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Abstract: In this paper, we present an approach for correcting for inter-observer
systematic differences in a geographical oral health study. The scoring variability of
different examiners complicated the identification of a geographical trend in a recent
study on caries experience in Flemish children (Belgium). Classically the factor
“examiner” would be included in the regression model to correct for its confounding
effect. However when applied here, the geographical trend was removed. Instead, we
modified the (logistic) regression model by introducing the conditional classification
probabilities of a score by an examiner given a score by a ‘gold standard’. These
probabilities were estimated from a calibration exercise. Our model was fitted on
data from the Signal-Tandmobiel r© study using the SAS procedure NLMIXED and
the WINBUGS program.
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1 A geographical oral health data analysis for caries

experience

The Signal-Tandmobiel r© study is a 6 year longitudinal oral health study started in
Flanders (Belgium) in 1996 involving 4468 children. Data were collected on oral hygiene
level, gingival condition, dental trauma, prevalence and extent of enamel developmental
defects, fluorosis, tooth decay, presence of restorations, missing teeth, stage of tooth
eruption and orthodontic treatment need, all using established criteria. The children
were examined annually for a period of six years (1996-2001). Their average age at entry
was 7.1 years (sd = 0.4). In our paper the measurement of interest is the dmft index,
which is the sum of the number of decayed (d), missing due to caries (m) and filled (f)
teeth. The dmft index is a measure for the so called caries experience. Sixteen dental
examiners were involved. They were trained and examination methods were calibrated at
baseline and re-calibrated half yearly.

From a dental point of view it is of interest to examine the geographical trend in
caries prevalence caries experience in Flanders, see e.g. Declerck, Lesaffre, Mwalili and
Vanobbergen (2002). For our geographical analysis we have taken the data of the first

year of the study, and hence the Signal-Tandmobiel r© study will be referred to below
as the cross-sectional dental study. Further, an ordinal response of caries experience for
child i, scored by examiner j at school k was constructed from the dmft-score as follows:

yi =



















0 if the dmft score for the ith child is 0 ,

1 if the dmft score for the ith child is 1 ,

2 if the dmft score for the ith child is in (1,4] ,

3 if the dmft score for the ith child is in (4,20] .

(1)

When this ordinal score is obtained from the jth examiner, the notation yij will be used
below when appropriate. This ordinal score will be referred to below as the “degree of
caries experience”. The categorization of the score was motivated by the skewed nature
of data, lack of possible near normality transformation, and primarily because of the easy
interpretation of ordinal model in dentistry. It was, therefore, more sensible to fit the
ordinalized response than the original data.

In a preliminary analysis, we applied an ordinal logistic regression model with a random
school intercept. The geographical trend in the degree of caries experience was examined



in 2 ways: (1) by including a dummy for the four of the five provinces of Flanders (Antwerp
as reference class); (2) by including the x− and y−coordinate of the municipality of the
school to which the child belongs. However, this is not a spatial model by itself as we
do not incorporate either geostatistical or lattice modeling components. Here the x − y
coordinates or the regions, as explained above, take the geographical components into
account.

Additionally age and gender were included as covariates. The most popular ordinal
regression model, with logit link, is the cumulative logit model. A random effect version
has the expression, see e.g. Hartzel, Agresti and Caffo (2001):

log

(

πik1 + · · · + πikr

πik,r+1 + · · ·+ πik4

)

= λr + x′
iβ + uk, r = 1, 2, 3 (2)

where xi is a d-dimensional vector of covariates pertaining to the ith child and β is the
corresponding vector of regression coefficients (fixed effects). It is assumed here that
the effect of covariates is the same for all logits. This is called the proportional odds
assumption. πikr is the probability of child i in school k being classified in category r of
the ordinal caries response. Further the random intercept uk pertains to the kth school
and we assume that uk ∼ N(0, σ2). λ1 is the intercept and (λ2, λ3) are the ordered
category cut-off parameters, which satisfy λ2 < λ3. Below the vector (λ1, λ2, λ3)

′ will be
denoted as λ.

Model (2) was applied to the cross-sectional caries experience data, the results are
shown in Table 1. The point estimates and the standard errors of the category cut-offs
are practically the same in the two geographical models. Further, the two geographical
models gave similar estimates for the regression coefficient of age and of gender. More
importantly, the results clearly indicate a significant East-West gradient in the degree of
caries experience, being higher in the province of Limburg (see also Figure 1).

[ TABLE 1 ABOUT HERE ]
However, there were 16 examiners involved in this study. Despite the half-yearly

calibration exercises (for scoring different aspects) they still differed in their assessment
of caries experience. Further, in Figure 1 it is clearly seen that each examiner was active
in a relatively restricted geographical area. Thus, a legitimate question was whether
the geographical trend in the degree of caries experience was due to the different scoring
behaviour of the examiners. In other words, was the East-West trend due to biased scoring
of some examiners (compared to a gold standard) or due to a genuine geographical effect?
Here, the gold standard is an experienced dentist, who is assumed to be error-free for
measuring the dmft score.

[ FIGURE 1 ABOUT HERE ]
A classical way to take a confounder into account is to include it in the (logistic)

regression model. Adding “examiner” into the ordinal logistic model (2) as a fixed effect
gave the estimates shown in Table 2. Clearly, controlling for examiner removed the
geographical East-West trend. The same conclusion could be drawn when the examiner
was included in the model as a random effect (results not shown). We argue that correcting
for examiner in this way is not appropriate because it does not take into account the
scoring variability of the examiners.

[ TABLE 2 ABOUT HERE ]
On the other hand, model (2) assumes that the probability of scoring k on y is the

same for all examiners, and hence ignores possible different scoring behaviour of the
examiners. However, it became evident during the conduct of the Signal-Tandmobiel r©



study that some examiners consistently over- and other examiners consistently under-
scored the degree of caries experience with respect to the gold standard. To properly take
the examiners’ effect into account, we opted for an external correction using the calibration
data. This resulted in an estimated model mimicking the case where all children had been
scored for caries experience by only one examiner (the gold standard).

2 Taking into account examiner’s effect

2.1 Calibration exercises

Much attention was paid to the selection and training of the 16 dentist-examiners for
the project. In order to maintain a high level of intra- and inter-examiner reliability,
calibration exercises were carried out twice a year for all examiners involved. During the
study period (1996-2001) four of these calibration exercises were devoted to scoring of
caries experience. A minimum of 12 children was included in each exercise. The children
selected for this exercise were screened a priori to ensure that a variety of pathologies
was present, including untreated caries, recurrent caries and fillings. Additionally a “gold
standard” was present. The scores on caries experience of each of the 16 dental examiners
were compared with the scores obtained by the gold standard. Due to the relatively small
number of children used per calibration exercise we combined the data from at most four
caries calibration exercises. Observe that by pooling the data of the calibration exercises
we actually underestimated the possible systematic bias of the examiners since it would
be expected that the examiners became better calibrated in due time.

[ TABLE 3 ABOUT HERE ]
Table 3 shows the classification matrices and conditional probabilities for the examin-

ers 12, 13, and 16, which had mild, extreme and perfect classifications respectively. The
conditional classification probabilities were estimated from the classification matrix M j

as explained in Section 2.4.2. The closeness of the diagonal elements of the conditional
classification matrix for examiner j to 1 implies perfect classification of the examiner j
against the gold standard.

2.2 A classical way to take inter-observer disagreement into ac-

count

A classical way to express the difference between the gold standard and the 16 examiners
is to show a measure of agreement like the weighted kappa(κw) (Agresti 1990, p. 367).

κw =

∑

a

∑

b wabπab −
∑

a

∑

b wabπi+π+b

1 −
∑

a

∑

b wabπa+π+b

where πa+ =
∑

a πab, π+b =
∑

b πab and the weights wab = 1 − (a − b)2/(I − 1)2; a, b =
1, · · · , 4; I = 4. The weighted kappas for the 16 examiners using the pooled calibration
data of at most four caries calibration exercises are given in Table 4.

[ TABLE 4 ABOUT HERE ]
Based on the scheme of agreement levels proposed by Landis and Koch (1977) all

examiners had an excellent agreement with the gold standard (κw above 0.80) except for
the examiners 1, 3 and 13 who had “only” a substantial agreement (κw between 0.60
and 0.79). Note that the upper bounds of the estimated 95% confidence intervals from
the SAS procedure FREQ for some kappas are greater than 1 because of the asymptotic



approximations. However, Kappa is an omnibus index of agreement, i.e. it does not make
distinctions among various types and sources of disagreement. Further, the kappas do
not help us in evaluating whether or not the geographical trend exists, when taking the
possible systematic bias of the examiners into account. We will now show how the results
of the calibration exercise can be used directly to correct for possible examiner bias.

In this paper, we propose both Bayesian and Frequentist approaches to the ordinal
response measured with error problem. The Bayesian approach uses the posterior dis-
tribution of the misclassification parameters whereas the Frequentist approach uses the
sample estimates of the misclassification parameters. In this analysis, we assume a non-
differential measurement error, that is, conditional on the covariates, the true response is
independent of the observed response. Our goal is, therefore, to present an approach for
correcting for errors in the misclassification of the ordinal response. This model derives
from the probability model of the true response given the observed response, which is
based on the external data from a calibration study. Both the true outcome (z̃) and
the proxy outcome (z) are recorded in the calibration study, while on the main study
only the proxy or surrogate measures of the response (y) are available for each child. In
this paper, we are indeed correcting for the errors in the ordinal response measured by
examiners with different scoring variability.

2.3 A frequentist approach

Model (2) and a model expressing the score of the jth examiner as a function of the score
of the gold-standard can be combined to yield a prediction model for the gold standard.
The first model is based on the prevalence of caries data from the cross-sectional dental
study, while the second model will be based on the calibration data. For clarity we
wish to distinguish the scores assigned in the calibration exercises, from the scores given
in the cross-sectional dental study. Let zij be the ordinal dmft score (discretized as in
equation (1)) given by examiner j to the ith child in the calibration exercise, and z̃ij be
the corresponding score given by the gold standard.

Further, let mjab be the number of times the jth examiner scores zij = a and the
gold standard scores zij = b. For the examiner j, the numbers mjab are collected in a
4 × 4 matrix M j = (mjab) a, b = 1, · · · , 4, here referred to as the classification matrix.
Further, let γj = (γjab), a, b = 1, · · · , 4 be the corresponding matrix of the conditional
classification probabilities, where γjab denote the conditional probability of classifying a
discretized dmft score in the ath category by examiner j given it is classified in the bth
category by the gold standard. Hence sample estimates of γ jab equals mjab/

∑

d

mjad. It

satisfies
∑

b

γjab = 1, that is, the column total sum to 1. Similarly, yij and ỹij denote the

score by the jth examiner and the corresponding score by the gold standard on the cross-
sectional dental study. Then the probability that the ith child from school k is scored as
a by the jth examiner can be written as a function of γjab’s and the probability model of
the gold standard, namely,

Pr(yij = a|xi, uk) = Pr(yij = a|ỹij = a)Pr(ỹij = a|xi, uk) +

Pr(yij = a|ỹij 6= a)Pr(ỹij 6= a|xi, uk)

= Pr(yij = a|ỹij = a)Pr(ỹij = a|xi, uk) + (3)
∑

b6=a

Pr(yij = a|ỹij = b)Pr(ỹij = b|xi, uk).



In (3) we assume that the probabilities Pr(yij = a|ỹij = b) do not depend on the covariates
and the school. We further assume that Pr(yij = a|ỹij = a′) = Pr(zij = a|z̃ij = a′).
Applying the latter assumption to equation (3) we obtain:

Pr(yij = a|xi, uk) = Pr(zij = a|z̃ij = a)Pr(ỹij = a|xi, uk) +
∑

b6=a

Pr(zij = a|z̃ij = b)Pr(ỹij = b|xi, uk). (4)

Inserting γjab’s then (4) becomes

Pr(yij= a|γ, xi, uk) = γjaaPr(ỹij = a|xi, uk) +
∑

b6=a

γjabPr(ỹij = b|xi, uk)

= γjaaqikr +
∑

b6=a

γjabqikh

=
∑4

d=1 γjadqikd,

(5)

with γ = {γ1, γ2, · · · , γ16} and

q′ik =









F (λ1 + x′
iβ + uk)

F (λ2 + x′
iβ + uk) − F (λ1 + x′

iβ + uk)
F (λ3 + x′

iβ + uk) − F (λ2 + x′
iβ + uk)

1 − F (λ3 + x′
iβ + uk)









.

From equation (5) it follows that

Pr(yij ≤ a|γ, xi, uk) =

a
∑

c=1

4
∑

d=1

γjcdqikd, (6)

holds, where the dependence in (5) and (6) on γ is highlighted. It also follows that
(6) yields random effects logistic model (2) when all examiners would score exactly like
the gold standard.

The SAS procedure NLMIXED (SAS Institute Inc.) can be used to estimate the
unknown parameters (λ, β, σ2) of model (6) when for γ an estimated value is imputed, say
from the calibration exercise. Indeed, the SAS procedure NLMIXED can fit generalized
linear mixed models by maximizing a marginal likelihood. However, this approach does
not take into the account the uncertainty with which the γ j

′s are estimated. This can be
achieved by the following Bayesian approach.

2.4 A Bayesian approach

2.4.1 Likelihood and prior for the cross-sectional data

The likelihood for the cross-sectional data if all caries experience scores were obtained from
the gold standard is obtained from model (5). We denote model (5) also as f(y|γ, β, λ, σ2),
where y is the total vector of ordinal caries experience responses over all children. In
a Bayesian context the likelihood needs to be combined with a prior distribution of
the parameters. Here, we combined a vague normal prior for βs (s = 1, · · · , d), i.e.
βs ∼ N(0, 10−6) (s = 1, · · · , d) with a vague inverse-gamma prior for σ2, i.e, σ2 ∼
IG(10−3, 10−3). Further, we assume a truncated normal prior for the category cutoffs,
i.e. λ2 ∼ N(0, 10−6)I(, λ3) and λ3 ∼ N(0, 10−6)I(λ2, ), and a vague normal prior for
λ1 , i.e. λ1 ∼ N(0, 10−6). No prior distribution for γ is given here, instead we specify the



distributional aspects of γ using the calibration data.

2.4.2 Likelihood and prior for the calibration data

The classification matrix M j from the calibration data provides information for estimating
γ. We assume that the distribution of the (total vector) of the calibration data z, f(z|γ),
is obtained from

Mj(b) ∼ Multinomial
(

mj+b, wjvb + (1 − wj)γj(b)

)

(7)

where A(b) is the bth column of matrix A, mja+ =
∑4

a=1 mjab, wj is an examiner spe-
cific random deviate taking values in [0, 1] and vb is a row vector of size 4 with the bth
element equal to 1 and 0 otherwise, e.g., v3=(0,0,1,0). This ensures that the multinomial
probability sums to 1. Observe that model (7) locates each examiner in-between the gold
standard (wj) and the average score (γj(h)).

Further, each of the wj are assumed to have a prior Beta(ηj, νj) distribution. We assign
hyperprior distribution to (ηj, νj) on a uniform grid in the range [−2.5,−0.5] × [0.5, 3.5]
which is centered at (-1.5, 2.0), that is, (ηj, νj) ≈ (1.3, 6.0). This grid ensures that all
forms of shape of the Beta densities are accomodated. Finally, a Dirichlet prior with
parameters (1,1, 1, 1) is taken as prior for γj(h). As a result the posterior distribution
p(γ|z) is obtained.

2.4.3 Calculating the posterior distribution p(λ, β, σ2|y, z)

For a given γ̃ the Bayesian analysis on the cross-sectional data yield p(λ, β, σ2|y, γ̃), and
the posterior estimates obtained by WINBUGS (Spiegelhalter et al.) are conditional on
the imputed value for γ̃. On the other hand, the calibration data result in the posterior
distribution p(γ|z), where z is the vector of ordinal caries experience responses over all
children in the calibration exercise. This posterior distribution could be used as a prior
distribution for γ in the Bayesian analysis on the cross-sectional data. However, it was
not immediately clear how to do this in an elegant way using WINBUGS. Instead, we
opted to process the cross-sectional data and the calibration data simultaneously. That
is, at each iteration of the Markov Chain of the calibration data we obtained an estimate
of γ and imputed this estimate into the Markov Chain pertaining to the cross-sectional
data. This procedure enabled us in a simple way to take into account the variability with
which γ is estimated from the calibration data. In fact our procedure samples from

p(λ, β, σ2|y, z) =

∫

p(λ, β, σ2|y, γ) · p(γ|z)dγ.



3. Application to the Signal-Tandmobiel r© study

3.1 Frequentist approach

The results of fitting the corrected multinomial logit model (6) by the SAS procedure
NLMIXED are displayed in Table 5. We used the adaptive Gaussian quadrature procedure
and the dual quasi-Newton optimization technique to estimate the parameters. There is
a small to mild effect on the estimated regression coefficients of the provincial terms after
external correction compared to those of Table 1. Further, all the standard errors slightly
increased.

[ TABLE 5 ABOUT HERE ]
The East-West gradient in the degree of caries experience is somewhat more pro-

nounced in this model. However, due to an increase in standard errors, the province
Limburg does not have a significantly higher degree of caries experience any more than
the other provinces. The geographical model in terms of the x− and y−coordinate still
shows a significant East-West trend. We must realize, though, that this (Frequentist)
approach does not take into account the sampling variability of conditional classification
probability estimates. Therefore, this is perhaps a too naive approach for estimating the
parameters of the corrected model. To get more realistic estimates of the variability of
the parameter estimates, one needs to incorporate the uncertainty over the estimates of
the conditional classification probabilities γj

′s.

3.2 Bayesian approach

We used WINBUGS to simultaneously estimate the parameters of model (6) and (7),
respectively. The estimates of γj

′s are used in estimating the parameters of model (6) by
parallel processing the calibration data and the cross-sectional data. This is accomplished
by having two independent MCMC loops for these models in one run. Namely one for the
calibration data, sampling the conditional classification probabilities γ, and another one
where the parameters λ, β, and σ2 are sampled employing the sampled γ from the first
loop (See Appendix for the WINBUGS program). Five initially overdispersed chains were
initiated, with a burn-in sample of 6000 iterations and an extra 9000 MCMC iterations
run for each chain. The posterior summary statistics of the regression coefficients from
the Bayesian procedure are shown in Table 6. The Gelman & Rubin shrinkage factors
quickly drop to 1 for all geographical coefficients, suggesting convergence of the posterior
density (see Best et al.).

[ TABLE 6 ABOUT HERE ]
The estimated geographical regression coefficients are slightly larger in absolute value

compared to the estimated regression coefficients from NLMIXED, but overall the es-
timates of the NLMIXED and WINBUGS are in line, given their estimated variability.
Further, a sensitivity analysis by e.g changing the prior distribution of the regression
coefficients from normal to t-distribution with 4 degrees of freedom gave practically the
same results. However, the standard errors of the estimated regression coefficients are
somewhat more increased, due to the variability with which γ is estimated from the cali-
bration data. But more importantly, the East-West gradient remains important in both
geographical models.

We also used the Bayesian approach to estimate the expected values of the random
deviates w′s governing the average precision of each examiner with respect to the gold
standard.



[ TABLE 7 ABOUT HERE ]
Table 7 shows the posterior summary statistics of the w’s . Our results largely confirm

the conclusion obtained from the kappa statistics.

4 Discussion

In this paper, we have shown that a random effect logistic regression model (2) can be
modified to a gold standard model (6), which accommodates the examiners systematic
bias to the (discretized version of) dmft score. This model confirmed the East-West
gradient in the degree of caries experience in Flanders. Various other models were fitted
to check the confounding effect of other covariates (see also Declerck et al., 2002). Models
(2) and (6) were also considered without the random school component, but we observed
almost no difference in the geographical components, compared to the models fitted in
this paper. Further, the same East-West gradient was obtained for the prevalence of caries
(see Declerck et al., 2002).

Finally, our approach assumes a gold standard. It remains to be investigated how the
external correction would work if no gold standard were available. This issue forms the
basis of future research.
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Figure 1. Plot showing the distribution of the examiners examining at the different schools
(numbers indicate examiners that scored the children of a particular school located at the
corresponding x-y co-ordinates) in the five provinces of Flanders.



Table 1. Parameter estimates from the random-intercept multinomial logit (2) predicting
the degree of caries experience, controlling for geographical effects fitted by the SAS
procedure NLMIXED.

Provinces x-y coordinates
Estimate Conf. Limits Estimate Conf. Limits

Parameter (SE) Lower Upper P-value (SE) Lower Upper P-value

λ1 -0.522(1.138) -2.768 1.724 0.6473 -0.576(1.245) -3.033 1.881 0.6441
λ2 0.453(0.045) 0.365 0.541 < .0001 0.452(0.045) 0.364 0.540 < .0001
λ3 1.587(0.085) 1.420 1.755 < .0001 1.587(0.085) 1.419 1.7546 < .0001
Brabant 0.170(0.206) -0.237 0.577 0.4116
Limburg 0.412(0.200) 0.017 0.807 0.0409
E Fland 0.148(0.185) -0.218 0.514 0.4267
W Fland -0.295(0.202) -0.693 0.103 0.1455
x-coordinate 0.004(0.001) 0.001 0.006 0.0029
y-coordinate -0.003(0.004) -0.010 0.004 0.4140
Gender 0.033(0.127) -0.218 0.283 0.7980 0.032(0.127) -0.219 0.282 0.8047
Age 0.090(0.159) -0.224 0.403 0.5725 0.112(0.158) -0.199 0.424 0.4774
σ2 † 0.035(0.071) 0.039(0.075)
† Confidence limits are omitted because negative values for the 95% confidence lower limits
are reported by SAS



Table 2. Parameter estimates from the random-intercept multinomial logit (2) predicting
the degree of caries experience, controlling for geographical and examiners’ effect fitted
by the SAS procedure NLMIXED.

Provinces x-y coordinates
Estimate Conf. Limits Estimate Conf. Limits

Parameter (SE) Lower Upper P-value (SE) Lower Upper P-value

λ1 1.235(1.354) -1.438 3.907 0.3631 -0.489(1.438) -3.327 2.349 0.7342
λ2 0.464(0.045) 0.375 0.552 <.0001 0.460(0.045) 0.372 0.549 <.0001
λ3 1.617(0.083) 1.452 1.782 <.0001 1.615(0.083) 1.451 1.780 <.0001

Brabant 0.043(0.246) -0.443 0.529 0.8613
Limburg 0.156(0.256) -0.349 0.661 0.5420
E Fland 0.131(0.241) -0.344 0.606 0.5874

W Fland -0.107(0.298) -0.694 0.481 0.7209
x-coordinate 0.003(0.002) -0.002 0.007 0.2428
y-coordinate -0.001(0.004) -0.009 0.007 0.7839

Gender 0.034(0.128) -0.219 0.287 0.7927 0.128(0.128) -0.124 0.380 0.3182
Age -0.009(0.163) -0.330 0.312 - 0.9566 0.070(0.162) -0.249 0.389 0.6653

1 -1.308(0.746) -2.781 0.164 0.0813 -0.359(0.747) -1.834 1.116 0.6314
2 -0.451(0.762) -1.954 1.052 0.5548 0.504(0.737) -0.950 1.958 0.4946
3 -0.850(0.771) -2.371 0.672 0.2719 0.152(0.742) -1.313 1.616 0.8384
4 -1.071(0.753) -2.557 0.415 0.1567 -0.132(0.742) -1.598 1.333 0.8587

E 5 -1.089(0.778) -2.624 0.447 0.1635 -0.063(0.774) -1.591 1.464 0.9348
X 6 -0.928(0.762) -2.433 0.576 0.2249 0.196(0.723) -1.230 1.623 0.7861
A 7 -1.520(0.800) -3.098 0.058 0.0590 -0.380(0.755) -1.870 1.111 0.6160
M 8 -0.982(0.786) -2.533 0.569 0.2131 0.180(0.752) -1.304 1.663 0.8113
I 9 -0.534(0.759) -2.032 0.963 0.4824 0.392(0.747) -1.082 1.865 0.6005

N 10 -1.143(0.773) -2.668 0.382 0.1408 -0.130(0.759) -1.628 1.369 0.8647
E 11 -1.858(0.802) -3.440 -0.275 0.0217 -0.658(0.754) -2.147 0.831 0.3844
R 12 -0.738(0.839) -2.393 0.918 0.3803 0.254(0.796) -1.317 1.824 0.7503
S 13 -1.482(0.785) -3.032 0.068 0.0607 -0.463(0.757) -1.958 1.032 0.5417

14 -0.742(0.792) -2.304 0.821 0.3500 0.368(0.747) -1.106 1.842 0.6225
15 -1.274(0.732) -2.718 0.170 0.0835 -0.394(0.716) -1.808 1.020 0.5828
16 -0.577(0.733) -2.023 0.869 0.4322 0.342(0.732) -1.102 1.787 0.6404

† The random school effects variance component σ2, was estimated to be nearly zero



Table 3. The classification matrices and the conditional classification
probabilities of the examiners 12, 13, and 16 versus the gold standard
when scoring caries experience.

conditional classification probabilities (γjrh) estimate
Examiner Mj sample (mjab/

∑

d mjad) posterior

j=12









16 1 0 0
1 2 2 0
0 0 7 0
0 0 0 3

















.941 .333 .000 .000

.059 .667 .222 .000

.000 .000 .778 .000

.000 .000 .000 1.000

















.846 .115 .044 .067

.078 .771 .132 .069

.039 .057 .781 .069

.038 .057 .043 .796









j=13









18 0 1 0
2 3 1 0
0 1 8 0
2 0 0 1

















.818 .000 .100 .000

.091 .750 .100 .000

.000 .250 .800 .000

.091 .000 .000 1.000

















.775 .066 .10 .086

.097 .733 .10 .086

.032 .134 .75 .090

.096 .067 .05 .738









j=16









17 0 0 0
0 2 0 0
0 0 9 0
0 0 0 3

















1.000 .000 .000 .000
.000 1.000 .000 .000
.000 .000 1.000 .000
.000 .000 .000 1.000

















.953 .018 .017 .018

.016 .945 .017 .018

.016 .018 .949 .018

.016 .018 .017 .945









Table 4. Weighted kappa(κw) measuring agreement between the gold standard and each
of the 16 dental examiners when scoring caries experience.

95% Conf. Limits
Estimate(ASE) Lower Upper

κw1
0.7460(0.094) 0.562 0.931

κw2
0.8930(0.050) 0.794 0.992

κw3
0.7587(0.120) 0.525 0.993

κw4
0.8094(0.076) 0.661 0.958

κw5
0.8074(0.079) 0.653 0.962

κw6
0.9265(0.052) 0.825 1.028

κw7
0.9627(0.037) 0.890 1.035

κw8
0.8855(0.064) 0.760 1.011

95% Conf. Limits
Estimate(ASE) Lower Upper

κw9
0.8163(0.114) 0.593 1.040

κw10
1.0000(0.000) 1.000 1.000

κw11
0.9208(0.055) 0.813 1.029

κw12
0.8885(0.055) 0.782 0.995

κw13
0.6851(0.116) 0.458 0.912

κw14
0.8242(0.081) 0.665 0.984

κw15
0.8636(0.099) 0.670 1.057

κw16
1.0000(0.000) 1.000 1.000



Table 5. Parameter estimates from a corrected random effects multinomial logit model
(6) predicting the degree of caries experience, controlling for geographical effects and ex-
ternally controlling for examiner’s effects (frequentist approach), using the SAS procedure
NLMIXED.

Provinces x-y coordinates
Estimate Conf. Limits Estimate Conf. Limits

Parameter (SE) Lower Upper P-value (SE) Lower Upper P-value

λ1 -0.804(1.204) -3.180 1.572 0.5054 -0.890(1.302) -3.460 1.680 0.4952
λ2 0.362(0.053) 0.257 0.468 < .0001 0.360(0.053) 0.256 0.465 < .0001
λ3 1.586(0.095) 1.400 1.773 < .0001 1.581(0.094) 1.395 1.767 < .0001
Brabant 0.192(0.220) -0.242 0.625 0.3839
Limburg 0.365(0.210) -0.049 0.780 0.0839
E Fland 0.156(0.197) -0.232 0.545 0.4274
W Fland -0.352(0.215) -0.776 0.073 0.1038
x-coordinate 0.004(0.001) 0.001 0.007 0.0031
y-coordinate -0.003(0.004) -0.010 0.005 0.4901
Gender 0.030(0.134) -0.233 0.294 0.8199 0.031(0.133) -0.232 0.294 0.8162
Age 0.129(0.168) -0.202 0.460 0.4415 0.143(0.166) -0.186 0.471 0.3921
σ2 † 0.046(0.082) -0.116 0.208 0.5743 0.044(0.081) -0.116 0.204 0.5871
† Confidence limits are omitted because negative values for the 95% confidence lower limits
are reported by SAS

Table 6. Parameter estimates from a corrected random effects multinomial logit model
(6) predicting the degree of caries experience, controlling for geographical effects and
externally controlling for examiners’ effect (Bayesian approach), using WINBUGS when
scoring caries experience.

Provinces x-y coordinates
Posterior Posterior

Posterior Quantiles Bayesian Posterior Quantiles Bayesian
Parameter Mean(SD) 2.5% 97.5% P-value Mean(SD) 2.5% 97.5% P-value

λ1 -0.871(1.376) -3.604 1.820 0.2585 -0.937(1.576) -4.065 2.189 0.2769
λ2 0.347(0.058) 0.235 0.464 0.0000 0.354(0.060) 0.239 0.472 0.0000
λ3 1.519(0.104) 1.319 1.730 0.0000 1.550(0.107) 1.345 1.764 0.0000
Brabant 0.227(0.247) -0.263 0.717 0.1682
Limburg 0.474(0.240) 0.014 0.965 0.0230
E Fland 0.155(0.228) -0.291 0.612 0.2241
W Fland -0.364(0.242) -0.848 0.108 0.0818
x-coordinate 0.005(0.002) 0.002 0.008 0.0015
y-coordinate -0.003(0.005) -0.013 0.006 0.2184
Gender 0.030(0.152) -0.266 0.337 0.4156 0.034(0.156) -0.274 0.331 0.4085
Age 0.124(0.192) -0.251 0.507 0.2620 0.140(0.195) -0.251 0.520 0.2339
σ2 0.083(0.080) 0.001 0.291 0.0000 0.057(0.023) 0.023 0.112 0.0000



Table 7. The posterior summary statistics of the w’s, which characterize the
precision of examiner j in reference to gold standard, based on WINBUGS.

Posterior
Posterior Quantiles
Mean(SD) 2.5% 97.5%

w1 0.797(0.068) 0.621 0.888
w2 0.848(0.045) 0.748 0.931
w3 0.823(0.058) 0.679 0.913
w4 0.818(0.056) 0.678 0.905
w5 0.810(0.058) 0.667 0.895
w6 0.870(0.046) 0.781 0.957
w7 0.874(0.049) 0.781 0.968
w8 0.848(0.048) 0.740 0.935

Posterior
Posterior Quantiles
Mean(SD) 2.5% 97.5%

w9 0.795(0.080) 0.588 0.902
w10 0.881(0.054) 0.784 0.984
w11 0.862(0.051) 0.756 0.956
w12 0.830(0.051) 0.708 0.915
w13 0.819(0.052) 0.690 0.899
w14 0.809(0.059) 0.665 0.896
w15 0.846(0.057) 0.713 0.945
w16 0.885(0.052) 0.791 0.984


