,R,T



+ Pr ((EQj,R;T −Qj,R) > ησj,R,T/2) .

To bound the second probability, we observe that

|EQj,R;T −Qj,R| 6 |RT |−1
{

Lj + 2(2 +
√

2)ρν2j/2
√
T
}

is obtained using (B.12) and (B.13). This implies

Pr ((Qj,R;T −Qj,R) > ησj,R,T )

6 exp



−1

8
· η2σj,R,T

σj,R,T + η
2j/2ν‖cX‖1,∞

|R|T 1/2



+ exp



1 − 1

2η

η2σj,R,T

Lj+2(2+
√

2)ρν2j/2
√

T )
|RT |





and the result follows. �

Proof of Corollary 1. In the following proof, K denotes a generic constant and kT is an
increasing function of T . By Proposition 2, σ2

j,R,T := VarQj,R;T 6 K2|RT |−1 uniformly in j, which
implies

Pr

(

sup
−JT 6j<0

|Qj,R;T −Qj,R| > kT

√

K2|RT |−1

)

6

−1
∑

j=−JT

Pr
(

|Qj,R;T −Qj,R| > kT

√

K2|RT |−1
)

6

−1
∑

j=−JT

Pr (|Qj,R;T −Qj,R| > kTσj,R,T ) .
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Using Proposition 3, this probability is bounded by

c0 JT max
−JT 6j<0

exp



−1

8
· k2

T

1 +
kT Lj

|RT |σj,R;T
+ kT 2j/2ν

|R|
√

Tσj,R;T
(‖cX‖1,∞ + c1ρ)





Proposition 2 shows that, for T sufficiently large, σj,R,T > 2j
√

K1|RT |−1. Moreover, by equation
(2.4), there exists a positive constant ρ′ such that Lj 6 2j/2ρ′. This leads to the bound

c0 JT max
−JT 6j<0

exp






−1

8
· k2

T

1 +
kT Lj

2j
√

|RT |K1

+ kT ν
2j/2

√
K1|R| (‖cX‖1,∞ + c1ρ)







Since the maximum is attained for j = −JT and using 2−jLj < ρL0, we get the upper bound

c0 JT max
−JT 6j<0

exp

(

−1

8
· k2

T

1 + ρL0kT (K1|RT |)−1/2 + 2JT /2νkTK
−1/2
1 |R|−1/2 (‖cX‖1,∞ + c1ρ)

)

which is oT (1) by the assumption on kT . �

B.4 Proof of Proposition 4

In the following proof K is a generic constant.

Lemma 6. If U
(j)
ts = |RT |−1

∑−1
`=− log2 T A

−1
j`

∑

k∈RT ψ`k(s)ψ`k(t), then

∞
∑

t=−∞

∞
∑

s,u=−∞
U

(j)
ts U

(j)
tu I|s−u|6NT

6 |R|−2NTT
−12L0ν

22j log2
2 T = O

(

2jNT log2
2 T

T

)

Proof. Direct calculations yields

∞
∑

t=−∞

∞
∑

s,u=−∞
U

(j)
ts U

(j)
tu I|s−u|6NT

6 |RT |−2
−1
∑

`,m=− log2 T

|A−1
j` ||A−1

jm|
∞
∑

s,u=−∞
I|s−u|6NT

∞
∑

t=−∞

(

∑

k∈RT

|ψ`k(s)ψ`k(t)|
)(

∑

n∈RT

|ψmn(u)ψmn(t)|
)

.

Using the Cauchy-Schwarz inequality for the sum over t, we get a product between two terms
similar to







∑

t

(

∑

k∈RT

ψ`k(s)ψ`k(t)

)2






1/2

=







∑

k,r∈RT

Ψ`(k − r)ψ`k(s)ψ`r(s)







1/2

if k = r + u, then the range of u is included in {−|RT |, . . . , 0, . . . , |RT |}:

6







|RT |
∑

u=−|RT |

∑

r∈RT

|Ψ`(u)| · |ψ`,r+u(s)ψ`r(s)|







1/2

6







|RT |
∑

u=−|RT |
|Ψ`(u)|







1/2
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using Cauchy-Schwarz inequality for the sum over r and
∑

r ψ
2
`r(s) = 1. Finally, using the basic

properties of Ψj(τ) described in Appendix A, we get







∑

t

(

∑

k∈RT

ψ`k(s)ψ`k(t)

)2






1/2

6
√

2L` − 1. (B.18)

Then

∞
∑

t=−∞

∞
∑

s,u=−∞
U

(j)
ts U

(j)
tu I|s−u|6NT

6 TNT |RT |−2
−1
∑

`,m=− log2 T

|A−1
j` ||A−1

jm|
√

2L` − 1
√

2Lm − 1

and we obtain the result by (A.4). �

In the proof of Proposition 4, we need a modification of Corollary 1, in which R is replaced by
RT . The proof of the following result is along the lines of the proof of Corollary 1.

Lemma 7. Under the assumptions of Propositions 2 and 3, and under Assumption 4, there exists
T0 > 1 such that, for all T > T0,

Pr

(

sup
−JT 6j<0

|Qj,RT (s);T −Qj,RT (s)| > kT

√

K2

|RTT |

)

6 c0JT exp

[

−1

8
· k2

T

1 + ρL0kT (K1|RTT |)−1/2 + 2JT /2νkTK
−1/2
1 |RT |−1/2 (‖cX‖1,∞ + c1ρ)

]

= oT (1)

where kT is such that (3.12) holds true.

Proof of Proposition 4. Define σ̄s,s+u :=
∑−1

`=− log2 T Q`,RT (s)Ψ`(u)I|u|6MT
the entries of a

matrix Σ̄, and define σ̄2
j,R,T := 2‖U ′

j,R;T Σ̄T‖2
2. Our proof is based on the decomposition

σ̃2
j,R,T − σ2

j,R,T =
(

σ̃2
j,R,T − σ̄2

j,R,T

)

+
(

σ̄2
j,R,T − σ2

j,R,T

)

where the first term is stochastic while the second term is deterministic.
We will first show that the deterministic term |σ̄2

j,R,T −σ2
j,R,T | is o(2j−JT T−1). Using (B.4), we

can write

1

2

(

σ̄2
j,R,T − σ2

j,R,T

)

= ‖U ′
j,R;T Σ̄T ‖2

2 − ‖U ′
j,R;T ΣT‖2

2

6 ‖U ′
j,R;T (Σ̄T − ΣT )‖2

2 + 2 · ‖U ′
j,R;T ΣT ‖2 · ‖U ′

j,R;T (Σ̄T − ΣT )‖2

6 ‖Uj,R;T‖2
2 · ‖Σ̄T − ΣT ‖2

spec + 2 · ‖Uj,R;T‖2
2 · ‖ΣT ‖spec · ‖Σ̄T − ΣT ‖spec

where we know by lemmas 4 and 5 that ‖Uj,R;T‖2
2 = O(2jT−1) and ‖ΣT ‖spec 6 ‖cX‖1,∞. Moreover,

we can write:

‖Σ̄T − ΣT ‖spec 6

∞
∑

u=−∞
sup

s
(σs,s+u − σ̄s,s+u)

=

∞
∑

u=−∞
sup

s

−1
∑

`=−∞

∞
∑

n=−∞

(

w2
`n;T −Q`,RT (s)

)

· ψ`n(s)ψ`n(s+ u) + R1 +R2 (B.19)
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with

R1 =
∞
∑

u=−∞
sup

s

−1
∑

`=−∞
Q`,RT (s)Ψ`(u) I|u|>MT

and

R2 =

∞
∑

u=−∞
sup

s

− log2(T )−1
∑

`=−∞
Q`,RT (s)Ψ`(u) I|u|<MT

.

As

∞
∑

u=−∞
sup

s

−1
∑

`=−∞
Q`,RT (s)Ψ`(u) =

∞
∑

u=−∞
sup

s
|RT |−1

∫

RT (s)
dz cX (z, u) ,

the rate of R1 is O(2−JT ) by Assumption 6. Next, using |Ψ`(u)| 6 1 uniformly in ` < 0, we get

|R2 | 6

∞
∑

u=−∞
sup

s
|RT |−1

∫

RT (s)
dz

− log2(T )−1
∑

`=−∞
S`(z) I|u|<MT

6 2MT

− log2(T )−1
∑

`=−∞
sup

z
S`(z) = oT (2−JT )

using Assumption 5. The main term of (B.19) is bounded by

∞
∑

u=−∞
sup

s

−1
∑

`=− log2 T

∞
∑

n=−∞
|RT |−1

∫

RT (s)
dz |w2

`n;T − S`(z)| · |ψ`n(s)ψ`n(s+ u)|. (B.20)

By Definition 1, we can write

|w2
`n;T − S`(z)| 6

C`

T
+
∣

∣

∣
S`

(n

T

)

− S`

(

n− s

T
+ z

)

∣

∣

∣
+
∣

∣

∣
S`(z) − S`

(

n− s

T
+ z

)

∣

∣

∣

which, when replaced in (B.20), leads to three terms. By (B.7) and (2.4), the first term is O(T−1).
For the second term, with a change of variable z to z + s/T , we get:

∞
∑

u=−∞
sup

s

−1
∑

`=−∞

∞
∑

n=−∞
|RT |−1

∫

RT (0)
dz
∣

∣

∣S`

(n

T

)

− S`

(n

T
+ z
) ∣

∣

∣ · |ψ`n(s)ψ`n(s+ u)|,

where RT (0) denotes the interval RT (s) shifted by −s. If we use that |ψ`n(s)| is uniformly bounded
and that

∑∞
u=−∞ |ψ`n(s+u)| = O(L`), the second term is bounded (up to a multiplicative constant)

by

|RT |−1
−1
∑

`=−∞
L`

∫

RT (0)
dz

∞
∑

n=−∞

∣

∣

∣S`

(n

T

)

− S`

(n

T
+ z
) ∣

∣

∣

6 |RT |−1
−1
∑

`=−∞
L`

∫

RT (0)
dz |z|TV(S`) 6 |RT |

−1
∑

`=−∞
L`L`

= O(|RT |)
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by assumptions (2.3) and (2.4). The third term is

∞
∑

u=−∞
sup

s

−1
∑

`=−∞

∞
∑

n=−∞
|RT |−1

∫

RT (s)
dz
∣

∣

∣
S`(z) − S`

(

n− s

T
+ z

)

∣

∣

∣
· |ψ`n(s)ψ`n(s+ u)|.

If s0 denotes the infimum of RT (s), we decompose the integral as follows:

∞
∑

u=−∞
sup

s

−1
∑

`=−∞

∞
∑

n=−∞
|RT |−1

|RT T |−1
∑

k=0

∫ s0+
k+1

T

s0+
k
T

dz
∣

∣

∣S`(z) − S`

(

n− s

T
+ z

)

∣

∣

∣ · |ψ`n(s)ψ`n(s+ u)|

which can be rewritten with the change of variables y := z − s0 − k/T ,

∞
∑

u=−∞
sup

s

−1
∑

`=−∞

∞
∑

n=−∞
|RT |−1

|RT T |−1
∑

k=0

∫ 1/T

0
dy
∣

∣

∣
S`

(

y + s0 +
k

T

)

− S`

(

y + s0 +
n− s+ k

T

)

∣

∣

∣
· |ψ`n(s)ψ`n(s+ u)|.

Assumption (2.3) for the sum over k with (B.6) leads to the bound

∞
∑

u=−∞
sup

s

−1
∑

`=−∞
L`

∞
∑

n=−∞
|RTT |−1|n− s||ψ`n(s)ψ`n(s+ u)|.

The compact support of ψ`n(s) implies |n − s| < L`, which leads to O(|RTT |−1) by (B.7), (2.3)
and (2.4). Finally, we get

2−jT ·
(

σ̄2
j,R,T − σ2

j,R,T

)

= O
(

T−1 + |RT |
)

+ oT (2−JT ) = oT (2−JT )

by Assumption 4.
Let us now turn to the stochastic term |σ̃2

j,R,T − σ̄2
j,R,T |. Lemma 7 implies the existence of a

random set A which does not depend on j and such that Pr(A) > 1 − oT (1) and

|Qj,RT (s);T −Qj,RT (s)| 6 kT

√

K2|RTT |−1 (B.21)

almost surely on A, for all T > T0 and j = −1, . . . ,−JT . We can write

|σ̄2
j,R,T − σ̃2

j,R,T | 6 2

T−1
∑

h,t=0

∣

∣

∣

T−1
∑

s,u=0

U
(j)
ts U

(j)
tu

−1
∑

`,m=− log2 T

(

Q`,RT (s);TQm,RT (s);T −Q`,RT (s)Qm,RT (s)

)

Ψ`(s− h)Ψm(u− h)
∣

∣

∣
· I|s−h|6MT

I|u−h|6MT
(B.22)

almost surely on A. Using the decomposition

Q`,RT (s);TQm,RT (s);T −Q`,RT (s)Qm,RT (s) =
(

Qm,RT (s);T −Qm,RT (s)

)

Q`,RT (s)

+
(

Q`,RT (s);T −Q`,RT (s)

)

Qm,RT (s);T ,
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the first term of the right hand side of (B.22) is split into two terms. On A, the first of these two
terms is bounded as follows (the other term is bounded similarly):

2

T−1
∑

h,t=0

T−1
∑

s,u=0

∣

∣

∣
U

(j)
ts U

(j)
tu

−1
∑

m=− log2 T

(

Qm,RT (s);T −Qm,RT (s)

)

Ψm(u− h)

−1
∑

`=−MT

Q`,RΨ`(s− h)
∣

∣

∣
I|s−u|62MT

6 2kT log2(T )
√

K2|RTT |−1

T−1
∑

h,t=0

T−1
∑

s,u=0

|U (j)
ts U

(j)
tu | ·

∣

∣

∣

−1
∑

`=−MT

Q`,RT (s)Ψ`(s− h)
∣

∣

∣I|s−u|62MT

6 2kT log2(T )
√

K2|RTT |−1

T−1
∑

t=0

T−1
∑

s,u=0

|U (j)
ts U

(j)
tu |I|s−u|62MT

·
∞
∑

h=−∞
sup

z

∣

∣

∣

−1
∑

`=− log2 T

S`(z)Ψ`(h)
∣

∣

∣

= O
(

2jMT kT |RTT |−1/2 T−1 log3
2 T
)

a.s. on A

using Assumption (3.8) and Lemma 6. The result follows from Assumption 4. �

B.5 Proof of Theorem 1

By Lemma 7 and Proposition 4 and for T large enough, there exists of a random set A such that
1 − Pr (A) = oT (1) and (3.13) holds on A. Then, if Ac denotes the complementary random set of
A, we can write:

Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη) = Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη|A) Pr (A)

+ Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη|Ac) (1 − Pr (A)) .

The second term of this sum is bounded using Lemma 7. To bound the first term, we observe
that Proposition 4 implies σ̃2

j,R,T > σ2
j,R,T − ϕT on A with ϕT = oT (2j−JT T−1). Together with

Proposition 2, this implies

σ̃2
j,R,T

σ2
j,R,T

> 1 − ϕT

σ2
j,R,T

= 1 − oT (1) → 1 (B.23)

for all j = −1, . . . ,−JT , as T tends to infinity. Then, we can write:

Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη) 6 Pr



|Qj,R;T −Qj,R| > σj,R,Tη

√

1 − ϕT

σ2
j,R,T

∣

∣

∣A



 + oT (1).

and Proposition 3 leads to the result. �

B.6 Proof of Proposition 5

We first prove the following lemma, stating an exponential inequality for quadratic forms of Gaus-
sian random variables. This result is a generalisation of a similar result obtained by Laurent
and Massart (2000) for chi-squared distributions, and is proved in the spirit of Spokoiny (2001,
Appendix).

Lemma 8. Let ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random variables with zero mean
and VarZ1 = 1. If MT is a T × T symmetric and positive definite matrix, then

Pr
(

Z ′
TMTZT 6 η

)

6 exp

(

−(η − trMT )2

4‖MT ‖2
2

)

.

provided that η 6 trMT .
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Proof. By assumption on the matrix MT , the decomposition MT = O′
T ΛTOT holds with a diagonal

T × T matrix ΛT and an orthonormal matrix OT . If we denote Y T = U ′
TZT , then Y T is a vector

of iid Gaussian random variables with zero mean and Var Y1 = 1. We can write Z ′
TMTZT =

Y ′
T ΛTY T =

∑T
i=1 λiY

2
i with λi > 0. Moreover, trMT = tr ΛT , tr Λ2

T = trM2
T = ‖MT ‖2

2 and
‖MT ‖spec = max{λ1, . . . , λT }. A Chernoff bound on Y T leads to

Pr
(

Z ′
TMTZT 6 η

)

= Pr
(

Y ′
T ΛTY T 6 η

)

6 exp

[

inf
t<0

(

−tη + log E exp(tY ′
T ΛTY T )

)

]

= exp

[

inf
t<0

(

−tη +

T
∑

i=1

log E exp(λitY
2
i )

)]

and, using that

log E exp(αiY
2
i ) = −1

2
log(1 − 2αi) 6 αi + α2

i

holds for αi 6 0, we get

Pr
(

Z ′
TMTZT 6 η

)

6 exp

[

inf
t<0

(

−tη + t tr ΛT + t2 tr Λ2
T

)

]

.

The result follows by taking t = (η − tr ΛT )/(2 tr Λ2
T ). �

Lemma 8 is not directly applicable on the quadratic form Qj,R;T = Z ′
TMj,R;TZT because the

matrix Mj,R;T is not definite positive in general. In the next lemma, we show how this matrix can
be approximated by the matrix M ?

j,R;T , defined as

M?
j,R;T = Σ

1/2 ′
T U?

j,R;T Σ
1/2
T ,

where the entry (s, t) of the matrix U ?
j,R;T is

u?
st = γ0|RT |−1

−1
∑

`=− log2 T

2`/2Ψ`(s− t),

with γ0 > supj<0 sup`<0 2−`/2|A−1
j` | > 0. The matrix M ?

j,R;T is clearly symmetric. It is also positive

definite because U ?
j,R;T is positive definite: For all sequences x = (x1, . . . , xT )′ of `2, the quadratic

form

x′U?
j,R;Tx = γ0|RT |−1

−1
∑

`=− log2 T

2`/2
T−1
∑

s=0

(

∑

k∈RT

xsψ`k(s)

)2

is strictly positive.

Lemma 9. Assume Assumptions 1 to 3 and Assumption 5 hold true. Define γ1 such that

0 < γ1 < γ0 inf
m<0

−1
∑

`=− log2 T

2`/2Am`.

The following properties hold true for T sufficiently large:

γ1|R|−1ε 6 tr(M ?
j,R;T −Mj,R;T ) 6 2‖cX,T ‖1,∞γ0|R|−1 (B.24)
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where ε is defined in Assumption 2,

‖M?
j,R;T −Mj,R;T‖2

spec 6 ‖M?
j,R;T −Mj,R;T‖2

2

6 4L−1γ
2
0 |R|−2‖cX‖2

1,∞T
−1 log2

2(T ) +O(T−1), (B.25)

and, if ZT = (Z1, . . . , ZT )′ is a vector of iid Gaussian random variables with zero mean and
VarZ1 = 1, then

Pr
(

Z ′
T (M?

j,R;T −Mj,R;T )ZT > λT

)

= O

(

exp

[

−
√
T trMj,R;T

log2
2 T

])

(B.26)

where λT = trM?
j,R;T − trMj,R;T + trMj,R;T log−1

2 T .

Proof. 1. We prove (B.24). Write tr(M ?
j,R;T −Mj,R;T ) = tr(M ?

j,R;T ) − tr(Mj,R;T ), where the

second term is E(Z ′
TMj,R;TZT ) = Qj,R + O(2j/2T−1/2) from Lemma 3 and Proposition 2.

Moreover,

tr(M?
j,R;T ) = tr

(

Σ′
TU

?
j,R;T

)

= γ0|RT |−1
∞
∑

s,u=∞
cX,T

( s

T
, u
)

−1
∑

`=− log2 T

2`/2Ψ`(u) (B.27)

= γ0|RT |−1
∞
∑

s,u=∞
cX

( s

T
, u
)

−1
∑

`=− log2 T

2`/2Ψ`(u) + RestT . (B.28)

We now derive a bound for RestT . Denote ∆T (s/T, u) := cX,T (s/T, u) − cX(s/T, u). We
first show that TV(∆T (·, u)) is uniformly bounded in u. For all I ∈ {1, . . . , T} and for every
sequence 0 < a1 < a2 < . . . < aI < 1, we can write

∆T (ai, u) − ∆T (ai−1, u)

=

−1
∑

j=−∞

∞
∑

k=−∞

{

Sj

(

k

T

)

− Sj (ai)

}

ψjk([aiT ])ψjk([aiT ] + u)

−
−1
∑

j=−∞

∞
∑

k=−∞

{

Sj

(

k

T

)

− Sj (ai−1)

}

ψjk([ai−1T ])ψjk([ai−1T ] + u) +O(T−1) ,

where the O(T−1) term comes from the approximation (2.2). Now, substitute k by k+ [aiT ]
in the first sum, and by k + [ai−1T ] in the second one. This leads to

∆T (ai, u) − ∆T (ai−1, u)

=

−1
∑

j=−∞

∞
∑

k=−∞

{

Sj

(

k

T
+ ai

)

− Sj

(

k

T
+ ai−1

)

+ Sj (ai−1) − Sj (ai)

}

ψjk(0)ψjk(u)

+O(T−1).

Consequently, using the Cauchy-Schwarz inequality and (2.4),

I
∑

i=1

[∆T (ai, u) − ∆T (ai−1, u)] 6 2

−1
∑

j=− log2 T

Lj

∞
∑

k=−∞
|ψjk(0)ψjk(u)| 6 2ρ+K,
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where K is a constant (because I 6 T ), leading to TV(∆T (·, u)) 6 2ρ +K uniformly in u.
We can now bound RestT in (B.28) as follows:

RestT = γ0|RT |−1
∞
∑

s,u=−∞
∆T

( s

T
, u
)

−1
∑

`=− log2 T

2`/2Ψ`(u)

= γ0|R|−1
∞
∑

s,u=−∞

∫ (s+1)/T

s/T
dz
{

∆T (z, u) + ∆T

( s

T
, u
)

− ∆T (z, u)
}

−1
∑

`=− log2 T

2`/2Ψ`(u) ,

as |Ψ`(u)| is uniformly bounded by 1,

6 γ0|R|−1

∫ 1

0
dz

∞
∑

u=−∞
|∆T (z, u)|

+ γ0|R|−1
∞
∑

s,u=−∞

∫ 1/T

0
dz
∣

∣

∣∆T

( s

T
, u
)

− ∆T

(

z +
s

T
, u
)∣

∣

∣ .

From Proposition 1, the first term is O(|RT |−1). Using (B.6) and that TV(∆T (·, u)) is
uniformly bounded in u, the second term is also O(|RT |−1).

Now, using (2.6) and the definition of the matrix A, the first term of (B.28) is bounded from
below as follows:

γ0|RT |−1
∞
∑

s,u=−∞
cX

( s

T
, u
)

−1
∑

`=− log2 T

2`/2Ψ`(u)

= γ0|RT |−1
∞
∑

s,u=−∞

−1
∑

m=−∞
Sm

( s

T

)

Ψm(u)

−1
∑

`=− log2 T

2`/2Ψ`(u)

= γ0|RT |−1
T−1
∑

s=0

−1
∑

m=−∞
Sm

( s

T

)

inf
m<0





−1
∑

`=− log2 T

2`/2Am`



 ,

and we get the lower bound with Assumption 2. The upper bound is derived from (B.27),
using Assumption 1, and |Ψ`(u)| 6 1 uniformly in ` < 0 and u ∈ Z.

2. We prove (B.25). The first inequality is (B.1). From (B.4), we write ‖M ?
j,R;T −Mj,R;T‖2

2 6

‖Σ1/2‖4
spec‖U?

j,R;T − Uj,R;T‖2
2. Then, with Lemma 4,

‖U?
j,R;T − Uj,R;T‖2

2 6 2‖U?
j,R;T ‖2

2 + 2‖Uj,R;T ‖2
2

6 γ2
0 |R|−2T−1

−1
∑

m,`=− log2 T

2(`+m)/2A`m +K22
j |R|−2T−1

with (A.5) and
√
L`Lm 6 2−(`+m)/24L−1,

6 4L−1γ
2
0 |R|−2T−1 log2

2(T ) +O(T−1).

The result follows from Lemma 5.
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3. We prove (B.26). For T large enough, λT is strictly positive. Using Proposition 8 and, from
Lemma 3, using p2

T = Var(Z ′
T (M?

j,R;T −Mj,R;T )ZT ) = 2‖M?
j,R;T −Mj,R;T‖2

2 and denoting
qT = ‖M?

j,R;T −Mj,R;T‖spec,

Pr
(

Z ′
T (M?

j,R;T −Mj,R;T )ZT > λT

)

6 exp

(

−1

2
· (trMj,R;T )2

p2
T log2

2 T + 2qT tr(Mj,R;T ) log2 T

)

.

(B.25) gives the rates for pT and qT , leading to the result. �

Proof of Proposition 5. The type II error is

Pr
(

|Qj,R;T | 6 η?σ̃j,R,T

∣

∣H1

)

6 Pr
(

Qj,R;T 6 η?σ̃j,R,T

∣

∣H1

)

.

In the proof of Proposition 4, we define a random set A such that Pr(A) > 1 − oT (1) and (3.13)
holds. Proposition 4 implies that σ̃2

j,R,T 6 σ2
j,R,T +γT on A with γT = o(2j−JT T−1). Together with

Proposition 2, this implies
σ̃2

j,R,T

σ2
j,R,T

6 1 +
γT

σ2
j,R,T

→ 1,

and then the type II error is bounded by

Pr
(

Qj,R;T 6 ηTσj,R,T

∣

∣H1

)

+ oT (1)

with ηT = η?

√

1 + γT /σ2
j,R,T .

With the notations of Lemma 9, we can write the type II error as

Pr
(

Qj,R;T 6 ηTσj,R,T

∣

∣H1

)

= Pr
(

Z ′
TM

?
j,R;TZT 6 ηTσj,R,T + Z ′

T (M?
j,R;T −Mj,R;T )ZT

∣

∣H1

)

(B.29)
where ZT = (Z1, . . . , ZT )′ is a vector of iid Gaussian random variables with zero mean and VarZ1 =
1. We now define the random set PT = {Z ′

T (M?
j,R;T −Mj,R;T )ZT 6 λT } with λT = trM?

j,R;T −
trMj,R;T (1− log−1

2 T ). Lemma 9, equation (B.26), gives an upper bound for Pr(P c). Conditioning
on PT , we can write

Pr
(

Qj,R;T 6 ηTσj,R,T

∣

∣H1

)

6 Pr
(

Z ′
TM

?
j,R;TZT 6 ηTσj,R,T + λT

∣

∣H1

)

+O

(

exp

[

−
√
T trMj,R;T

log2
2 T

])

.

Then, we are in position to apply Lemma 8 and we get

Pr
(

Z ′
TM

?
j,R;TZT 6 ηTσj,R,T + λT

∣

∣H1

)

6 exp

[

−
(

ηTσj,R,T − trMj,R;T (1 − log−1
2 T )

)2

4‖M?
j,R;T ‖2

2

]

provided that ηTσj,R;T + λT 6 trM?
T (which holds true for T large enough by definition of λT ).

Proposition 2 allows to write EQj,R;T = trMj,R;T = Qj,R + rT with rT = O(T−1/2), and then the
first term of the type II error is bounded in order by

exp
[

−‖M?
j,R;T ‖−2

2 Q2
j,R
]

+ exp
[

−
√
TQj,R log−2

2 T
]

.

We conclude using that, under H1, we can write

Qj,R = |U||R|−1Qj,U + (|R| − |U|)|R|−1Qj,R\U > |U||R|−1θ,

from (3.16) and applying Lemma 9, equation (B.25) to ‖M?
j,R;T‖2. �
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B.7 Proof of Proposition 6

Let U be a segment of ℘(R). Consider the a.s. inequality

|Qj,R;T −Qj,U ;T | 6 |Qj,U ;T −Qj,U | + |Qj,R;T −Qj,R| + ∆j(R,U)

where ∆j(R,U) is defined in (4.1). In the regular case, ∆j(R,U) 6 b(U) + b(R) 6 Cj(σj,U ,T +
σj,R,T )kT . Consequently, in the regular case,

Pr (R is rejected) 6
∑

U∈℘(R)

Pr [|Qj,U ;T −Qj,R;T | > (ησj,U ,T + ησj,R;T ) kT ]

6
∑

U∈℘(R)

Pr (|Qj,R;T −Qj,R| > −Cjσj,U ;TkT + ησj,U ;TkT )

+
∑

U∈℘(R)

Pr (|Qj,R;T −Qj,R| > −Cjσj,R,TkT + ησj,R,TkT )

Proposition 3 implies

Pr (R is rejected) 6 (]℘(R)) c0 exp











−1

8
· η2

T

1 +
ηT Lj

|RT |σj,R,T
+

2j/2ηT ν(‖cX‖1,∞+c1ρ)

σj,R;T |RT |
√

T











+ c0
∑

U∈℘(R)

exp











−1

8
· η2

T

1 +
ηT Lj

|UT |σj,U,T
+

2j/2ηT ν(‖cX‖1,∞+c1ρ)

σj,U;T |U|
√

T











with

ηT := ηkT

√

1 − ϕT − CjkT

= kT 2−j/2
[

5(2α + p) −√
α+ p

]

.

Proposition 2 leads to σ−1
j,R,T 6 2−j

√

K−1
1 |RT | and similarly for σ−1

j,U ,T . As δ 6 |R| 6 |U| 6 1,

we consider the dominant terms in the sum, and we can write, for T large enough, and with
2−jLj 6 ρL−1,

Pr (R is rejected) 6 2c0 (]℘(R)) exp











−1

8
· η2

T

1 + ηT ρL−1√
K1|RT |

+
ηT ν(‖cX‖1,∞+c1ρ)√

2jK1δ











.

Replacing ηT and using 2α+ p >
√
α+ p lead to the result. �

B.8 Proof of Theorem 2

We first prove the following technical lemma.

Lemma 10. Let ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random variables with zero mean
and VarZ1 = 1. If Mj,R,T is the matrix (B.16), v is a positive constant and p > 2, then, there
exists T0 such that

E
(

Z ′
TMj,R,TZT − trMj,R,T + vkTT

−1/2
)p

6 C (κ, ν, ‖cX‖1,∞, p) T
−p/2

(

21+j/2|R|−1 + vkT

)p

for all T > T0.
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Proof. First, we write

E
(

Z ′
TMj,R,TZT − trMj,R,T + vkTT

−1/2
)p

=

p
∑

r=0

(

p
r

)

E (ZTMj,R,TZT − trMj,R,T )r vp−rkp−r
T T−(p−r)/2 . (B.30)

Due to the relationship between the centered moments of a random variable and its cumulants, we
can write

E
(

Z ′
TMj,R,TZT − trMj,R,T

)r
=

r
∑

m=0

∑

C(p1, . . . , pm,m, π1, . . . , πm, r)κ
π1
p1
. . . κπm

pm
,

where the second sum is over p1, . . . , pm, π1, . . . , πm in {1, . . . , r} such that
∑m

i=1 piπi = r, κpi is
the pith cumulant of ZTMj,R,TZT and C denotes a generic constant in this proof. From Lemma
3, we can write, using (B.17) and Proposition 2:

κpi 6 2pi−2(pi − 1)!Var(ZTMj,R,TZT )‖Mj,R,T ‖pi−2
spec

6 2pi−2(pi − 1)!K2ν
pi−2‖cX‖pi−2

1,∞ 2jpi/2|R|−piT−pi/2.

Consequently,

E
(

Z ′
TMj,R,TZT − trMj,R,T

)r
6 C(κ, ‖cX‖1,∞, r, ν)2

r(1+j/2)|R|−rT−r/2 ,

and using this inequality in (B.30) leads to the result. �

Proof of Theorem 2. Let R̃ be the interval selected by the estimation procedure. We consider
two cases: |R̃| < |R| or |R̃| > |R|. In the first case, and since the estimator and the wavelet
spectrum are uniformly bounded by S,

E|S̃j(z0) − Sj(z0)|p I|R̃|<|R| 6 (2S)p Pr
(

|R̃| < |R|
)

.

As Pr(|R̃| < |R|) 6 Pr(R is rejected), Proposition 6 allows to write E|S̃j(z0) − Sj(z0)|p I|R̃|<|R| =

O(T−cp
√

δ). We consider now the second case. Select a subinterval U in R ∩ ℘(R̃) containing z0.
Then, consider the decomposition

E|S̃j(z0) − Sj(z0)|p I|R̃|>|R| 6 E
[

|Qj,U − Sj(z0)| + |Qj,U ;T −Qj,U | + |Qj,R̃;T −Qj,U ;T |
]p
.

As the wavelet spectrum is regular on U ⊂ R, the term |Qj,U − Sj(z0)| is bounded by Cjσj,U ,TkT .
On the other hand, using Proposition 2, |Qj,U ;T − Qj,U | = |Qj,U ;T − trMj,U ;T | + RT with RT =
O(2j/2T−1/2). Moreover, as R̃ is selected by the estimation procedure, it holds |Qj,R̃;T −Qj,U ;T | 6

(ησ̃j,R̃,T + ησ̃j,U ,T )kT . Finally,

E|S̃j(z0) − Sj(z0)|p I|R̃|>|R|

6 E
[

|Qj,U ;T − trMj,U ;T | +RT + Cjσj,U ,TkT +
(

ησj,R̃,T + ησj,U ,T

)

kT

]p
.

With 2α+ p >
√
α+ p, we can write

Cjσj,U ,TkT +
(

ησj,R̃,T + ησj,U ,T

)

kT 6 11(2α + p)K
1/2
2 |UT |−1/2kT .
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Lemma 10 proves the existence of a constant c5 depending on κ, ν, p,K2 and on ‖cX‖1,∞, such that,
for T > T0,

E
[

|Qj,U ;T − trMj,U ;T | +RT + Cjσj,U ,TαT +
(

ησj,R̃,T + λσj,U ,T

)

kT

]p

6 c5|UT |−p/2
[

21+j/2δ−1 + 11(2α + p)kT

]p

since |R̃| > |U| > δ, and the result follows. �

B.9 Proof of Proposition 7

Suppose |R0| ∨ |R1| = |R0| w.l.o.g. and write

Pr (R is not rejected) 6 Pr [Qj,R,T −Qj,R0,T 6 η(σj,R,T + σj,R0,T )kT ] .

As in the proof of Proposition 5, we approximate MT = Σ′
T (Uj,R;T − Uj,R0;T )ΣT by M?

T =
Σ′

T (U?
j,R;T − U?

j,R0;T
)ΣT , where U ?

j,R;T is defined in Lemma 9. Define the random set PT =

{Z ′
T (M?

T − MT )ZT 6 λT } with λT = trM?
T − (1 − log−1

2 T ) trMT , where ZT = (Z1, . . . , ZT )′

is a vector of iid Gaussian random variables. As in the proof of Lemma 9, equation (B.26), we have

Pr(Pc
T ) = O

(

exp

[

−
√
T trMT

log2
2 T

])

.

Conditioning on PT , we can write

Pr (R is not rejected) 6 Pr
[

Z ′
TM

?
TZ 6 η(σj,R,T + σj,R0,T )kT + λT

]

+O

(

exp

[

−
√
T trMT

log2
2 T

])

.

We are now in position to apply Lemma 8 with the symmetric, positive definite matrix M ?
j,R;T . As

η(σj,R,T + σj,R0,T )kT + λT 6 trM?
T for T large enough, we can write, with Lemma 8,

Pr (R is not rejected) 6 exp

[

−1

2

(η(σj,R,T + σj,R0,T )kT + λT − trM?
T )2

Var
(

Z ′
TM

?
TZ
)

]

+O

(

exp

[

−
√
T trMT

log2
2 T

])

.

Lemma 9 leads to Var (Z ′
TM

?
TZ) = O(|R0|T−1 log2

2 T ), and then, replacing λT , the rate of the
probability becomes

O

(

exp

[

−T (trMT )2|R0|
log2

2 T

]

+ exp

[

−
√
T trMT

log2
2 T

])

.

The result follows using trMT = θT . �
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Figure 1: The first figure is an example of theoretical spectrum Sj(z). This spectrum is used in
the second figure to simulate a locally stationary wavelet process. This simulation uses Gaussian
innovations ξjk and non-decimated Haar wavelets.
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