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Limburgs Universitair Centrum, Universitaire Campus

B-3590 Diepenbeek, Belgium.

roel.braekers@luc.ac.be, noel.veraverbeke@luc.ac.be

Abstract

In survival analysis, it is very common to assume that the lifetime variable and the

censoring variable are independent. In this case, the product limit estimator is the

standard non-parametric estimator for the distribution function of the lifetime variable.

When the assumption of independence is not satisfied, Zheng and Klein (1995) proposed a

copula-graphic estimator where the dependence between lifetime and censoring variable is

described by a copula. Rivest and Wells (2001) derived an explicit form for this estimator

if the copula is Archimedean.

In this paper, we extend the estimator of Rivest and Wells (2001) to the fixed design

regression case. For our copula-graphic estimator, we find an asymptotic representation

and prove weak convergence to a Gaussian limit. We illustrate the estimation method

with a classical dataset on bone marrow transplant patients.

1 Introduction

At fixed design points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, we have nonnegative responses Y1, . . . , Yn
such as survival times or failure times. These responses are independent random vari-

ables and the distribution function of the response Yi at xi will be denoted by Fxi(t) =

P (Yi ≤ t).

In many clinical or industrial trials, the responses Y1, . . . , Yn are subject to random right

censoring. For each response, there is a censoring variable Ci with conditional distribution

function Gxi(t) = P (Ci ≤ t). The observed random variables at design point xi are in

fact Zi and δi (i = 1, . . . , n), with

Zi = min(Yi, Ci) and δi = I(Yi ≤ Ci).
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At a given fixed design value x ∈ [0, 1], we write Fx, Gx,Hx for the distribution function
of respectively the response Yx, the censoring variable Cx and the observed variable

Zx = min(Yx, Cx) at x. Also we will write δx = I(Yx ≤ Cx). Note that for the design
variables xi, we write Yi, Ci, Zi, Fi, . . . instead of Yxi , Cxi, Zxi, Fxi, . . ..

In order to estimate uniquely the distribution function Fx from the observed data, we

have to make an assumption about the dependence between the Yi and Ci for each i

(Tsiatis 1975). It is very common in survival analysis to assume independence between

these random variables (conditional on the covariate). However we see that in some

practical situations, for example in oncology, this assumption does not hold. Therefore

we assume that we can rewrite the joint survival function of the response Yx and the

censoring variable Cx at x as

Sx(t1, t2) = P (Yx > t1, Cx > t2) = Cx(F̄x(t1), Ḡx(t2))

where Cx is a known copula function depending in a general way on x and F̄x(t) (resp.

Ḡx(t)) is the survival function of Yx (resp. Cx) at x. Without covariates x, this idea was

introduced by Zheng and Klein (1995). However their copula-graphic estimator had no

closed form expression. Rivest and Wells (2001) got around this problem by focusing on

the class of Archimedian copulas. In this work, we will extend their ideas to the fixed

design regression case.

We assume that at a fixed design value x ∈ [0, 1], the joint survival function is given by

Sx(t1, t2) = ϕ[−1]x (ϕx(F̄x(t1)) + ϕx(Ḡx(t2))) (1)

where, for each x, ϕx : [0, 1]→ [0,+∞] is a known continuous, convex, strictly decreasing
function with ϕx(1) = 0. ϕ

[−1]
x is the pseudo-inverse of ϕx, as defined in Nelsen (1999).

We note from (1) that,

1−Hx(t) = H̄x(t) = Sx(t, t) = ϕ[−1]x (ϕx(F̄x(t)) + ϕx(Ḡx(t))).

This paper concerns a non-parametric estimation of Fx(t) and is organized as follows. In

Section 2, we define the distribution function estimator Fxh for Fx. It is an extension of

the Beran estimator, as it was studied by Van Keilegom and Veraverbeke (1996, 1997a

and 1997b). After specifying some assumptions in Section 3, we derive for this estimator

an asymptotic representation in Section 4 and prove weak convergence in Section 5. In

Section 6, we apply our estimator to a practical situation where we take different choices

for the generator function ϕx.
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2 Copula-graphic estimator

For a fixed design value x ∈ [0, 1], we derive an estimator for the distribution function
Fx(t). Since we only have observations at the design points x1, . . . , xn, we use smoothing

weights to give observations at a design point close to x a larger contribution in our

estimator than observations at design points far away from x. In a fixed design regression

it is natural to work with Gasser-Müller weights,

wni(x, hn) =
1

cn(x, hn)

xi8
xi−1

1

hn
K
w
x− z
hn

W
dz (i = 1, . . . , n), (2)

cn(x, hn) =

xn8
0

1

hn
K
w
x− z
hn

W
dz (3)

where x0 = 0, K is a known probability density function, called the kernel and {hn}
is a sequence of positive constants, tending to zero as n → +∞, called the bandwidth
sequence.

Let us assume that there are no ties in the observations. To find an estimator for F̄x(t)

(resp. Ḡx(t)) at the design point x, we work as Rivest and Wells (2001) and look for the

right continuous step function F̄xh(t) (resp. Ḡxh(t)) with F̄xh(0) = 1 (resp. Ḡxh(0) = 1),

which has jumps at the points Zi with δi = 1 (resp. δi = 0) satisfying

ϕ[−1]x (ϕx(F̄xh(Zi)) + ϕx(Ḡxh(Zi))) = H̄xh(Zi)

where H̄xh(t) =
n�
i=1
wni(x, hn)I(Zi > t).

To get a closed form expression for F̄xh, we take a point Zi with δi = 1. The function Ḡxh

has not jump in this point i.e. Ḡxh(Z
−
i ) = Ḡxh(Zi), and the jump of F̄xh at Zi satisfies

ϕx(F̄xh(Z
−
i ))− ϕx(F̄xh(Zi)) = ϕx(H̄xh(Z

−
i ))− ϕx(H̄xh(Zi))

= ϕx(H̄xh(Z
−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn)).

Hence

ϕx(F̄xh(t)) = − 3
Zi≤t,δi=1

ϕx(F̄xh(Z
−
i ))− ϕx(F̄xh(Zi))

= − 3
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn))

and

F̄xh(t) = ϕ[−1]x

− 3
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn))

 . (4)
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In (4) we can replace without any complications the pseudo inverse ϕ[−1]x by the inverse

ϕ−1x . Furthermore we note that this estimator in general does not tend to 0 as t→ +∞.
In order to have a proper distribution estimator, we use the modification

F̄xh(t) = ϕ−1x

− 3
Zi≤t,δi=1

ϕx(H̄xh(Z
−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn))

 I(t < Z(n))
where Z(n) is the largest order statistic in the sample Z1, . . . , Zn.

3 Regularity conditions

For the design points x1, . . . , xn we write ∆n = min
1≤i≤n(xi−xi−1) and ∆̄n = max

1≤i≤n(xi−xi−1).

The notations ||K||∞ = sup
u∈IR

K(u), ||K||22 =
+∞$
−∞
K2(u)du, µK1 =

+∞$
−∞
uK(u)du, µK2 =

+∞$
−∞
u2K(u)du will be used for the kernel K.

We use the following assumptions on the design and on the kernel.

(C1) xn → 1, ∆̄n = O(n
−1), ∆̄n −∆n = o(n

−1).

(C2) K is a probability density function with finite support [−M,M ] for some M > 0,

µK1 = 0 and K Lipschitz of order 1.

Note that, for cn(x, hn) defined in (3), cn(x, hn) = 1 for n sufficiently large. Therefore we

take cn(x, hn) = 1 in all proofs of asymptotic results.

If L is any (sub)distribution, then TL denotes the right endpoint of its support (TL =

inf{t : L(t) = L(+∞)}). Here we have that THx ≤ min(TFx, TGx) where we attain the
equality in case ϕx(0) = +∞. For ϕx(0) < +∞, it depends on the function ϕx whether
or not we have an equality. To obtain our results, we need some smoothness conditions

on the functions Hx(t) = P (Zx ≤ t) and Hu
x (t) = P (Zx ≤ t, δx = 1). For a fixed T > 0,

(C3) L̇x(t) =
∂
∂x
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C4) LIx(t) =
∂
∂t
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C5) L̈x(t) =
∂2

∂x2
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

(C6) LIIx(t) =
∂2

∂t2
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]
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(C7) L̇Ix(t) =
∂2

∂x∂t
Lx(t) exists and is continuous in (x, t) ∈ [0, 1]× [0, T ]

The generator ϕx(v) of the Archimedean copula needs to satisfy the following properties.

(C8) ϕIx(v) =
∂
∂v
ϕx(v) and ϕIIx(v) =

∂2

∂v2
ϕx(v) are Lipschitz in the x-direction with a

bounded Lipschitz constant, and ϕIIIx (v) =
∂3

∂v3
ϕx(v) ≤ 0 exists and is continuous in

(x, v) ∈ [0, 1]×]0, 1].

These assumptions and the fact that ϕx is a generator for an Archimedean copula, give

that ϕIx(v) is monotone increasing with ϕ
I
x(v) < 0 and ϕ

II
x(v) is monotone decreasing with

ϕIIx(v) ≥ 0.

4 Almost sure asymptotic representation

Before we derive an asymptotic representation for Fxh(t), we give a lemma about the

survival function Fx.

Lemma 1. If Hx(t) and H
u
x (t) satisfy (C4) in [0, 1] × [0, T ] with T < THx and ϕIx(v)

exists on [0, 1]×]0, 1], then under (1),

F̄x(t) = ϕ−1x

− t8
0

ϕIx(H̄x(s))dH
u
x (s)

 .
Proof. Under (1) and with Tsiatis (1975), we get that

Hu
x
I(t) = − ∂

∂t1
Sx(t1, t2)

eeeee
t1=t2=t

=
ϕIx(F̄x(t))F

I
x(t)

ϕIx(H̄x(t))
.

This leads to

ϕ−1x

− t8
0

ϕIx(H̄x(s))dH
u
x (s)

 = ϕ−1x

− F̄x(t)8
1

ϕIx(w)dw

 = F̄x(t).

Theorem 1. Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C5), (C6) and (C7) in [0, T ]

with T < THx, ϕx satisfies (C8), hn → 0, logn
nhn
→ 0, nh5n

logn
= O(1), then, under (1) as

n→ +∞,
Fxh(t)− Fx(t) =

n3
i=1

wni(x, hn)gtx(Zi, δi) +Rn(t)
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where

gtx(Zi, δi) =
−1

ϕIx(F̄x(t))

 t8
0

ϕIIx(H̄x(s))(I(Zi ≤ s)−Hx(s))dHu
x (s)

−ϕIx(H̄x(t))(I(Zi ≤ t, δi = 1)−Hu
x (t))

−
t8
0

ϕIIx(H̄x(s))(I(Zi ≤ s, δi = 1)−Hu
x (s))dHx(s)


and sup

0≤t≤T
|Rn(t)| = O((nhn)−3/4(logn)3/4) a.s.

Proof. Based on Lemma 1, we can write for t < THxh,

Fxh(t)− Fx(t) =

−ϕ−1x
− 3

Zi≤t,δi=1
ϕ(H̄xh(Z

−
i ))− ϕ(H̄xh(Z

−
i )− wni(x, hn))


+ϕ−1x

− 3
Zi≤t,δi=1

ϕIx(H̄xh(Zi))wni(x, hn)


−
ϕ−1x

− t8
0

ϕIx(H̄xh(s))dH
u
xh(s)

− ϕ−1x

− t8
0

ϕIx(H̄x(s))dH
u
x (s)

 .
Applying a first order Taylor expansion on the first term and a second order Taylor

expansion on the second term, we get

Fxh(t)− Fx(t) =
−1

ϕIx(F̄x(t))

− t8
0

ϕIx(H̄xh(s))dH
u
xh(s) +

t8
0

ϕIx(H̄x(s))dH
u
x (s)


+Rn1(t) +Rn2(t)

where

Rn1(t) =
ϕIIx(ϕ

−1
x (ε1))

2ϕIx(ϕ−1x (ε1))3

− t8
0

ϕIx(H̄xh(s))dH
u
xh(s) +

t8
0

ϕIx(H̄x(s))dH
u
x (s)

2

Rn2(t) =
−1

ϕIx(ϕ−1x (ε2))

− 3
Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn)))

+
3

Zi≤t,δi=1
ϕIx(H̄xh(Zi))wni(x, hn)



with ε1 between −
t$
0
ϕIx(H̄xh(s))dH

u
xh(s) and −

t$
0
ϕIx(H̄x(s))dH

u
x (s), and ε2 between

− �
Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i ))−ϕx(H̄xh(Z−i )−wni(x, hn))) and−

�
Zi≤t,δi=1

ϕIx(H̄xh(Zi))wni(x, hn).
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Furthermore, for t < THxh :

−
t8
0

ϕIx(H̄xh(s))dH
u
xh(s) +

t8
0

ϕIx(H̄x(s))dH
u
x (s) = −

t8
0

(ϕIx(H̄xh(s))− ϕIx(H̄x(s)))dH
u
x (s)

−
t8
0

ϕIx(H̄x(s))d(H
u
xh(s)−Hu

x (s))−
t8
0

(ϕIx(H̄xh(s))− ϕIx(H̄x(s)))d(H
u
xh(s)−Hu

x (s)).

On the integrand of the first term, we use a second order Taylor expansion and the second

term can be rewritten by partial integration. So we get

−
t8
0

ϕIx(H̄xh(s))dH
u
xh(s) +

t8
0

ϕIx(H̄x(s))dH
u
x (s) =

t8
0

ϕIIx(H̄x(s))(Hxh(s)−Hx(s))dHu
x (s)

−ϕIx(H̄x(t))(Hu
xh(t)−Hu

x (t))−
t8
0

ϕIIx(H̄x(s))(H
u
xh(s)−Hu

x (s))dHx(s) +Rn3(t) +Rn4(t) (5)

where

Rn3(t) = −
t8
0

ϕIIIx (ε3)
2

(Hxh(s)−Hx(s))2dHu
x (s)

Rn4(t) = −
t8
0

(ϕIx(H̄xh(s))− ϕIx(H̄x(s)))d(H
u
xh(s)−Hu

x (s))

with ε3 between H̄xh(s) and H̄x(s).

Since Hx(T ) < 1 and Hxh(T )→ Hx(T ) a.s. (Lemma A.2. of Van Keilegom and Veraver-

beke (1997b)), we may suppose that T < THxh. For Rn3(t) we have

sup
0≤t<leT

|Rn3(t)| ≤ 1

2
sup
0≤t≤T

(Hxh(t)−Hx(t))2max( sup
0≤t≤T

|ϕIIIx (H̄xh(t))|, sup
0≤t≤T

|ϕIIIx (H̄x(t))|)

= O((nhn)
−1 log n) a.s.

by applying Lemma A.4. of Van Keilegom and Veraverbeke (1997b). By Lemma 2 below,

sup
0≤t≤T

|Rn4(t)| = O((nhn)−3/4(log n)3/4) a.s.

From (5), Lemma A.4. of Van Keilegom and Veraverbeke (1997b) and the bounds on

Rn3(t) and Rn4(t), we get

sup
0≤t≤T

eeeeee−
t8
0

ϕIx(H̄xh(s))dH
u
xh(s) +

t8
0

ϕIx(H̄x(s))dH
u
x (s)

eeeeee = O((nhn)−1/2(logn)1/2) a.s.
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This leads to sup
0≤t≤T

|Rn1(t)| = O((nhn)−1 logn) a.s. Furthermore in Lemma 3 below, we
show sup

0≤t≤T
|Rn2(t)| = O((nhn)−1) a.s. which finishes the proof of this theorem.

We still have to prove the two lemmas used above.

Lemma 2. Under the conditions of Theorem 1, as n→ +∞,

sup
0≤t≤T

eeeeee−
t8
0

(ϕIx(H̄xh(s))− ϕIx(H̄x(s)))d(H
u
xh(s)−Hu

x (s))

eeeeee = O((nhn)−3/4(log n)3/4) a.s.
Proof. Divide [0, T ] into kn = O((nhn)

1/2(log n)−1/2) subintervals [ti, ti+1] of length
O((nhn)

−1/2(log n)1/2). We have ,as in the proof of Lemma 2 of Lo and Singh (1985),
that

sup
0≤t≤T

eeeeee−
t8
0

(ϕIx(H̄xh(s))− ϕIx(H̄x(s)))d(H
u
xh(s)−Hu

x (s))

eeeeee
≤ 2 max

1≤i≤kn
sup

ti≤y≤ti+1
|ϕIx(H̄xh(y))− ϕIx(H̄x(y))− ϕIx(H̄xh(ti)) + ϕIx(H̄x(ti))|

+kn sup
0≤t≤T

|ϕIx(H̄xh(t))− ϕIx(H̄x(t))| max
1≤i≤kn

|Hu
xh(ti+1)−Hu

x (ti+1)−Hu
xh(ti) +H

u
x (ti)|

≤ 2 max
1≤i≤kn

sup
ti≤y≤ti+1

ϕIIx(H̄x(ti+1))|Hu
xh(y)−Hu

x (y)−Hu
xh(ti) +H

u
x (ti)|

+kn sup
0≤t≤T

|ϕIx(H̄xh(t))− ϕIx(H̄x(t))| max
1≤i≤kn

|Hu
xh(ti+1)−Hu

x (ti+1)−Hu
xh(ti) +H

u
x (ti)|

+O((nhn)
−1 log n).

In the last inequality we used a second order Taylor expansion and Lemma A.4. of Van

Keilegom and Veraverbeke (1997b). As was done in Lemma 2.1 of the same article, we

can prove that each of the terms on the right hand side is O((nhn)
−3/4(log n)3/4) a.s.

Lemma 3. Assume (C1), (C2), Hx(t) satisfies (C3) in [0, T ] with T < THx, hn → 0,
logn
nhn
→ 0, ϕx satisfies (C8), then as n→ +∞,

sup
0≤t≤T

eeeeee−
3

Zi≤t,δi=1
(ϕx(H̄xh(Z

−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn))− ϕIx(H̄xh(Zi))wni(x, hn))

eeeeee
= O((nhn)

−1) a.s.

Proof. Because Hx(T ) < 1 and Hxh(T )→ Hx(T ) a.s. (Lemma A.2. Van Keilegom and

Veraverbeke (1997b)), we may suppose that T < THxh . If t < T , then after applying a

second order Taylor expansion, we get

− 3
Zi≤t,δi=1

(ϕx(H̄xh(Z
−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn))− ϕIx(H̄xh(Zi))wni(x, hn))

8



= −1
2

3
Zi≤t,δi=1

ϕIIx(εi)w
2
ni(x, hn)

with εi between H̄xh(Zi) and H̄xh(Zi) + wni(x, hn).

Hence

sup
0≤t≤T

eeeeee−
3

Zi≤t,δi=1
(ϕx(H̄xh(Z

−
i ))− ϕx(H̄xh(Z

−
i )− wni(x, hn))− ϕIx(H̄xh(Zi))wni(x, hn))

eeeeee
≤ 1
2
ϕIIx(H̄(T ))

n3
i=1

w2ni(x, hn) = O((nhn)
−1) a.s.

5 Weak convergence

In this section, we show the weak convergence of the copula-graphic estimator Fxh(t) in

the space D[0, T ] of right continuous functions with left hand limits, endowed with the

Skorokhod topology. Before we go to the main theorem, we give two lemmas about the

bias and variance of this estimator.

Lemma 4. Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C3) and (C5) in [0, T ], hn → 0.

Then, as n→ +∞

sup
0≤t≤T

eeeeee
n3
i=1

wni(x, hn)Egtx(Zi, δi) +
µK2 h

2
n

2ϕIx(F̄x(t))

 t8
0

ϕIIx(H̄x(s))Ḧx(s)dH
u
x (s)

−
t8
0

ϕIx(H̄x(s))dḦ
u
x (s)

eeeeee = o(h2n) +O(n−1).
Proof. For fixed t ≤ T ,

n3
i=1

wni(x, hn)Egtx(Zi, δi) =
−1

ϕIx(F̄x(t))
× t8

0

ϕIIx(H̄x(s))(EHxh(s)−Hx(s))dHu
x (s)−

t8
0

ϕIx(H̄x(s))d(EH
u
xh(s)−Hu

x (s))


By Lemma A.1.b of Van Keilegom and Veraverbeke (1997b), we get our result.

Lemma 5. Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C3) in [0, T ] with T < THx and

ϕx satisfies (C8), hn → 0, nhn → +∞. Then, as n→ +∞

sup
0≤t≤T

eeeee
n3
i=1

w2ni(x, hn)Cov(gtx(Zi, δi), gts(Zi, δi))−
1

nhn
Γx(t, s)

eeeee = o((nhn)−1)
9



where

Γx(t, s) =
||K||22

ϕIx(F̄x(t))ϕIx(F̄x(s))


min(t,s)8
0

ϕIx(H̄x(z))
2dHu

x (z)

+

min(t,s)8
0

(ϕIIx(H̄x(w))H̄x(w) + ϕIx(H̄x(w)))
w8
0

ϕIIx(H̄x(y))dH
u
x (y)dH

u
x (w) (6)

+

min(t,s)8
0

ϕIIx(H̄x(w))
max(t,s)8
w

(ϕIIx(H̄x(y))H̄x(y) + ϕIx(H̄x(y)))dH
u
x (y)dH

u
x (w)

−
t8
0

(ϕIIx(H̄x(y))H̄x(y) + ϕIx(H̄x(y)))dH
u
x (y)

s8
0

(ϕIIx(H̄x(w))H̄x(w) + ϕIx(H̄x(w)))dH
u
x (w)


Proof. Some straightforward calculations show that

Cov(gtx(Zi, δi), gts(Zi, δi)) =
1

ϕIx(F̄x(t))ϕIx(F̄x(s))


min(t,s)8
0

ϕIx(H̄x(z))
2dHu

xi
(z)

+

min(t,s)8
0

w8
0

ϕIIx(H̄x(y))dH
u
x (y)[ϕ

II
x(H̄x(w))H̄xi(w)dH

u
x (w) + ϕIx(H̄x(w))dH

u
xi
(w)]

+

min(t,s)8
0

ϕIIx(H̄x(w))
max(t,s)8
w

[ϕIIx(H̄x(y))H̄xi(y)dH
u
x (y) + ϕIx(H̄x(y))dH

u
xi
(y)]dHu

x (w)

−
t8
0

[ϕIIx(H̄x(y))H̄xi(y)dH
u
x (y) + ϕIx(H̄x(y))dH

u
xi
(y)]×

s8
0

[ϕIIx(H̄x(w))H̄xi(w)dH
u
x (w) + ϕIx(H̄x(w))dH

u
xi
(w)]


from which the result follows via standard calculations of asymptotic variances.

Theorem 2. Assume (C1), (C2), Hx(t) and H
u
x (t) satisfy (C5), (C6), (C7) in [0, T ] with

T < THx and ϕx satisfies (C8).

(a) If nh5n → 0 and (logn)3

nhn
→ 0, then, under (1), as n→ +∞,

(nhn)
−1/2(Fxh(·)− Fx(·))→W (·|x) in D[0, T ]

(b) If hn = Cn
−1/5 for some C > 0, then, under (1), as n→ +∞,

(nhn)
−1/2(Fxh(·)− Fx(·))→ �W (·|x) in D[0, T ]

10



where W (·|x) and �W (·|x) are Gaussian processes with covariance function given by (6)
and for �W (·|x), mean function given by

btx =
−C5/2µK2
2ϕIx(F̄x(t))

t8
0

[ϕIIx(H̄x(s))Ḧx(s)dH
u
x (s)− ϕIx(H̄x(s))dḦ

u
x (s)].

Remark. Note that when lifetime and censoring time are independent (ϕx(t) = − log(t)),
we obtain the well-known formulas for the asymptotic mean and variance of the Beran

estimator as in Van Keilegom and Veraverbeke (1997a).

Proof. From Theorem 1 and Lemma 4, we find

Fxh(t)− Fx(t) =
n3
i=1

wni(x, hn)ξtx(Zi, δi) + h
2
nb̄tx + R̄n(t)

where ξtx(Zi, δi) = gtx(Zi, δi) − Egtx(Zi, δi), sup
0≤t≤T

|R̄n(t)| = O((nhn)
−3/4(log n)3/4) +

o(h2n) a.s. and b̄tx =
−µK2

2ϕIx(F̄x(t))

t$
0
[ϕIIx(H̄x(s))Ḧx(s)dH

u
x (s) − ϕIx(H̄x(s))dḦ

u
x (s)]. The bias

(nhn)
1/2h2nb̄tx is o(1) under conditions (a) and equals btx under conditions (b). Hence it

suffices to prove the weak convergence of Whx(·) = (nhn)1/2
n�
i=1
wni(x, hn)ξ·x(Zi, δi) to the

Gaussian process W (·|x) with mean zero and covariance function Γx(t, s).

This will be done in two steps. First we show the convergence of the finite dimensional

distributions. Next we verify the asymptotic tightness by Theorem 2.11.9 (Bracketing

central limit theorem) of van der Vaart and Wellner (1996).

Convergence of the finite dimensional distributions is that for any q = 1, 2, . . . and any

0 ≤ t1 ≤ . . . ≤ tq ≤ T : (Whx(t1),Whx(t2), . . . ,Whx(tq))
D→ N(0,Γx(ti, tj)). Since

Whx(ti) =
n�
i=1
Wnki where Wnki = (nhn)

1/2wnk(x, hn)ξtix(Zk, δk), it suffices to check that

(see e.g. Araujo and Giné (1980)),

lim
n→+∞

n3
k=1

E(WnkiWnkj) = Γx(ti, tj) (1 ≤ i, j ≤ q)

lim
n→+∞

n3
k=1

8
{|Wnk|>ε}

|Wnk|2dP = 0

for every ε > 0, where |Wnk|2 =
q�
i=1
W 2
nki. Now, applying Lemma 5,

n3
k=1

E(WnkiWnkj) = (nhn)
n3
k=1

w2nk(x, hn)Cov(gtix(Zk, δk), gtjx(Zk, δk)) = Γx(ti, tj) + o(1).

11



Since the functions ξtix(Zk, δk) are uniformly bounded, it follows that max
1≤k≤n

|Wnk| =
O((nhn)

−1/2) a.s. and
n�
k=1
|Wnk|2 = O(1) a.s., and hence,

n3
k=1

8
{|Wnk |>ε}

|Wnk|2dP ≤ O(1)P ( max
1≤k≤n

|Wnk| > ε) = o(1).

To prove the asymptotic tightness, we denote the process Whx(t) as Whx(t) =
n�
i=1
Zni(t)

where Zni(t) = (nhn)
1/2wni(x, hn)ξtx(Zi, δi).

To verify the three conditions of Theorem 2.11.9 of van der Vaart and Wellner (1996),

we put on F = [0, T ], the semimetric

ρ(t, tI) = max

leeeee −1
ϕIx(F̄x(t))

+
1

ϕIx(F̄x(tI))

eeeee , |ϕIx(H̄x(t))− ϕIx(H̄x(t
I))|,

sup
xI∈[0,1]

|Hu
xI(t)−Hu

xI(t
I)|, |Hx(t)−Hx(tI)|, sup

xI∈[0,1]

�
|Hu

xI(t)−Hu
xI(t
I)|
M
.

In the third condition, we need the bracketing number N[ ](ε,F , Ln2 ). This number is
defined as the minimal number of sets in a partition of F = [0, T ] = 	j Fεj such that for
every set Fεj :

n3
i=1

E

^
sup

t,tI∈Fεj
|Zni(t)− Zni(tI)|2

�
≤ ε2.

Let us divide F = [0, T ] into subintervals 0 = t0 ≤ t1 ≤ . . . ≤ tq = T where ρ(t, tI) ≤ Cε
for all t, tI ∈ [tj−1, tj ], j = 1, . . . , q with C some constant which we will determine further
on. For the partition F = [0, t1]

	 q	
j=2
]tj−1, tj], we find after some tedious calculations

that

|Zni(t)− Zni(tI)| ≤ (nhn)1/2wni(x, hn)
X
−ϕ

II
x(H̄x(T ))

ϕIx(1)
|Hu

x (t)−Hu
x (t
I)|

+(ϕIIx(H̄x(T ))− 2ϕIx(H̄x(T )))
eeeee −1
ϕIx(F̄x(t))

+
1

ϕIx(F̄x(tI))

eeeee+ |ϕIx(H̄x(t))− ϕIx(H̄x(t
I))|

−ϕIx(H̄x(T ))(|I(Zi ≤ t, δi = 1)− I(Zi ≤ tI, δ = 1)|+ |Hu
xi
(t)−Hu

xi
(tI)|)

+
ϕIx(H̄x(T ))
ϕIx(1)

|Hx(t)−Hx(tI)|
~

(7)

So

sup
t,tI∈Fεj

|Zni(t)− Zni(tI)|2 ≤ (nhn)w
2
ni(x, hn){C1(Cε)2

+ C2(Cε)|I(Zi ≤ tj, δi = 1)− I(Zi ≤ tj−1, δ = 1)|
+ ϕIx(H̄x(T ))

2|I(Zi ≤ tj , δi = 1)− I(Zi ≤ tj−1, δ = 1)|2}
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where C1, C2 are constants, uniquely determined by the right hand side of (7). For the

appropriate choice of C, this leads to

n3
i=1

E

^
sup

t,tI∈Fεj
|Zni(t)− Zni(tI)|2

�
≤ ε2.

Hence the bracketing number N[ ](ε,F , Ln2 ) is equal to O(ε−1) and we get
δn8
0

�
logN[ ](ε,F , Ln2 )dε =

δn8
0

�
logO(ε−1)dε→ 0

when δn → 0.

We do not need to verify the second condition of Theorem 2.11.9 in van der Vaart and

Wellner (1996), since our partition of F = [0, T ] is independent of n. As last condition

we have to check whether for all η > 0,

n3
i=1

E

^
sup
0≤t≤T

|Zni(t)|{ sup
0≤t≤T

|Zni(t)| > η}
�
→ 0 as n→ +∞.

However since ξtx(Zi, δi) is bounded uniformly and max
1≤i≤nwni(x, hn) = O((nhn)

−1) a.s.,

this condition is satisfied. By Theorem 2.11.9 of van der Vaart and Wellner (1996), we

have that Whx(·)→W (·|x) in D[0, T ].

6 Example

In this section ,we apply our copula-graphic estimator on a practical dataset. The bone

marrow transplantation data, which are described in Klein and Moeschberger (1997),

follow 137 patients in their recovery from acute leukemia after a bone marrow transplan-

tation. In this example, we focus on the disease-free survival time where we see that a

patient can leave the study in 3 ways: with a relapse of leukemia, a disease-free death

or disease-free alive at the end of study. Since we believe that time till relapse Yx and

time until death Cx are dependent, we will only work with the 83 patients who relapsed

or died within the study. Furthermore we think that the time till relapse depends on the

age of the patient at transplantation. In Figure 1, we show a scatterplot of age versus

disease-free survival time where we distinguish between relapsed and dead patients. We

note that most deaths occur around the age of 30 and that the number of relapsed pa-

tients is about the same as the number of dead patients.
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Figure 1. Scatterplot of age versus disease-free survival time

For these data, we construct the copula-graphic estimator for different choices of ϕx at

ages 15 and 40. These ages are picked to represent two groups of patients, patients in

puberty and still growing (age = 15) and patients who are fully grown and even start to

age (age = 40). We believe that the survival function differs for each of these groups of

patients.

In Figure 2, we show the survival functions at age 15 and 40, and for bandwidths 20

and 40. In each of the four plots, we have 3 choices of ϕx for which we construct the

copula-graphic estimator. The solid line is the estimator when we assume independence

between time till relapse and time until death (ϕx(t) = − log(t)). The second choice
(small dashed line) is the Fréchet-Hoeffding lower bound (ϕx(t) = 1 − t). With this
copula, we assume that time till relapse and time until death are discordant. Informally

this means that large values of time till relapse tend to be associated with small values of

time until death. A more formal definition can be found in Nelsen (1999). As last choice

for ϕx, we take a generator of the Frank family (ϕx(t) = − log( e−xt−1e−x−1 )) which, unlike the
previous choices, depends on the covariate value x. For this family, time till relapse and

time until death are discordant (resp. concordant) when the sign of the covariate x is

negative (resp. positive). In this example, the covariate age is positive and so we assume

with this family that time till relapse and time until death are concordant.
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The association between time till relapse and time until death can be measured in several

ways. Here we take Kendall’s τ which is defined as τ(x) = 1 + 4
1$
0

ϕx(t)
ϕIx(t)

dt (Nelsen 1999)

and has a range from -1 till 1. The association gets stronger when τ goes further away

from zero. As we expect τ(x) = 0 for the independence copula and we see that τ(x) = −1
for the Fréchet-Hoeffding lower bound copula. Kendall’s τ(x) is an increasing function

of the covariate age for the Frank family copula. This means that we believe that the

association between time till relapse and time until death is stronger at age = 40 then

at age = 15.
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Figure 2. Copula-graphic estimator for choices of ϕx. Independence (solid line), Frank

family (long dashed), Fréchet-Hoeffding lower bound (small dashed).

In Figure 2 we note that the survival function based on the Fréchet-Hoeffding lower bound

copula always lies above the independence survival function, which in its turn, always

lies above the Frank family survival function. When we compare the survival functions

at age 15 with the functions at age 40, we get for the Frank family and the independence

copula a higher survival function at age 15 than at age 40. This means a longer time till

relapse for younger people than for older people. For the Fréchet-Hoeffding lower bound

copula, we see the opposite result. The survival function at age 40 is higher than at age

15. Older people have in this case a longer time till relapse than younger people. From

a medical point of view, the last conclusion is the correct one.
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