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ABSTRACT. The effect of fluoride-intake on caries development on the permanent first molars is exam-

ined. Although the research question is fairly standard in dentistry the nature of the dental data implied

quite involved statistical analysis. Indeed, the response of interest is the time between the emergence

of the tooth and the time when caries is first observed. Most often in dentistry (and also here), both

events are only known to lie between two dental examinations which implies doubly interval censored

data. Further, dependencies between teeth in the same mouth have to be accounted for, and this implies

the analysis of multivariate survival data. Finally, a huge amount of left censored emergence times of the

permanent first molars had to be taken into account. A Bayesian analysis based on a model of Härkänen

et al. (2000) was performed while addressing all mentioned problems.

KEY WORDS. Bayesian analysis; Intensity models; Multivariate doubly interval censored data;

1. INTRODUCTION

In this paper we present the analysis of a longitudinal dental data set (Signal Tandmobiel!

study) to tackle the following research question: does fluoride-intake at a young age have a positive

effect on caries development in permanent teeth? Here we will examine this impact on the caries

experience of the permanent first molars, i.e. teeth emerging at the age of about 6–7 years. The

caries process will be simultaneously modelled for the two maxillary and two mandibular permanent

first molars. Since the children from our dental data set were examined annually, this question

involves doubly interval-censored data. Indeed, both tooth emergence as well as the onset of caries

development can only be measured in a coarse manner, resulting in interval censored data for

emergence and for onset of caries. Further, since the time at-risk should be taken into account to

measure the impact of fluoride the response should be the time between emergence and the onset

of caries development which implies doubly-interval censored data. To improve the precision of the

estimation procedure it is advantageous to model several teeth simultaneously and this leads to
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multivariate doubly interval censored data. Indeed, it appeared that a considerable number of the

permanent first molars had already emerged at the first annual examination implying a relatively

high number of left-censored emergence times. The emergence of the other teeth in the mouth can

then be used to better estimate the emergence of the permanent first molars. Our research question

is not uncommon in dentistry, although implying a quite involved statistical analysis, ruling out

the use of any classical statistical package in an elegant way. Bayesian methodology often allows to

analyze complex data structures. A very popular in this context is WinBUGS. However, WinBUGS

is too restrictive for our problem. Instead, the software package BITE (Härkänen 2001), based on

a non-parametric Bayesian survival model developed by Härkänen et al. (2000) was used here.

In Section 2, a description of data will be given and the research question will be explained in

more detail. In the third section the Bayesian model suggested by Härkänen et al. (2000) will be

explained briefly. The fourth section will give details on the inference. Results are found in Section

5 and we end with a further discussion of our results.

2. DESCRIPTION OF COLLECTED DENTAL DATA AND RESEARCH QUESTION

In the Signal Tandmobiel! study, oral health data from 4 468 Flemish schoolchildren born in 1989

were collected annually. The sample consisted of 2 134 boys and 2 296 girls cluster sampled from

randomly chosen Flemish schools, such that the probability of being selected was approximately

equal for all children in Flanders. Two stratification factors, i.e. province (5 provinces) and

educational system (3 school systems) establishing 15 strata, were also taken into account. The

sample represents about 7% of the corresponding Flemish population of schoolchildren. Detailed

dental data on tooth and tooth-surface level (caries experience, gingivitis, etc.) were collected

by a team of 16 dentists whose examination method was calibrated every half a year. But, also

data from a questionnaire (given to the parents) on dietary and oral hygiene habits were collected.

The dentists were operating from a dental bus which visited 179 schools in Flanders (North of
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Belgium) from 1996 to 2001. Hence our data set consists of a series of at most 6 longitudinal

dental observations and reported oral health habits taken from 1996 to 2001. When a child was

absent at school at the day of the examination (due to illness, moved to another school, etc.) it

was not examined in that particular year. This excluded 38 children not present at any of the six

examinations. More information on the setup of the study and on initial research results can be

found in Vanobbergen et al. (2000).

Here, we are interested in the question whether fluoride-intake has a protecting effect on per-

manent teeth for caries experience. Actually, although a considerable amount of research has been

done on this topic, there is still some controversion. From our data, we have found that the use of

fluoride reduces caries activity in primary teeth, see Vanobbergen et al. (2001). Moreover, there

is some evidence that fluoride supplementation delays the emergence of the permanent teeth, see

Leroy et al. (2002). In any study on the effect of fluoride on caries experience of permanent teeth,

the eventual delay in emergence due to fluorides shortens the time at risk of permanent teeth for

caries development in children and adolescent with use of fluoride.

Unfortunately, it is not easy to measure fluoride-intake children accurately, since it can be taken

by them in different ways: (1) systemically (fluoride supplements), (2) in toothpaste or (3) from

drinking water and all these sources can be recorded only roughly. Therefore it was decided to

measure a history of fluoride-intake by the degree of fluorosis present on reference teeth during

the fourth, fifth and sixth year of the study. Fluorosis is the most common side-effect of fluoride

use and appears as discrete white spots on the enamel of several teeth, in some cases resulting

in severe enamel dysplasia. For this analysis, only the presence or absence of fluorosis on four

permanent maxillary incisors during the fourth, fifth and sixth year of the study was taken into

account. Indeed, a child was considered fluoride-positive if there were observable white spots on at

least two permanent maxillary incisors during the fourth year of the study or during both the fifth

and sixth years of the study.

4



In the Signal Tandmobiel! study, fluorosis prevalence is rather low (480 children) and mainly

related to the use of fluoride supplements and toothpaste during the period of tooth development,

since the fluoride-level in Flemish drinking-water is low in most areas (< 0.1 ppm). For analyzes

purposes, we included the 480 fluorosis children and 960 randomly selected fluorosis-free children.

To measure the impact of fluoride-intake on caries experience, “fluorosis” will be used as a covariate

in a survival model with the time at risk for caries experience for a particular tooth as response.

Except for the permanent first molars for which 25% of the children had some caries experience

before the end of the observation period, the incidence of caries experience at the age of 12 was

negligible for other teeth (at most 1.4%). Hence, we will analyze here only the permanent first

molars, see Figure 1. Furthermore, our analyzes will also involve gender as a covariate.

Based on the Signal Tandmobiel! data-base, the incidence of caries experience in fluorosis chil-

dren is 25.8% compared to 29.4% in fluorosis-free children, with incidences of 23.3% and 27.7%, for

boys and 27.9% and 31.2%, for girls respectively. Thus, apparently there seems to be only a slight

difference in incidence between the two groups. However, the time-at-risk for caries experience was

not taken into account and since the emergence of permanent teeth might be delayed because of

fluoride-intake, our analysis should take into account of this imbalance at baseline.

< Figure 1 about here. >

To take the time-at-risk for caries development into account the emergence of that tooth should

define time zero. At the onset of the study (i.e. for most children at the age of 7 years) about 86%

of the permanent first molars had already emerged (left-censored). This fact makes it difficult to

estimate efficiently their emergence times and hence will also have an effect on the efficiency with

which the effect of fluoride-intake is estimated. We tried two strategies to improve the efficiency

of our estimation procedure. Firstly, we included in our analysis also the emergence times of 8

other permanent teeth (the first premolars, the upper lateral incisors and the lower canines). By

incorporating teeth which emerged during our observation period and using the association among
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teeth of the same subject (via the concept of “the birth time of dentition”, see next section), it was

hoped to better estimate the true emergence time of the permanent first molars. Secondly, a Finnish

longitudinal dataset, see Virtanen (2001) involving 235 boys and 223 girls born in 1980–1981 with

follow-up from 6 to 18 years was added to our Flemish data. For these data the emergence of

almost all 28 permanent teeth happened during the study period.

Since the emergence times are left-, right- or interval censored and the onset of caries experience

of the four first permanent molars is right- or interval censored, we are dealing with multivariate

doubly interval censored data. Hence, some teeth were used only to improve the estimation of the

emergence times of the permanent first molars. Thus our Bayesian model needs to accommodate

a high amount of left-censoring among otherwise interval-censored data in a multivariate manner.

3. THE BAYESIAN SURVIVAL MODEL FOR INTERVAL CENSORED DATA

The non-parametric Bayesian intensity model of Härkänen et al. (2000) provides a flexible tool

for analyzing multivariate survival data. Left-, right- and interval censored survival times can be

modelled. Further, a software package written in C, called BITE, allows to perform the analyzes in

practice. Here, we used it to model the information about the tooth emergence and caries experience

to assess the dependence of risk for caries experience with fluoride-intake. Furthermore, the model

and the software allow to combine data from two sources, i.e. from the Signal Tandmobiel! study

and the Finnish study (Virtanen 2001).

We now describe the model of Härkänen et al. (2000) adapted to solve our research question.

We start with the notation and then move on to the specification of the survival intensity models

for emergence and caries experience, respectively.

3.1. Notation. Let i denote the child (i = 1, . . . , N) and let j = (κ, ν) be the double index

indicating the position of the tooth in the mouth, following the standard European dentist notation

(see Figure 1). Note that κ ∈ {1, 2, 3, 4} denotes the quadrant of the mouth (upper right and left,
6



and lower left and right, respectively), and ν ∈ {1, . . . , 8} indexes the teeth from front to back. Let

aij be the age at which tooth j of subject i emerged and bij the age at which it experienced caries for

the first time. Remember that none of the times aij and bij were observed exactly. Indeed the data

are interval, left or right censored relative to the examinations performed at ages ui1 < · · · < uiki
,

ki ≤ 6.

3.2. Model for emergence. The (survival) model for emergence of permanent teeth is obtained

from specifying the conditional intensity of emergence. Namely, here it is assumed that the intensity

of emergence can be expressed as follows:

λ
(e)
ij (t) = f(t− ηi|toothj, genderi)× I[ηi < t ≤ aij], (3.1)

where genderi is a dichotomous variate (genderi = 0 for boys, 1 for girls) and toothj is a tooth-

specifying covariate – label (see further). The dependence between emergence times of one child is

accounted for by using a subject specific variable ηi called birth time of dentition. This is a latent

variable which represents the common time which marks the onset of the tooth eruption process

and hereby “explains” the positive correlation between eruption times aij within a subject. Note

that ηi almost surely does not equal to the first emergence time of the permanent teeth. We do

admit however that the “birth time of dentition” concept is not commonly used by the dentists. It

is merely a term pertaining to a subject specific property. Of course, the emergence of the different

teeth j will in general be different, but always occurring after ηi. The intensity of emergence for

a particular child is zero before that time. The indicator I[ηi < t ≤ aij ] expresses the fact that

a tooth is at risk for eruption only before it emerges. Based on some preliminary modelling we

assume so called horizontal symmetry, i.e. we do not make distinction between left and right teeth

coming from the same position of one jaw. So that tooth(1,ν) = tooth(2,ν) and tooth(3,ν) = tooth(4,ν)

with tooth(1,6) = tooth(2,6) = 0, tooth(3,6) = tooth(4,6) = 1, tooth(1,4) = tooth(2,4) = 2 etc. However,

we do make distinction between maxillary and mandibular teeth and also between teeth from
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different positions of a quadrant of the mouth. No specific parametric expression is assumed for

the (baseline) hazard functions f(·|toothj , genderi), but for estimation purposes it will be defined

as piecewise constant with support on the subset of non-negative real numbers.

3.3. Model for caries experience. The intensity for the caries process is given by

λ
(c)
ij (t) = Zi × h(t− aij |toothj, genderi, fluori)× I[aij < t ≤ bij ], (3.2)

where fluori takes value 1 for children with diagnosed fluorosis and 0 otherwise. Variable Zi is

an unknown subject-specific frailty coefficient which modulates the hazard function and which

reflects a common environment shared by teeth of one person. Again no parametric assumptions

are made for the functions h(·|toothj , genderi, fluori) while assuming them piecewise constant for

the calculations. Note that the difference bij − aij is our quantity of primary interest and we can

call it the caries-free time.

Our statistical model will involve the above two measurement models. Hence the possible de-

pendencies among times of interest are taken into account by involving subject-specific parameters

ηi and Zi. The first subject-specific parameter ηi is included in the model for the emergence and

will shift the hazard function in time, reflecting the idea that evolution of a particular tooth type

is similar for all children and different children only vary in the onset of emergence process. On the

other hand, a multiplicative frailty Zi included in the model for caries experience enables teeth of

one child to be more sensitive to caries (failure) than corresponding teeth of another child reflecting

different dietetic behavior, brushing habits, etc.

The covariate “fluorosis” will be incorporated in the caries model in two ways. In the first step,

for each combination of values of fluor, gender and tooth a hazard function is specified and fitted.

Secondly, a proportional hazards assumption is made regarding the effect of the covariates on the

caries experience by replacing the term h(·|toothj , genderi, fluori) in the measurement model for
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caries by h(·) × exp(βT covariate vectorij) thus assuming a proportional hazards model for caries.

To this end we verified the proportional hazards assumption.

3.4. Priors for baseline hazard functions. In BITE the working assumption is that the hazard

functions are piecewise constant. Further, for the emergence hazard functions f(·|toothj , genderi)

the first level of the piecewise constant hazard function is assumed to have a priori a Gamma

distribution and the increments of the levels also. This will ensure a priori an increasing hazard

function for emergence. In the case of caries experience the first level of the hazard functions

h(·|toothj , genderi, fluori) (let say h0) is assumed to have a Gamma prior and conditional on the

previous levels h0, . . . , hm−1 the subsequent level hm follows a priori a Gamma(α,α/hm−1) distri-

bution. This gives a priori E[hm|hm−1, . . . , h0] = hm−1 and assures that there is no built-in prior

assumption of trend of the hazard rate. Finally, the prior distribution of the jump points of the

piecewise constant functions are assumed to arise as a result of a homogeneous Poisson process. A

more detailed description of these prior distributions can be found in Arjas and Gasbarra (1994).

3.5. Priors for the random effect terms. The prior distribution for the birth time of dentition

ηi illustrates how we have combined the Signal Tandmobiel! data and the Finnish data. It also

shows how the information about the emergence of the Finnish data is included in our analysis.

Indeed, we assume that the shapes of the emergence hazard functions f for Finland and Flanders

are the same, but we do allow for a shift in emergence times by assuming different means for the

birth time of dentition in the two countries. More precisely, the prior distribution of ηi is assumed

normal N(ξ0, τ−2) when the ith child comes from Finland and is assumed normal N(ξ1, τ−2) for a

Flemish child. This prior assumption was partly driven by some earlier work on emergence times

of permanent teeth (Nanda 1960).

The Bayesian approach allows to include dentist’s knowledge on the problem at hand in the form

of a prior distribution for the parameters ξ0 and ξ1 which are assumed to have a priori a normal

distribution with mean 5.2 years and standard deviation 1 year. This choice is motivated by the
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results found in the literature on the earliest emergence of permanent teeth (see for instance Nanda

1960) and reflects the dentist’s belief that permanent teeth on average emerge slightly after 5 years

of age. The parameter τ2 is assumed a priori to have a Gamma(2,2) distribution.

The individual frailties Zi in the model for caries are a priori assumed to be conditional on the

hyper-parameter φ, independent and identically Gamma distributed with both shape and inverse

scale equal to that hyper-parameter. The hyper-parameter itself is then given a prior distribution

Gamma(2,2).

3.6. Treatment of censored data. Left- and interval censoring are treated by data augmenta-

tion, see Tanner and Wong (1987). First of all, the left censored emergence times of all our teeth

are changed into interval censored emergence times with a lower limit equal to 4 years. This reflects

our prior belief that no permanent teeth can emerge before that age. Further, all interval censored

event times are sampled within each iteration of the Monte Carlo Markov Chain simulation from

the current state of the conditional distribution of the particular event conditioned further on the

interval where the event was observed. If either of event times is right censored it is assumed to

be fixed, it is not augmented and the likelihood contribution of such observation is of the common

form for right censored observations.

4. BAYES INFERENCE OF MODEL COMPONENTS

The model in the previous section involves many unobservables and does not use conjugate

priors implying the need to calculate the posterior distributions using Markov Chain Monte Carlo

sampling techniques, see for example Gilks et al. (1996). Numerical work is done using versions of

the Metropolis-Hastings-Green algorithm, see Green (1995) and the adaptive Metropolis algorithm,

see Haario et al. (2001).

4.1. Posterior distribution. The form of the joint posterior distribution of all parameters in-

volved in the model can be written using successive conditioning since the model has a hierarchical
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structure. Let us denote ν all parameters involved in a definition of hazard functions f and h

(i.e. the times where these functions jump and their increments or levels respectively), θ hyper-

parameters ξ0, ξ1, τ2, φ and ζ the random effects Zi and ηi. Let further uij = {u1
ij , u

2
ij , u

3
ij , u

4
ij}

denote the endpoints of the intervals where emergence (u1
ij , u

2
ij) and caries (u

3
ij , u

4
ij) of the jth

tooth of the ith child were observed. Assign u2
ij = ∞, respectively u4

ij = ∞ if either of the event

times was right censored.

Likelihood contributions of augmented or right censored emergence times aij are then given by

L
(e)
ij = p(aij|ν,θ, ζ) = p(aij|ν, ζ) = (4.1)

=
{
f(aij − ηi|toothj, genderi)

}δij exp
{
−

∫ aij

ηi

f(s− ηi|toothj , genderi) ds
}
,

the likelihood contributions of the (augmented) observations from the caries process are

L
(c)
ij = p(bij|ν,θ, ζ) = p(bij |ν, ζ) = (4.2)

=
{
Zih(bij − aij |toothj , genderi, fluori)

}ωij exp
{
−Zi

∫ bij

aij

h(s− aij |toothj , genderi, fluori) ds
}
,

with δij (ωij) equal to one if the emergence (caries) has been observed and equal to zero if the

emergence time aij (caries time bij) is right censored. Note that right censored events are kept

fixed during MCMC iterations and satisfy aij = u1
ij, bij = u3

ij respectively. For interval censored

emergence times aij the posterior distribution given the hazard function, the random effects, the

hyper-parameters and the observed interval (u1
ij , u

2
ij) is obtained by Härkänen et al. (2000) and is

proportional to

p(aij |ν,θ, ζ,uij) = p(aij |ν, ζ,uij) ∝ L
(e)
ij · I[u1

ij < aij ≤ u2
ij]. (4.3)

Similarly, the posterior distribution of the interval censored caries times is proportional to

p(bij |ν,θ, ζ,uij) = p(bij|ν, ζ,uij) ∝ L
(c)
ij · I[u3

ij < bij ≤ u4
ij ]. (4.4)
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The joint posterior distribution of all random quantities in the model given the observed intervals

is then proportional to the expression

p
({aij},{bij},ν,θ, ζ

∣∣{uij}
) ∝ (4.5)

∝
∏
i,j

[
p(aij |ν, ζ,uij) p(bij |ν, ζ,uij)

] ×

× p(ν)×
∏

i

[
p(Zi|φ) p(ηi|ξ0, ξ1, τ2)

] × p(φ) p(ξ0) p(ξ1) p(τ2).

5. RESULTS

We ran twice 20 000 iterations of burn-in, and, in addition, 14 000 iterations with a 1:4 thin-

ning to obtain a sample from the posterior distribution. The Gelman and Rubin (1992) test and

autocorrelation plots have been used to check for convergence.

< Figure 2 about here. >

To evaluate the effect of fluoride-intake on the development of caries on the permanent first

molars we have calculated the posterior expectations of hazard ratios h(t|tooth,gender,fluorosis)
h(t|tooth,gender,fluorosis free) .

These hazard ratios together with their 95% equal tail pointwise credibility intervals can be found

in Figure 2. Proportional hazards assumption with respect to covariate fluor seems to be satisfied

since credibility intervals cover in all cases a horizontal line. In three cases, this horizontal line is

close to the line y = 1 implying no effect of fluoride-intake on caries development. A positive effect

of fluoride-intake seems to be present only for mandibular permanent first molars of boys. There

are no deviations from the proportional hazards assumption also with respect to covariates gender

and tooth (plots are not shown). Hence, there are no serious deviations from the (conditional)

proportional hazards assumption with respect to all three covariates. This allowed us to assume

for the caries model a proportional hazards effect of the three covariates, possibly including some

interaction terms. By this semi-parametric assumption it was hoped to see more clearly the effect

of fluoride-intake on caries experience.
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That is why we have fitted a model where the caries hazard function (3.2) was changed into

h(·) × exp(β1fluori + β2genderi + β3toothj + β4fluori × genderi + β5fluori × toothj)× (5.1)

× I[aij < t ≤ bij ].

The additional β-parameters were given a flat normal prior with zero mean and variance equal to

100. Observe though that the hazard function for emergence is still non-parametric and defined

by (3.1). This model leads to the posterior expectations of β parameters given in Table 1. Posterior

expectations of the hazard ratios between the fluorosis and the fluorosis-free group of children while

fixing other covariates are given in the left columns of Table 2.

< Table 1 about here. >

The semi-parametric analysis using the Cox proportional model for caries gives similar conclu-

sions to the completely non-parametric model. A positive effect of fluoride-intake is clearly seen for

the mandibular permanent first molars of boys and has a borderline positive effect for the maxillary

permanent first molars of boys. However, no effect of fluoride-intake was seen for girls.

We have also computed posterior predictive caries-free curves, see Arjas and Gasbarra (1996) for

a new tooth of a child of a particular gender and with a given value of fluorosis. Suppose that T

denotes the tooth lifetime, the posterior predictive caries-free function is then given by

Ŝ(t; toothj , genderi, fluori) = P (T > t|toothj, genderi, fluori,data). (5.2)

13



Its values can be approximated from the resulting Monte Carlo Markov chain of length M by the

expression

Ŝ(t;toothj , genderi, fluori) ≈ 1
M

M∑
m=1

P (T > t|ν(m),θ(m), ζ(m), toothj , genderi, fluori)

=
1
M

M∑
m=1

exp
(
−Z(m)eβ

(m)
1 fluori+β

(m)
2 genderi+β

(m)
3 toothj+β

(m)
4 fluorigenderi+β

(m)
5 fluoritoothj × (5.3)

×
∫ t

0
h(m)(u) du

)
.

Note that the posterior predictive caries-free function takes also the distribution of the frailty pa-

rameter into account. The corresponding plots can be found in Figure 3 and the difference between

the posterior predictive caries-free functions of fluorosis and fluorosis free children in Figure 4.

< Figures 3 and 4 about here. >

Further, the posterior expectations and 95% credibility intervals of the hyper-parameters related

to the birth times of dentition ηi and frailties Zi are given in Table 3. The non-parametric solution

and Cox regression model for caries give similar results. The emergence process starts slightly earlier

in Finland (by approx. 2.5 months) than in Belgium, this conclusion is driven by the difference of

the posterior expectations of the means of birth time of dentition which is about 0.2 years. Further,

we can say that results are not sensitive to the choice of the prior mean for hyper-parameters µ1

and µ0 (means of birth time of dentition in Belgium and Finland). We have tried several values

with a negligible effect to results. A value of 5.2 presented here wanted to highlight the fact that

we have included a prior belief given by dentists that first permanent teeth may not emerge earlier

than shortly after 5 years of age.

< Table 3 about here. >

Finally, to see the influence of including the Finnish data set we have also fitted the Cox regression

model for caries using only the Belgian data. Figure 5 gives a comparison of 95% pointwise equal

tail credibility regions for the emergence hazard functions of the permanent first molars based on
14



the analysis with both datasets and the Belgian dataset only. The credibility regions are somewhat

narrower when both databases are used. However, posterior means and credibility intervals for the

caries hazard ratios are almost unchanged as can be seen from Table 2.

< Table 2 about here. >

6. DISCUSSION

We have tackled a relatively simple dental question implying however quite complex Bayesian

analysis taking into account multivariate doubly interval censored data with a huge amount of

left censoring times. The approach of Härkänen et al. (2000) employing data augmentation in

a Bayesian way can deal with the problem of interval censored data in an elegant way. The

multivariate character of the data was accounted for by using subject-specific parameters in a

model. Finally, the high degree of left censoring of the emergence of the permanent first molars

was tackled by incorporating the additional Finnish data set in the estimation procedure.

The use of advanced Bayesian methods is often hampered by the lack of appropriate software.

The WinBUGS package, see Spiegelhalter et al. (2000) is often the choice in practice. The Win-

BUGS software could also be used here but only for a simplified version of our problem. Namely,

a particular parametric distribution needs to be specified for the events of interest. Additionally,

the effect of covariates needs to be included in a parametric way.

The BITE package of Härkänen (2001) gave us the possibility to avoid the specification of a

parametric model, while keeping the opportunity to check e.g. the proportional hazards assumption.

Random effects accounting for dependencies between teeth of one child were easily included and it

was possible to change the non-parametric model into a semi-parametric one with a proportional

hazards assumption.
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Table 1. Posterior means and 95% equal tail credibility intervals for the regression

parameters based on the Cox regression model.

Effect Posterior mean 95% equal tail credibility interval

Fluorosis (β1) -0.41 (-0.71, 0.01)

Gender (β2) 0.11 (-0.11, 0.38)

Jaw (β3) 0.23 (0.13, 0.32)

Fluorosis*gender (β4) 0.39 (-0.17, 0.81)

Fluorosis*jaw (β5) -0.17 (-0.33, 0.00)

Table 2. Posterior means and 95% equal tail credibility intervals of hazard ratios

between a fluorosis and fluorosis free group of children while fixing all other co-

variates based on the Cox regression model. Comparison of the analysis with both

Belgium and Finnish datasets (before slash) and Belgium dataset only (after slash).

Group Posterior mean 95% equal tail credibility interval

Boys, maxilla 0.67/0.65 (0.49, 1.01)/(0.46, 0.96)

Boys, mandible 0.57/0.55 (0.41, 0.85)/(0.39, 0.78)

Girls, maxilla 0.99/1.00 (0.72, 1.36)/(0.70, 1.33)

Girls, mandible 0.84/0.84 (0.61, 1.14)/(0.60, 1.13)

Table 3. Posterior means and 95% equal tail credibility intervals for the hyperparameters.

Hyper-parameter Non-parametric model Cox regression model

Expectation of ηi for Finland (µ0) 5.47 (5.40, 5.54) 5.45 (5.38, 5.52)

Expectation of ηi for Belgium (µ1) 5.69 (5.64, 5.73) 5.68 (5.64, 5.73)

Variance of ηi (τ−2) 0.48 (0.45, 0.52) 0.49 (0.45, 0.52)

Variance of frailties Zi (φ−1) 3.85 (3.57, 4.17) 4.00 (3.57, 4.35)
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Figure 1. Permanent teeth. Terminology and notation. Maxillary permanent

first molars are labeled as 16, 26, mandibular permanent first molars as 36, 46.

Other permanent teeth used in the analysis were: maxillary lateral incisors (12, 22),

maxillary first premolars (14, 24), mandibular canines (33, 43) and mandibular first

premolars (34, 44).
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Figure 2. Posterior means of the hazard ratios between the fluorosis free and flu-

orosis groups (solid line), 95% point-wise equal tail probability region (dashed line)

and a horizontal line indicating no effect of fluorosis on caries development (dotted-

dashed line). Results based on the non-parametric model with Belgium + Finnish

data.
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Figure 3. Posterior predictive caries-free functions for the four groups of children

and the two jaws based on the Cox regression model with Belgium + Finnish data.
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Figure 4. Difference between the two posterior predictive caries-free functions

based on the Cox regression model with Belgium + Finnish data.
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Figure 5. Posterior meanss of the emergence hazard functions f(·|tooth, gender) for

the permanent first molars together with their 95% pointwise equal tail probability

regions. Comparison of the analyzes with and without additional Finnish data.

Results based on the Cox regression model. Solid line for post. mean based on

Belgium + Finnish data, dashed line for post. mean based on Belgium data only,

dotted-dashed line for 95% prob. region based on Belgium + Finnish data and

dotted line for 95% prob. region based on Belgium data only.
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