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Abstract

Tests for the presence of heterogeneity in frailty models use an alternative hypothesis in which

the heterogeneity parameter is subject to an inequality constraint. As a result the classical

likelihood ratio asymptotic χ2-distribution theory is no longer valid. Based on simulations

and inspired by results from mixed models theory it has been conjectured that the likelihood

ratio test and the score test for testing heterogeneity has an asymptotic distribution that is a

50:50 mixture of a χ2
0 and a χ2

1 distribution. We proof this conjecture for the bivariate shared

gamma frailty model with Weibull baseline hazard. We consider the likelihood ratio and the

score test. Our theorems provide a contribution to the theme of “statistical inference under

inequality constraints” (Sen and Silvapulle, 2002) for bivariate survival data; and in that

sense our results contribute to a “better understanding of the asymptotic theory of frailty

models” (Bjarnason and Hougaard, 2000).

Key Words: Inference under inequality constraints, Frailty models, Likelihood ratio test,

Mixture of χ2-distributions, Score test, Survival data.
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1 Introduction

The proportional hazards model with random effects, an extension of the Cox model, has

become very popular for analysing multivariate survival data. The model is also called the

mixed proportional hazards model or the frailty model. A rather general description of

frailty models has been given by Vaida and Xu (2000). Frailty models for survival data

are the counterpart for mixed effects models for normal data; the main idea is to have a

model that can handle survival times that are dependent within clusters. There are indeed

many situations where the survival data are dependent: in a multi-centre trial survival times

within a centre can be dependent (heterogeneity between centres; Duchateau et al. (2002)),

survival times of lambs from the same sire can be dependent (heterogeneity between sires;

Nguti et al. (2003)), recurrent event times for a patient can be dependent (heterogeneity

between patients; Wassell et al. (1999)). See Section 2 for a further discussion on how

dependence within a cluster is generated by heterogeneity in the conditional model.

In spite of the fact that mixed proportional hazards are very useful to describe and to

model multivariate survival data, the inferential properties are not yet well examined. The

main reason is that, due to the complexity of the modelling, it is very hard to derive statistical

properties (e.g. asymptotic properties) for frailty models in general, see e.g. Murphy (1995)

and Parner (1998). The complexity lies in the fact that the likelihood expression needed for

the inference is implicit and difficult, so that in many situations numerical algorithms are

needed to obtain estimates and standard errors.

One of the important methodological questions is to provide information on the asymp-

totic distributional behaviour of the likelihood ratio test for heterogeneity. To test for het-

erogeneity (to test within cluster correlation) we consider the following hypotheses testing

problem. Assume that the random effect, present in the mixed proportional hazards model,

has variance θ. The relevant hypotheses testing problem is:

H0 : θ = 0 versus Ha : θ > 0. (1)

From the theory of mixed effects models we know that the asymptotic distribution theory

for the likelihood ratio statistic for such hypotheses testing problems does not follow the

classical chi-square limit theory. The reason is that, under the null hypothesis, the parameter

of interest is at the boundary of the parameter space (in the alternative hypothesis the

heterogeneity parameter is subject to an inequality constraint). A consequence of this is

that the classical conditions needed for the likelihood ratio theory are not satisfied. We

therefore need to develop “likelihood ratio theory under non-standard conditions”. This
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phenomenon has been recognized in the literature on frailty models. Vaida and Xu (2000,

p. 3322) write that “for the likelihood ratio test a correction for the null distribution, which

is no longer a chi-square distribution, is needed as discussed in similar set-ups by Stram and

Lee (1994) and Self and Liang (1987) in the context of mixed effects models”. Duchateau

et al. (2002) simulate the limit distribution of the likelihood ratio test and conjecture that

the simulated distribution is a 50:50 mixture of a χ2
0 and a χ2

1 distribution.

In this manuscript we give an explicit proof for this conjecture for the shared gamma

frailty with a Weibull baseline hazard (which includes the exponential baseline hazard as a

special case). We further assume that the survival data are complete (censoring makes the

formulas much more complicated) and that there are no covariates. A final simplification

is that we assume that each cluster contains two observations. Bjarnason and Hougaard

(2000) use this model to study the Fisher information. The idea behind the simplification is

to fully understand a statistical property for a simple, but relevant, model. In our case we

want to derive the asymptotic null distribution for the likelihood ratio test and the score test

for heterogeneity. The formal model and the main results are given in Section 2. The proofs

are given in Section 3, key references are Vu and Zhou (1997) and Silvapulle and Silvapulle

(1995). A discussion on possible extensions is given in Section 4.

2 The model and the main results

We observe a set of n independent and identically distributed random vectors Ti = (Ti1, Ti2),

i = 1, . . . , n. Each vector is considered as a cluster of size two. We assume that, conditional

on the frailty variables Zi, the lifetimes Ti1 and Ti2 are independent with (for Zi = z) a

Weibull(zλ, γ) distribution, i.e., the conditional hazard is

h(t | z) = zλγtγ−1

with λ > 0 and γ > 0 and where Zi has the gamma density

fZi
(z) = z

1
θ
−1 exp

(
−z

θ

)
/{Γ (1/θ) θ

1
θ }.

The key idea is that within cluster dependence is caused by the frailty variables Z1, . . . , Zn

representing unobserved common risk factors. The frailty variables are assumed to be in-

dependent. Also note that Var(Zi) = θ. Given Zi = z, the conditional survival function of

(Ti1, Ti2) is

S(t1, t2 | z) = P (Ti1 > t1, Ti2 > t2 | Z = z)
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= exp{−zλ(tγ1 + tγ2)}.

The (unconditional) survival function is

S(t1, t2) = E [exp{−Zλ(tγ1 + tγ2)}]
= {1 + θλ(tγ1 + tγ2)}−

1
θ .

The corresponding joint density is

f(t1, t2) =
(1 + θ)λ2γ2tγ−1

1 tγ−1
2

{1 + θλ(tγ1 + tγ2)}
1
θ
+2

.

For θ > 0 (heterogeneity between clusters) the components of the vector (Ti1, Ti2) are

correlated (within cluster correlation). To quantify the within cluster dependence we can

use Kendall’s coefficient of concordance which, in terms of the joint density and survival

function, is given by

4

∞∫

0

∞∫

0

f(t1, t2)S(t1, t2)dt1dt2 − 1,

see Hougaard (2000, p. 132) and Bjarnason and Hougaard (2000). For our model Kendall’s

coefficient of concordance is θ/(2+θ) which is zero for θ = 0 (homogeneity between clusters).

Moreover we easily obtain that

lim
θ→

>
0
f(t1, t2) = (λγtγ−1

1 e−λtγ1 )(λγtγ−1
2 e−λtγ2 ),

i.e., Ti1 and Ti2 are independent Weibull distributed random variables.

The likelihood for the data is given by

n∏
i=1

(1 + θ)λ2γ2T γ−1
i1 T γ−1

i2

{1 + θλ(T γ
i1 + T γ

i2)}
1
θ
+2

with corresponding loglikelihood

Ln =
n∑

i=1

{2 ln λ + 2 ln γ + ln(1 + θ) + (γ − 1)(ln Ti1 + ln Ti2)

−
(

1

θ
+ 2

)
ln(1 + θλ(T γ

i1 + T γ
i2))}.

To test the within cluster dependence we consider the testing problem H0 : θ = 0 against

Ha : θ > 0. For the further discussion it is convenient to work with the following transformed
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Weibull parameters: η = − ln λ and α = − ln γ; or λ = exp(−η) and γ = exp(−α). Further

we use τ as shorthand notation for the set of model parameters (θ, η, α) and ν = (η, α) for

the set of nuisance parameters. In terms of τ the parameter space is Θ = [0,∞) × R × R
and the testing problem can be written as

H0 : τ ∈ Θ0 = {0} × R× R against Ha : τ ∈ Θ1 = (0,∞)× R× R

with as corresponding likelihood ratio statistic

Ln = 2

{
sup
τ∈Θ

Ln(τ)− sup
τ∈Θ0

Ln(τ)

}

where we use the notation Ln ≡ Ln(τ).

Under the null hypothesis the parameter vector of interest is at the boundary of the param-

eter space. Therefore the standard asymptotic distribution theory for likelihood ratio tests

does not work. Instead we have the following theorem.

Theorem 1

The likelihood ratio statistic Ln for testing the heterogeneity hypothesis (1.1) has an asymp-

totic null distribution which is an equal mixture of a point mass at zero and a chi-square

distribution with one degree of freedom, abbreviated as 1
2
χ2

0 + 1
2
χ2

1.

Remark. This result is important since it has an immediate impact on how to determine

(asymptotic) critical values and P -values for likelihood ratio test for heterogeneity. Erro-

neously relying on classical χ2- distribution theory will lead to P -values that are too big (or

critical values that are too large), which means that not using the appropriate statistical

inference leads to a conservative strategy in rejecting the null hypothesis of independence.

Under standard conditions, that is, when parameters constrained under the null hypothe-

sis belong to the interior of the parameter space, it is well known that likelihood ratio, Wald

and score statistics have asymptotically the same distribution under the null hypothesis. Un-

der inequality constraints in the alternative hypothesis, a score statistic is no longer uniquely

defined, see Silvapulle and Silvapulle (1995). Robertson, Wright and Dykstra (1988, pp. 320–

321) propose a Wald and score statistic the latter of which has the disadvantage of requiring

estimation of model parameters both under the null and alternative hypothesis. Silvapulle

and Silvapulle (1995) propose a different score-type statistic which only requires estimation

under the null hypothesis. Under mild regularity conditions, they obtain that under the null

hypothesis asymptotically the score statistic follows the same mixture distribution as the

likelihood ratio statistic.
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Before we further explain the basic idea in Silvapulle and Silvapulla (1995) we introduce

the score vector for the shared frailty model in Section 2. The explicit expressions for the

components of the score vector Sn(τ) = (Sn,θ(τ), Sn,ν(τ)) with Sn,θ(τ) = ∂Ln(τ)/∂θ and

Sn,ν(τ) = (∂Ln(τ)/∂η, ∂Ln(τ)/∂α)T are given in Section 5.

Via a Taylor series expansion Silvapulle and Silvapulle (1995) rewrite the likelihood ratio

statistic as the difference of the minimum of two quadratic forms, of which the minimisation

of the first one under the null hypothesis can be performed exactly. We state the resulting

score statistic in the following theorem. Let ν̂ be the maximum likelihood estimator of the

nuisance parameters under the null hypothesis and let Sn,θ(0, ν̂) denote the score vector

evaluated at (0, ν̂).

Theorem 2

(i) For a shared gamma frailty model with exponential baseline hazard a score statistic for

testing the heterogeneity hypothesis (1.1) is given by

Sn =
1

3n2
{Sn,θ(0, η̂)}2 − 3n inf

b≥0

{(
1

3n3/2
Sn,θ(0, η̂)− b

)2
}

.

(ii) For a Weibull distribution as the baseline hazard function a score statistic for testing the

heterogeneity hypothesis (1.1) is given by

Sn =
1

3n2

π2

π2 − 4
{Sn,θ(0, ν̂)}2 − 3n

(
1− 4

π2

)
inf
b≥0

{(
1

3n3/2

π2

π2 − 4
Sn,θ(0, ν̂)− b

)2
}

.

For both models the corresponding score statistic has, under the null hypothesis, asymptotic

distribution 1
2
χ2

0 + 1
2
χ2

1.

A proof is given in the next section. Note that in the exponential baseline hazard model

when Sn,θ(0, η̂) ≥ 0, the expression of the score statistic simplifies to

Sn =
1

3n2
{Sn,θ(0, η̂)}2.

A similar simplification holds for the Weibull baseline hazard model.

Wald-type test statistics for testing hypothesis (1.1) may be employed as well. Robertson,

Wright and Dykstra (1988) construct a Wald statistic for the situation where the alternative

hypothesis is described by inequalities. Their test statistic requires estimation of model

parameters under both the null and alternative hypothesis. Sen and Silvapulle (2002) state

a Wald test statistic as a difference of the minimum of two quadratic forms which has
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under the null hypothesis the same asymptotic distribution as the score and likelihood ratio

statistic. For more details, see the recent review paper by Sen and Silvapulle (2002).

3 Proofs

Vu and Zhou (1997) give a set of conditions under which a general result holds on the

asymptotic behaviour of likelihood ratio tests where, under the null hypothesis, the true

values are allowed to be on the boundary of the parameter space. For the model specified

in Section 2, we will show that their set of conditions is satisfied.

First define Dn(ν) = E[ST
n (0, ν)Sn(0, ν)] and Gn(ν) = E[F n(0, ν)] with F n(τ) the matrix

of the negative of the second derivatives of Ln(τ). As derived in Section 5 we have for the

shared frailty model with Weibull baseline hazard that

Gn(ν) = nG(η) = n




5 2 2(2− γe + η)

2 2 2(1− γe + η)

2(2− γe + η) 2(1− γe + η) π2/3 + 2(1− γe + η)2


 (2)

with γe the Euler constant. From Property 2 in Section 5 we know that Dn(ν) = Gn(ν),

a property that we expect since our likelihood is based on a sample of independent and

identically distributed vectors.

3.1 Proof of Theorem 1.

The main issue is to check the conditions (A1)-(A3) and (B1)-(B5) of Vu and Zhou (1997)

needed for the validity of their Theorem 2.2.

(A1) The likelihood function, score vector and components of the matrix of second deriva-

tives of the log likelihood (see Section 5 for explicit expressions) are continuous and finite

on a neighborhood of the true parameter value (0, ν0). For the score component and second

derivatives of the log likelihood with respect to θ the boundedness can be shown by an ex-

pansion of the logarithmic function in the second term of equation (12) in Section 5. For

the other derivatives the result is straightforward to obtain.

(A2) Let βmin(A) and βmax(A) denote the smallest and the largest eigenvalue of a sym-
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metric positive definite matrix A. From Property 1 in Section 5 we have that

liminf
n→∞

βmin(Gn(ν))

βmax(Gn(ν))
=

βmin(G(η))

βmax(G(η))
> 0.

It therefore suffices to show the Chernoff regularity, which is satisfied since the parameter

space Θ1 = (0,∞)× R× R is convex (Geyer, 1994).

(A3) The approximating cones for Θ0 and Θ1 are CΘ0 ≡ Θ0 and CΘ1 ≡ Θ. The trans-

formed cones, used to obtain the asymptotic distribution of the likelihood ratio test, are for

j = 0, 1

C̃n,Θj
=





(θ̃, η̃, α̃) = GT/2
n (ν)




θ

η

α


 with




θ

η

α


 ∈ CΘj





with G1/2
n (ν) and GT/2

n (ν) the left and the corresponding right Cholesky square root of

Gn(ν). A direct calculation shows that GT/2
n (ν) = n1/2GT/2(η) with

GT/2(η) =




√
5 2/

√
5 2(2− γe + η)/

√
5

0
√

6/5
√

2(1− 3γe + 3η)/
√

15

0 0
√

(π2 − 4)/3




We therefore have

C̃n,Θ0 =

{
(θ̃, η̃, α̃) : θ̃ −

√
2

3
η̃ − 2

√
5√

3(π2 − 4)
α̃ = 0

}
≡ C̃Θ0

C̃n,Θ1 =

{
(θ̃, η̃, α̃) : θ̃ −

√
2

3
η̃ − 2

√
5√

3(π2 − 4)
α̃ ≥ 0

}
≡ C̃Θ1 .

Since C̃n,Θj
≡ C̃Θj

, condition (A3) holds.

(B1) Based on the expressions in Section 5 we can easily show that E[Sn(0, ν)] = 0 and

we know that Dn(ν) = Gn(ν) are finite matrices.

(B2) βmin(Gn(ν)) = nβmin(G(η)) → ∞, n → ∞. This follows from Property 1 in Sec-

tion 5.

(B3) Let ‖W ‖1 denote the sum of the absolute values of the elements of a matrix W .
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For (0, ν0), the true parameter value, define

Nn(A) =





τ = (θ, η, α) : (θ, η − η0, α− α0)Gn(ν0)




θ

η − η0

α− α0


 ≤ A2, τ ∈ Θ





.

To prove (B3) we need to show that

sup
τ∈Nn(A)

‖G−1/2
n (ν0)F n(τ)G−T/2

n (ν0)− I3‖1 = oP (1). (3)

with P a shorthand notation for Pτ0 (τ0 = (0, ν0) ∈ Θ0, the true value of the parameter

under the null hypothesis). Note that (recall equation (2))

G−1/2
n (ν0)F n(τ)G−T/2

n (ν0)− I3

= G−1/2(η0)

(
F n(0, ν0)−Gn(ν0)

n

)
G−T/2(η0) (4)

+G−1/2(η0)

(
F n(τ)− F n(0, ν0)

n

)
G−T/2(η0).

Note that, for matrices W 1 and W 2, ‖W 1W 2‖1 ≤ ‖W 1‖1‖W 2‖1. Since ‖G−1/2(η0)‖1 =

‖G−T/2(η0)‖1 ≤ C(η0), with 0 < C(η0) < ∞, (3) follows by showing that

∥∥∥∥
F n(0, ν0)

n
−G(η0)

∥∥∥∥
1

= oP (1) (5)

and

sup
τ∈Nn(A)

∥∥∥∥
F n(τ)− F n(0, ν0)

n

∥∥∥∥
1

= oP (1). (6)

To establish the validity of (5) we need the entries of F n(0, ν0) given in Section 5. For each

entry we apply the law of large numbers to obtain

∣∣∣∣∣
(

F n(0, ν0)

n

)

[i,j]

− (G(η0))[i,j]

∣∣∣∣∣ = oP (1).

Hence (5) is valid.

To establish (6) we need the entries of F n(τ), the negative of the second derivatives of Ln,

which are also given in Section 5. For each entry we need to show that

sup
τ∈Nn(A)

∣∣∣∣∣
(

F n(τ)− F n(0, ν0)

n

)

[i,j]

∣∣∣∣∣ = oP (1). (7)
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We show how to prove (7) for the [2, 2]-entry.

(
F n(τ)− F n(0, ν0)

n

)

[2,2]

=
1

n

n∑
i=1

H22(Ti, τ)

where, with Ui = T e−α

i1 + T e−α

i2 (as defined in Section 5),

H22(Ti, τ) = −θe−2η(1 + 2θ)
U2

i

(1 + θe−ηUi)2
+ e−η(1 + 2θ)

Ui

1 + θe−ηUi

− e−η0Ui.

Note that H22(Ti, τ0) ≡ 0. There exists a fixed positive integer n0 such that for all n ≥ n0

sup
τ∈Nn(A)

e−α ≤ K ≡ 2(e−α0 + 1)

and, for some constant D > 0,

|H22(Ti, τ)| < D(T 2K
i1 + T 2K

i2 ).

With µ(τ) = Eτ0H(Ti, τ) we have by the dominated convergence theorem that

lim
τ→τ0

µ(τ) = µ(τ0) ≡ 0. Now the proof of (6) follows since

sup
τ∈Nn(A)

∣∣∣∣∣
1

n

n∑
i=1

H22(Ti, τ)

∣∣∣∣∣

≤ sup
τ∈Nn(A)

∣∣∣∣∣
1

n

n∑
i=1

H22(Ti, τ)− µ(τ)

∣∣∣∣∣ + sup
τ∈Nn(A)

|µ(τ)| = oP (1). (8)

An application of Theorem 16(a) in Ferguson (1996), p. 108 implies indeed that the first term

in the right-hand side of (8) is oP (1) (uniform law of large numbers); elementary analysis

implies that the second term in the right-hand side of (8) is o(1).

Similar proofs hold for all the other entries of (F n(τ)− F n(0, ν0))/n.

(B4) The matrix V = I3 and (B4) holds since Gn(ν) = Dn(ν).

(B5) Since (Ti1, Ti2), i = 1, . . . , n, are independent and identically distributed vectors (B5)

follows from classical multivariate central limit theory.

Since the Vu and Zhou (1997) conditions (A1)-(A3) and (B1)-(B5) are valid, an applica-

tion of their Theorem 2.2 gives that the asymptotic null distribution of Ln, the likelihood

ratio statistic, is the same as the distribution of

infeτ∈ eCΘ0

|N − τ̃ |2 − infeτ∈ eCΘ1

|N − τ̃ |2 (9)



11

where τ̃ = (θ̃, η̃, α̃) and N = (N1, N2, N3) is multivariate normal with mean vector zero and

covariance matrix I3.

From the definitions C̃Θ0 and C̃Θ1 we have

infeτ∈ eCΘ0

|N − τ̃ |2 =

(
N1 + aN2 + bN3√

1 + a2 + b2

)2

(10)

with a = −
√

2
3

and b = − 2
√

5√
3(π2−4)

(see the proof of condition (A3)), i.e., the random variable

in (10) has a χ2
1 distribution. We further have

infeτ∈ eCΘ1

|N − τ̃ |2 =





0 N ∈ C̃Θ1(
N1 + aN2 + bN2√

1 + a2 + b2

)2

N /∈ C̃Θ1

(11)

Moreover we have P (N ∈ C̃Θ1) = 0.5. This, together with (9) - (11) implies that the

asymptotic distribution of the likelihood ratio test is 0.5χ2
0 + 0.5χ2

1. ¥

3.2 Proof of Theorem 2.

We first state the general form of the score statistic to test the heterogeneity hypothesis.

Partition the Fisher information matrix Gn(ν) such that the upper left block corresponds

to the parameter θ constrained to zero under the null hypothesis and the lower right block

is defined by the nuisance parameters ν. Specifically,

Gn(ν) =

(
Gn,00(ν) Gn,01(ν)

GT
n,01(ν) Gn,11(ν)

)
.

Further, define G00
n (ν) = (G−1

n (ν))00 = (Gn,00(ν)−Gn,01(ν)G−1
n,11(ν)GT

n,01(ν))−1, let ν̂ be the

maximum likelihood estimator of the nuisance parameters under the null hypothesis and let

Sn,θ(0, ν̂) denote the score vector evaluated at (0, ν̂).

Under the assumption of the existence of a matrix H such that for any a > 0

sup
‖h‖≤a

[
n−1/2{Sn(τ + n−1/2h)− Sn(τ)}+ H(τ)h

]
= op(1),

Silvapulle and Silvapulle (1995) define the following score statistic for testing the hetero-

geneity hypothesis (1.1):

Sn = n−1ST
n,θ(0, ν̂)G00

n (0, ν̂)Sn,θ(0, ν̂)

− inf
b≥0

{(
n−1/2G00

n (0, ν̂)Sn,θ(0, ν̂)− b
)T

{G00
n (0, ν̂)}−1

(
n−1/2G00

n (0, ν̂)Sn,θ(0, ν̂)− b
)}

.
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It is also shown that this statistic has asymptotically the same distribution as the likelihood

ratio statistic. We take Gn(τ) as the matrix H from the theorem.

For the case of a shared gamma frailty model with an exponential baseline hazard there

is only the nuisance parameter η (or λ = exp(−η)). For this special case, with Fisher

information matrix

Gn = n

(
5 2

2 2

)
,

we have that G00
n = (3n)−1, not dependent on any nuisance parameters, and hence we obtain

the following score statistic

Sn =
1

3n2
{Sn,θ(0, η̂)}2 − 3n inf

b≥0

{(
1

3n3/2
Sn,θ(0, η̂)− b

)2
}

For the Weibull baseline hazard the nuisance parameter is ν = (η, α) and the Fisher infor-

mation matrix is Gn(ν) as given in (2), from which it is deduced that G00
n = π2/(3n(π2−4)).

Hence the resulting score statistic is obtained as given in Theorem 2. ¥

4 Discussion

For the shared gamma frailty model with Weibull baseline hazard, as defined in Section 2,

we give explicit results on the asymptotic distributional behaviour of the likelihood ratio

test and the score test for heterogeneity. These results are an important first step towards a

better understanding of the asymptotic properties on test statistics for testing heterogeneity

in more general frailty models. A further challenge is indeed to extend these results to

more complex models and data settings. More complex families of models should include

frailty models with covariates present and frailty models with unspecified baseline hazard.

Regarding the type of data there is the need to obtain explicit results for censored data.

The likelihood expressions in the papers by Murphy (1995) and Murphy and van der Vaart

(1997, 2000) will provide useful information to tackle these problems.

A second interesting theme for further work is to study the distributional behaviour of

the likelihood ratio and the score test for heterogeneity under local alternatives converging

to the null hypothesis at the rate n−1/2. As in two-sided testing problems, it is expected that

the test statistics will have the same power characteristics under these local circumstances.

A third relevant issue for further study is to provide information on good finite sample

approximations of the mixing properties, i.e., can we improve the asymptotic 50:50 mixture
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of the χ2
0 and the χ2

1 by finding mixing proportions that depend on the information of the

sample size? In a setting of regression spline mixed models, Claeskens (2002) calculates

finite sample approximations to the mixing probabilities. In the frailty models currently

under consideration the situation is more complex by the presence of nuisance parameters

under the null hypothesis. Bootstrapping the distribution of the test statistic can provide

another alternative to the asymptotic distribution.

5 Technical results

Define the following random variables: Ui = T e−α

i1 + T e−α

i2 , Vi = ln(Ti1) + ln(Ti2) and

Wi = T e−α

i1 ln(Ti1) + T e−α

i2 ln(Ti2).

Calculation of the three-dimensional score vector Sn(θ, η, α):

∂

∂θ
Ln(τ) =

n

(1 + θ)
+

1

θ2

n∑
i=1

ln(1 + θe−ηUi)− (
1

θ
+ 2)e−η

n∑
i=1

Ui

1 + θe−ηUi

(12)

∂

∂η
Ln(τ) = −2n + (1 + 2θ)e−η

n∑
i=1

Ui

(1 + θe−ηUi)

∂

∂α
Ln(τ) = −2n− e−α

n∑
i=1

Vi + (1 + 2θ)e−(η+α)

n∑
i=1

Wi

1 + θe−ηUi

.

Under the null hypothesis, using an expansion of the logarithm in the second term of

(12), it follows that:

∂

∂θ
Ln(0, ν) = n− 2e−η

n∑
i=1

Ui +
1

2
e−2η

n∑
i=1

U2
i

∂

∂η
Ln(0, ν) = −2n + e−η

n∑
i=1

Ui

∂

∂α
Ln(0, ν) = −2n− e−α

n∑
i=1

Vi + e−(η+α)

n∑
i=1

Wi.

The components needed in the calculation of the Fisher information matrix F n(τ) are :
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[1, 1] :
∂2

∂θ2
Ln(τ) = − n

(1 + θ)2
− 2

θ3

n∑
i=1

ln(1 + θe−ηUi)

+
2e−η

θ2

n∑
i=1

Ui

1 + θe−ηUi

+ (
1

θ
+ 2)e−2η

n∑
i=1

U2
i

(1 + θe−ηUi)2

[2, 2] :
∂2

∂η2
Ln(τ) = θe−2η(1 + 2θ)

n∑
i=1

U2
i

(1 + θe−ηUi)2
− e−η(1 + 2θ)

n∑
i=1

Ui

1 + θe−ηUi

[3, 3] :
∂2

∂α2
Ln(τ) = e−α

n∑
i=1

Vi − (1 + 2θ)e−(η+α)

n∑
i=1

Wi

1 + θe−ηUi

−(1 + 2θ)e−(η+2α)

n∑
i=1

T e−α

i1 (ln(Ti1))
2 + T e−α

i2 (ln(Ti1))
2

1 + θe−ηUi

+θ(1 + 2θ)e−2(η+α)

n∑
i=1

W 2
i

(1 + θe−ηUi)2

[1, 2] :
∂2

∂θ∂η
Ln(τ) = −e−2η(1 + 2θ)

n∑
i=1

U2
i

(1 + θe−ηUi)2
+ 2e−η

n∑
i=1

Ui

1 + θe−ηUi

[1, 3] :
∂2

∂θ∂α
Ln(τ) = 2e−(η+α)

n∑
i=1

Wi

1 + θe−ηUi

−(1 + 2θ)e−(2η+α)

n∑
i=1

UiWi

(1 + θe−ηUi)2

[2, 3] :
∂2

∂η∂α
Ln(τ) = −(1 + 2θ)e−(η+α)

n∑
i=1

Wi

(1 + θe−ηUi)2
.

Under the null hypothesis, and using an expansion of the logarithm in the second term of
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the second derivative with respect to θ, it follows that:

[1, 1] :
∂2

∂θ2
Ln(0, ν) = −n + 2e−2η

n∑
i=1

U2
i −

2

3
e−3η

n∑
i=1

U3
i

[2, 2] :
∂2

∂η2
Ln(0, ν) = −e−η

n∑
i=1

Ui

[3, 3] :
∂2

∂α2
Ln(0, ν) = e−α

n∑
i=1

Vi − e−(η+α)

n∑
i=1

Wi

−e−(η+2α)

n∑
i=1

{T e−α

i1 (ln(Ti1))
2 + T e−α

i2 (ln(Ti1))
2}

[1, 2] :
∂2

∂θ∂η
L0(0, ν) = −e−2η

n∑
i=1

U2
i + 2e−η

n∑
i=1

Ui

[1, 3] :
∂2

∂θ∂α
L0(0, ν) = 2e−(η+α)

n∑
i=1

Wi − e−(2η+α)

n∑
i=1

UiWi

[2, 3] :
∂2

∂η∂α
L0(0, ν) = −e−(η+α)

n∑
i=1

Wi.

If we let ψ be the digamma function and define the function h(θ) = (η − ψ(1
θ
) − ln(θ))

and ζ(2, q) =
∫∞
0

te−qt

1−e−t dt, it then follows that the expected values are

E[− ∂2

∂θ2
Ln(τ)] =

(5 + 9θ + 6θ2)

(1 + θ)2(1 + 2θ)(1 + 3θ)

E[− ∂2

∂η2
Ln(τ)] =

2

(1 + 3θ)

E[− ∂2

∂α2
Ln(τ)] = 2n + 2nζ(2, 2) +

2n

(1 + 3θ)
[(ψ(2) + h(θ))2 + ζ(2,

1

θ
)

−2θ[ψ(3)2 − ψ(2)2 + 2(ψ(3)− ψ(2))h(θ) + ζ(2, 3)]]

E[− ∂2

∂θ∂η
Ln(τ)] =

2

(1 + 3θ)(1 + 2θ)

E[− ∂2

∂θ∂α
Ln(τ)] =

4nψ(3)

(1 + 3θ)
+

2nh(θ)

(1 + 2θ)(1 + 3θ)
− n(2 + 8θ)ψ(2)

(1 + 2θ)(1 + 3θ)

E[− ∂2

∂η∂α
Ln(τ)] =

2n

(1 + 3θ)
[ψ(2) + η − ψ(

1

θ
+ 1)− ln(θ)]
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To obtain the matrix Gn(ν) we need these expected values under H0. This yields

Gn(ν) = nG(η) = n




5 2 4ψ(3) + 2η − 2ψ(2)

2 2 2(ψ(2) + η)

4ψ(3) + 2η − 2ψ(2) 2(ψ(2) + η) 2(1 + ζ(2, 2) + (ψ(2) + η)2)


 .

Note that det{G(η)} = 2η2 − 8. Since the submatrices (5) and

(
5 2

2 2

)
have positive de-

terminants it follows that G(η) is positive definite (see e.g. Martin (1991), p. 242). Moreover

since G(η) is symmetric its eigenvalues are real . For β an eigenvalue of G(η) and xβ the

corresponding eigenvector we have

xT
β G(η)xβ = βxT

β xβ > 0

which implies that the eigenvalues of G(η) are strictly positive.

Property 1. The symmetric matrix G(η) is positive definite and therefore has for ev-

ery fixed value of η, three positive eigenvalues.

Now

E[
∂

∂θ
Ln(0, ν)

∂

∂θ
Ln(0, ν)] = 5n

E[
∂

∂η
Ln(0, ν)

∂

∂η
Ln(τ)] = 2n

E[
∂

∂α
Ln(0, ν)

∂

∂α
Ln(0, ν)] = n(4(ψ(3) + η)2 − 6(ψ(2) + η)2

+4(ψ(2) + η)(ψ(1) + η) + 2ζ(2, 1) + 4ζ(2, 3)− 4ζ(2, 2))

E[
∂

∂θ
Ln(0, ν)

∂

∂η
Ln(0, ν)] = 2n

E[
∂

∂θ
Ln(0, ν)

∂

∂α
Ln(0, ν)] = n(6ψ(4)− 6ψ(3) + 2ψ(2) + 2η)

E[
∂

∂η
Ln(0, ν)

∂

∂α
Ln(0, ν)] = n(4ψ(3)− 4ψ(2) + 2ψ(1) + 2η)

Property 2. Gn(ν) = Dn(ν) = nG(η).

Proof. Using the recursive property of the digamma function, ψ(ν + 1) = ψ(ν) + 1
ν
,

we have ψ(3) = ψ(2) + 1
2

and ψ(1) = ψ(2)− 1. From this we obtain that

4(ψ(3) + η)2 − 6(ψ(2) + η)2 + 4(ψ(2) + η)(ψ(1) + η) = 2(ψ(2) + η)2 + 1 (13)
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A direct calculation also shows that

2ζ(2, 1) + 4ζ(2, 3)− 4ζ(2, 2) = 2ζ(2, 2) + 1 (14)

From (13) and (14) we obtain (Gn(η))33 = (Dn(η))33 where Dn(η) = Dn(η, α). Equality

of the other entries can be showed in a similar (more easy) way. Direct calculation of the

matrix elements yields the simplified expression for Gn in (2).
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