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Center for Statistics, Limburgs Universitair Centrum, B-3590 Diepenbeek,

Belgium, e-mail: paul.janssen@luc.ac.be, noel.veraverbeke@luc.ac.be

Abstract

The concept of relative hazard rate is introduced in a two sample problem.

Some kernel estimator is proposed in the case where both samples are subject

to left truncation and right censoring and an iid representation is obtained in

this setup. As a consequence the asymptotic distribution of the estimator and

the asymptotic mean squared error are found. An application to the famous

Channing House data set illustrates the theory.
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1. Introduction
An important problem in survival analysis is to compare the lifetime of two pop-

ulations (a control group and a treatment group) when no parametric assumptions

are plausible for these populations. In the nonparametric two sample problem there

exists a vast literature about either constructing test statistics to evaluate the sig-

nificance of the observed differences or to construct some informative curves that
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provide a graphical idea of possible differences between the two lifetime distribu-

tions. Such graphical procedures go back to the well known Q-Q plots, P-P plots

(see [4], [13] [9] and [12] among others), or, more recently, to relative distributions

and relative densities (see [8] and [3] for instance). In the censored data case [6] and

[1, 2] deal with the problems of nonparametric estimation of the relative distribution

and the relative density, as well as bandwidth selection.

In survival analysis, however, exploring the risk of death is the key issue. Therefore

the cumulative hazard and the hazard rate are the more suitable functions to study.

In this context it seems very reasonable to compare two populations by means of the

relative hazard rate of Y with respect to Y0. The precise definition is as follows. Let

F , Λ and λ (F0, Λ0 and λ0) denote the distribution function (cdf), the cumulative

hazard and the hazard rate of Y (Y0). The relative cumulative hazard of Y with

respect to Y0 is ΛR, the cumulative hazard of Λ0(Y ).

We denote the corresponding hazard rate as λR. In this paper, we propose a non-

parametric kernel estimator for λR for left truncated and right censored data: (Y ,

T , C) denotes a random vector; Y is the lifetime (the random variable of interest)

with cdf F , T is a random left truncation time with cdf L and C is a random right

censoring time with cdf G. Similar definitions hold for (Y0, T0, C0). For simplicity

we assume that the cdf’s are continuous and that the random variables describing

the lifetime, the censoring time and the truncation time are independent. In this

model, we observe (T , Z, δ) if T ≤ Z where Z = Y ∧ C and δ = 1{Y ≤ C}, with
H the cdf of Z we have 1−H = (1−F )(1−G). When T > Z nothing is observed.
The data consist of two left truncated right censored samples:

(T1, Z1, δ1), . . . , (Tm, Zm, δm)

and

(T01, Z01, δ01), . . . , (T0n, Z0n, δ0n)

where the observed sample sizes m and n are random and the real sample sizes

(say M and N) are unknown. With α = P (T ≤ Z) and α0 = P0(T0 ≤ Z0) (the
probability of absence of truncation in the target and in the reference population)

we have, from the SLLN, that m/M → α and n/N → α0.

From P (Λ0(Y ) ≤ t) = F (Λ−10 (t)) we have that
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ΛR(t) = − ln(1− F (Λ−10 (t))) = Λ(Λ−10 (t)).
The relative hazard rate is defined as the derivate of the relative cumulative hazard,

i.e.,

λR(t) = Λ
I
R(t) =

λ(Λ−10 (t))
λ0(Λ

−1
0 (t))

.

The relative hazard rate λR is a useful (graphical) tool for comparing the target

distribution F (say the treatment distribution) with a reference distribition F0 (say

the control distribution). Under the hypothesis that F equals F0 we have ΛR(t) ≡ t
and λR(t) ≡ 1. Deviations from this line therefore provide visual information on

how population Y differs from population Y0.

If F is continuous and defining aF = inf{v : F (v) > 0}, we have

Λ(t) =

t8
aF

dF (y)

1− F (y) =
t8

aF

dHu(y)

C(y)
(1)

where

Hu(t) = P (Z ≤ t, δ = 1 | T ≤ Z)
= α−1P (Y ≤ t, T ≤ Y ≤ C)

=

t8
aF

α−1P (T ≤ y ≤ C)dF (y)

=

t8
aF

α−1L(y)(1−G(y))dF (y)

(2)

and

C(t) = P (T ≤ t ≤ Z | T ≤ Z)
= α−1P (T ≤ t ≤ Z)
= α−1L(t)(1− F (t))(1−G(t)).

(3)

Empirical versions of (2) and (3) are

Hu
m(t) =

1

m

m3
i=1

1{Zi ≤ t, δi = 1}

and

Cm(t) =
1

m

m3
i=1

1{Ti ≤ t ≤ Zi}.
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Plugging in the empirical versions in (1) we obtain the TJW consistent estimator

(see [14]):

�Λ(t) = m3
i=1

1{Zi ≤ t, δi = 1}
mCm(Zi)

. (4)

Some useful asymptotic representation for this estimator has been recently obtained

in [15]. In a similar way, we can define �Λ0(t) which is consistent for Λ0(t).
1.1. An estimator for the relative cumulative hazard
If F0 (or Λ0) would be known, we could easily obtain from (4) an estimator for ΛR:

4Λm(t) = m3
i=1

1{Λ0(Zi) ≤ t, δi = 1}
m3
j=1

1{Λ0(Tj) ≤ Λ0(Zi) ≤ Λ0(Zj)}
. (5)

Observe that 4Λm is nothing but (4) based on the pseudovalues (Λ0(Ti),Λ0(Zi), δi),
i = 1, . . . ,m. Actually, F0 is unknown and we replace the pseudovalues by the

relative data (�Λ0(Ti), �Λ0(Zi), δi), i = 1, . . . ,m, to obtain
�ΛR(t) = m3

i=1

1{�Λ0(Zi) ≤ t, δi = 1}
m3
j=1

1{�Λ0(Tj) ≤ �Λ0(Zi) ≤ �Λ0(Zj)} .

1.2. An estimator for the relative hazard rate
Let us consider a kernel function, K, (a known density function) and h = hm, a

nonnegative bandwidth sequence. Since

1

h

8
K
pt− v
h

Q
dΛR(v) =

1

h

8
K
pt− Λ0(y)

h

Q
dΛ(y)

is close to λR(t), a natural estimator is

�λR(t) = 1

h

8
K
pt− �Λ0(y)

h

Q
d�Λ(y). (6)

In this paper, we will focus on the asymptotic distributional behaviour of this rel-

ative hazard rate estimator. In Section 2 we will collect some useful asymptotic

representations. They are needed in Section 3 to obtain an iid representation for
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�λR(t) that will be the key to obtain the limit distribution of λR(t) and to study its
mean squared error. An application to the well known Channing House data set

is given in Section 4. Finally, Section 5 contains the proofs of the results stated in

Section 3.

2. Some useful representations
As notation we use, with W an arbitrary cdf, aW = inf{t : W (t) > 0} and bW =

sup{t : W (t) < 1}. From now on, for conciseness, we also skip in our notation the

conditioning event T ≤ Z when writting expectations and probabilities.
Asymptotic representations for �Λ(t) - Λ(t) have been studied in [7] and [15]. The
following important lemma is Theorem 2.1 in [15].

Lemma 1. Assume aL ≤ aH and for some b < bH
b8

aH

dHu(t)

C3(t)
<∞.

Then, we have, uniformly in aH ≤ t ≤ b,

�Λ(t)− Λ(t) = �L(t) + �R(t)
where �L(t) = m−1 m3

i=1

�ξi(t) with
�ξi(t) = 1{Zi ≤ t, δi = 1}

C(Zi)
−

t8
aH

1{Ti ≤ v ≤ Zi}
C2(v)

dHu(v)

and

sup
aH≤t≤b

| �R(t)| = OD log logm
m

i
a.s.

To obtain the appropriate appoximation for the relative hazard rate estimator

given by (6), we need asymptotic representations for the TJW product limit es-

timator based on the pseudosample (Λ0(Ti),Λ0(Zi), δi), i = 1, . . . ,m; and for the

TJW product limit estimator based on the pseudosample (Λ0(T0i),Λ0(Z0i), δ0i), i =

1, . . . , n. We denote these estimators as 4Λm(t) (see also (5)) and 4Λ0n(t). Fur-

ther note that 4Λm(t) = �Λ(Λ−10 (t)) estimates 4Λ(t) ≡ ΛR(t) = Λ(Λ−10 (t)) and that
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4Λ0n(t) = �Λ0(Λ−10 (t)) estimates Λ0(Λ−10 (t)) ≡ t.
For the pseudodata (Λ0(Ti),Λ0(Zi), δi), i = 1, . . . , n, we need:

4H(t) = P (Λ0(Zi) ≤ t) = H(Λ−10 (t))
4C(t) = PDΛ0(Ti) ≤ t ≤ Λ0(Zi)|Λ0(Ti) ≤ Λ0(Zi)i = C(Λ−10 (t))
4Hu(t) = P

D
Λ0(Zi) ≤ t, δi = 1|Λ0(Ti) ≤ Λ0(Zi)

i
= Hu(Λ−10 (t))

Note that aH = aH◦Λ−10 and bH = bH◦Λ−10 ; and let
4L be the cdf of Λ0(Ti).

The following two lemmas are a straightforward consequence of Lemma 1.

Lemma 2. Assume aL ≤ aH and for some 4b < bH
b8

a
H

d 4Hu(t)4C3(t) ≡
Λ−10 (b)8
aH

dHu(t)

C3(t)
<∞.

Then we have, uniformly in aH ≤ t ≤ 4b,4Λm(t)− ΛR(t) = 4Lm(t) + 4Rm(t)
where 4Lm(t) = m−1 m3

i=1

4ξi(t) with 4ξi(t) = �ξi(Λ−10 (t)) and
sup

a
H
≤t≤b

| 4Rm(t)| = Op log logm
m

Q
a.s.

For the pseudodata (Λ0(T0i),Λ0(Z0i), δ0i), i = 1, . . . , n, we use the parallel notation4H0(t) = H0(Λ−10 (t)), 4C0(t) = C0(Λ−10 (t)), 4Hu
0 (t) = H

u
0 (Λ

−1
0 (t)), aH0 = aH0◦Λ−10 , bH0 =

bH0◦Λ−10 ; and
4L0 denotes the cdf of Λ0(T0i).

Lemma 3. Assume aL0 ≤ aH0 and for some 4b0 < bH0
b08

a
H0

d 4Hu
0 (t)4C30 (t) ≡

Λ−10 (b0)8
aH0

dHu
0 (t)

C30 (t)
<∞.
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Then we have, uniformly in aH0 ≤ t ≤ 4b04Λ0n(t)− t = 4L0n(t) + 4R0n(t)
where 4L0n(t) = n−1 n3

i=1

4ξ0i(t) with
4ξ0i(t) = 1{Z0i ≤ Λ−10 (t), δ0i = 1}

C0(Z0i)
−

Λ−10 (t)8
aH0

1{T0i ≤ v ≤ Z0i}
C20 (v)

dHu
0 (v)

and

sup
a
H0
≤t≤b0

| 4R0n(t)| = Op log log n
n

Q
a.s.

3. A representation for the relative hazard rate
estimator
Proceeding as in [8] we have, by a Taylor expansion,�λR(t) = Am(t) +Bn,m(t) +Rn,m(t) (7)

where

Am(t) =
1

h

8
K
pt− Λ0(y)

h

Q
d�Λ(y) (8)

Bn,m(t) =
1

h2

8 D
Λ0(y)− �Λ0(y)iK Ipt− Λ0(y)

h

Q
d�Λ(y) (9)

Rn,m(t) =
1

2h3

8 D
Λ0(y)− �Λ0(y)i2K IID∆ty

i
d�Λ(y) (10)

with ∆ty a value between
D
t− Λ0(y)

i
/h and

D
t− �Λ0(y)i/h.

For further discussion we require some conditions. We first define some functions

that will appear in the moment calculations of the terms in the iid representation

(see the proof of Corollary 1): Ψ0(s) = ϕ0(Λ
−1
0 (s)), with

ϕ0(s) =

s8
aH0

dHu
0 (y)

C20(y)
=

s8
aH0

λ0(y)

C20 (y)
dy
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and Ψ(s) = ϕ(Λ−10 (s)), with

ϕ(s) =

s8
aH

dHu(y)

C2(y)
=

s8
aH

λ(y)

C2(y)
dy.

Let us now state the assumptions that will be used along the paper.

(A1) K is a twice differentiable density function on [−1, 1] with K II bounded.
(A2) As the samples sizes tend to infinity, limn→∞ m

n
= κ2, with 0 < κ2 <∞.

(A3) The bandwidth h satisfies h→ 0 and nh3 →∞.
(A4) The endpoints of the supports satisfy aL < aH0 < bH < bH0 , aL ≤ aH and

aL0 ≤ aH0 .
(A5) There exist some 4b < bH and 4b0 < bH0 such that

b8
aH

d 4Hu(s)4C3(s) <∞
and

b08
aH0

d 4Hu
0 (s)4C30(s) <∞.

(A6) The relative hazard function, ΛR, is Lipschitz continuous, with Lipschitz con-

stant LΛR, in a neighbourhood of t.

(A7) The relative hazard rate, λR, is twice continuously differentiable at t.

(A8) The function F ◦ Λ−10 is Lipschitz continuous in a neighbourhood of t.

(A9) Ψ0 is differentiable in a neighbourhood of t, with Ψ
I
0 continuous at t.

(A10) The functions Ψ0 and Ψ are twice continuously differentiable at t.

It is worth mentioning that part of the constraints in (A4) come from identifiability

conditions to be imposed to the left truncation scheme. The inequalities bH < bH0 is

a technical condition needed to avoid problems with the right tails of the cumulative

hazard function estimator. It essentially requires that one should choose, between

the two populations, the one with larger right endpoint to be the baseline.

Recall the term Am(t) in (8). A standard change of variable gives

Am(t) =
1

h

8
K
pt− v
h

Q
d4Λm(v).
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Now apply Lemma 2 to obtain:

Am(t) = A
(1)
m (t) +A

(2)
m (t) +O

D log logm
m

i
a.s. (11)

where

A(1)m (t) =

8
K(u)λR(t− hu)du

A(2)m (t) =
1

mh

m3
i=1

8 4ξi(t− hu)K I(u)du. (12)

We now consider Bn,m(t) defined in (9),

Bn,m(t) =
1

h2

8 D
v − 4Λ0n(v)iK Ipt− v

h

Q
d4Λm(v)

= B
(1)
n,m(t) +B

(2)
n,m(t)

(13)

where

B(1)n,m(t) =
1

h2

8 D
v − 4Λ0n(v)iK Ipt− v

h

Q
d4Λ(v)

B(2)n,m(t) =
1

h2

8 D
v − 4Λ0n(v)iK Ipt− v

h

Q
d
p4Λm(v)− 4Λ(v)Q.

An application of Lemma 3 leads to the further decomposition:

B(1)n,m(t) = B
(1.1)
n,m (t) +B

(1.2)
n,m (t) (14)

where

B(1.1)n,m (t) = − 1

nh2

n3
i=1

8 4ξ0i(v)K Ipt− v
h

Q
λR(v)dv

= − 1

nh

n3
i=1

8 4ξ0i(t− uh)K I(u)λR(t− hu)du
B(1.2)n,m (t) = −

1

h2

8 4R0n(v)K Ipt− v
h

Q
λR(v)dv

9



In Section 5 we will show that

B(1.2)n,m (t) = O
D log log n

n

i
a.s. (15)

and

B(2)n,m(t) = O

w
log log n

nh2

�
h+
+ph logm

m

Q 1
2 ∨ (log logm)

1
2

m

�=W
a.s. (16)

We further show in Section 5 that

Rn,m(t) = oP
D
(mh)−1/2

i
. (17)

Based on the previous discussion we obtain the following theorem.

Theorem 1. Assume conditions (A1)-(A6) and (A8)-(A9) and let t < min{4b0,4b},
then �λR(t) = A(1)m (t) +A(2)m (t) +B(1.1)n,m (t) + Cn,m(t),

with Cn,m(t) = oP
D
(mh)−1/2

i
and E(|Cn,m(t)|d) = o((mh)− d

2 ) for any d > 0.

Corollary 1. Assume conditions (A1)-(A10) and let t < min{4b0,4b}, then
E[�λR(t)] = λR(t) +

1

2
λIIR(t)DKh

2 + o(h2) + o
D
(mh)−1/2

i

Var
D�λR(t)i = σ2

mh
+ o
D 1
mh

i
where

σ2 = CK
+ λR(t)

C
D
Λ−10 (t)

i + κ2
λ2R(t)

C0
D
Λ−10 (t)

i�
with CK =

$
K2(u)du and DK =

$
u2K(u)du.

Remark. As a straightforward consequence of Corollary 1, an asymptotic formula

for the mean squared error of the estimator is

MSE
p�λR(t)Q = AMSE p�λR(t)Q+ o(h4) + oD 1

mh

i
,
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with

AMSE
p�λR(t)Q = 1

4
λIIR(t)

2D2
Kh

4 +
σ2

mh
.

The smoothing parameter that minimizes this criterion is

hAMISE =
σ2

λIIR(t)2D
2
K

m−
1
5 .

Observe that plug-in bandwidth selectors for hAMISE would require the estimation

of many underlying functions. Smoothing techniques are required to estimate some

of these functions.

The following result gives the limit distribution of the estimator either using some

asymptotically undersmoothing bandwidth (that kills the bias) or with the asymp-

totical optimal rate for the smoothing parameter.

Corollary 2. Assume the conditions of Corollary 1 and let t < min{4b0,4b}.
If mh5 → 0, then

(mh)
1
2{�λR(t)− λR(t)} d→ N(0,σ2).

If mh5 → c, for some c > 0, then

(mh)
1
2{�λR(t)− λR(t)} d→ N(

1

2
λIIR(t)DKc

1/2, σ2).

4. Example: Channing House data
We have applied the kernel relative hazard estimator to the well known Channing

House data set (see [10] or [11]). Channing House is a retirement centre in Palo Alto,

California. The data were collected between the opening of the house in 1964 and

July 1, 1975. In that time 97 men and 365 women passed through the centre. For

each of these, their age on entry and also on leaving or death was recorded. A large

number of the observations were censored mainly due to the resident being alive on

July 1, 1975, the end of the study. An individual must survive to a sufficient age, Ti,

to enter the retirement center and all individuals who died prior to entering Channing

House are not included in the study. Therefore the lifetimes in the study are left

truncated. Over the time of the study 130 women and 46 men died at Channing

House. Differences between the survival of the sexes was one of the primary concerns

of that study.
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The kernel relative hazard function estimation, given in (6), for the lifetime of men

with respect to women was computed. The Gaussian kernel was used to compute

the estimator with different bandwidths to cover differents amount of smoothing.

These estimators (for h = 0.2, 0.3, 0.4) are plotted in Figure 1(a). Figures 1(b)-1(d)

contain the kernel relative hazard estimator for each of these three bandwidths with

some 95% pointwise confidence intervals for certain selected points. These confidence

limits have been computed using some estimators of the bias and variance appearing

in Corollary 1. Empirical estimators are used to estimate the functions C0, C and

Λ0 in σ
2. The function λR appearing in σ

2 is estimated by means of (6) with the

bandwidth already used for the estimation itself. The term λIIR in the bias has been
estimated using the second derivative of the estimator in (6). The bandwidth, g, for

such an estimator has been selected as twice the original bandwidth, h. It is already

known in classical settings that the optimal smoothing parameter for the second

derivative estimation should be asymptotically larger than that for the estimator

itself.

Put Figures 1(a)-1(d) about here.

Looking at Figures 1(a)-1(d) it is clearly seen that the estimated relative risk of

death for men with respect to women is between 2 and 2.5 for t = 0.25. This

means that men have slightly more than twice the risk of death than women with a

cumulative risk of 0.25, that corresponds to an age of about 77 years for the women

population. Moreover, the confidence limits at t = 0.25 (no matter which of three

bandwidths is used) is always above 1, meaning that this higher risk of death for

men is statistically significant.

Figures 1(b)-1(d) also show that the risk of death for both populations is not sig-

nificantly different for t ∈ [0.5, 1.8]. This interval of cumulative hazard for women
corresponds to an age interval, in years, of [83, 92].

5. Proofs
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5.1 Proof of (15)

|B(1.2)n,m (t)| ≤ 1

h2
,K I,∞ sup

t−h≤v≤t+h
| 4R0n(v)| t+h8

t−h

λR(v)dv

=
1

h2
,K I,∞ sup

t−h≤v≤t+h
| 4R0n(v)|[ΛR(t+ h)− ΛR(t− h)]

= O
D log log n

nh

i
a.s.

where the order relation follows from the Lipschitz continuity of ΛR and Lemma 3.

5.2 Proof of (16)

From Lemma 3 we have

B
(2)
n,m(t) = B

(2.1)
n,m (t) +B

(2.2)
n,m (t)

with

B
(2.1)
n,m (t) = − 1

h2

8 4L0n(v)K Ipt− v
h

Q
d(4Λm(v)− 4Λ(v))

B
(2.2)
n,m (t) = − 1

h2

8 4R0n(v)K Ipt− v
h

Q
d(4Λm(v)− 4Λ(v))

To deal with B
(2.1)
n,m (t) we will find an order bound for E[(B

(2.1)
n,m (t))2]. Assume u < v

and recall Lemma 3 and the definition of Ψ0 in Section 3.

E[(B
(2.1)
n,m (t))2]

=
2

nh4

t+h8
t−h

� t+h8
u

K I
pt− v
h

Q
d(4Λm(v)− 4Λ(v))=Ψ0(u)K Ipt− u

h

Q
d(4Λm(u)− 4Λ(u)).

Rewriting the inner integral using integration by parts, we obtain

E[(B(2.1)n,m (t))
2] =

2

nh4
[E(I1)− E(I2)]

where
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I1 =

t+h8
t−h

� t+h8
u

1

h
K II
pt− v
h

Q
(4Λm(v)− 4Λ(v))dv=Ψ0(u)K Ipt− u

h

Q
d(4Λm(u)− 4Λ(u))

I2 =

t+h8
t−h

Ψ0(u)

X
K I
pt− u
h

Q~2
(4Λm(u)− 4Λ(u))d(4Λm(u)− 4Λ(u)).

For I2 we use further integration by parts to obtain

I2 =
1

2

t+h8
t−h

Ψ0(u)

X
K I
pt− u
h

Q~2
d(4Λm(u)− 4Λ(u))2

=
1

2

t+h8
t−h

(4Λm(u)− 4Λ(u))2�ΨI0(u)
X
K I
pt− u
h

Q~2
− 2
h
Ψ0(u)K

I
pt− u
h

Q
K II
pt− u
h

Q=
du.

Similar to the derivation in the appendix, we can derive an exponential inequality

for

∆m = sup
a
F0
≤y≤b

H

|4Λm(u)− 4Λ(u)|
from which we obtain

E(∆2
m) = 2

∞8
0

uP (∆m > u)du = O(m
−1). (18)

Hence, using assumptions (A1) and (A9), we obtain that E(I2) = O(m
−1).

For I1 we also use integration by parts and find

I1 = −
t+h8
t−h

^
− 1
h
K II
Dt− u
h

i
(4Λm(u)− 4Λ(u))Ψ0(u)K IDt− u

h

i
+
+ t+h8

u

1

h
K II
Dt− v
h

i
(4Λm(v)− 4Λ(v))dv�

×
+
ΨI0(u)K

IDt− u
h

i− 1
h
Ψ0(u)K

IIDt− u
h

i��
(4Λm(u)− 4Λ(u))du.

Using Cauchy-Schwarz followed by conditions (A1), (A9) and equation (18), we get

E(I1) = O(m
−1).

14



From the previous discussion we can conclude

E[(B(2.1)n,m (t))
2] = O(m−2h−4)

which implies B
(2.1)
n,m (t) = OP (m

−1h−2). Now using conditions (A2) and (A3),

(mh)1/2B(2.1)n,m (t) = oP (1).

The term B
(2.2)
n,m (t) can be easily bounded:

|B(2.2)n,m (t)| ≤ 1

h2
,K I,∞ sup

t−h≤v≤t+h
| 4R0n(v)| t+h8

t−h

|d(4Λm(v)− 4Λ(v))|
≤ 1

h2
,K I,∞ sup

t−h≤v≤t+h
| 4R0n(v)|+J4Λm(t+ h)− 4Λm(t− h)o+ J4Λ(t+ h)− 4Λ(t− h)o�

≤ 1

h2
,K I,∞ sup

t−h≤v≤t+h
| 4R0n(v)|+2J4Λ(t+ h)− 4Λ(t− h)o+ J4Λm(t+ h)− 4Λm(t− h)o

−J4Λ(t+ h)− 4Λ(t− h)o�.
Using the Lipschitz-continuity of 4Λ ≡ ΛR and the modulus of continuity result (that
we develop in the proof of (17)) we have that

B(2.2)n,m (t) = O
p log log n

nh2

+
h+
pph logm

m

Q 1
2 ∨ (log logm)

1
2

m

Q�Q
a.s.

5.3 Proof of (17)eeRn,m(t)ee ≤ 1

2h3
,K II,∞∆2

0n

8
1{|∆ty| ≤ 1}d�Λ(y)

where ∆0n = sup
aF0≤y≤bH

,�Λ0(y)−Λ0(y),. Note that in the definition of ∆0n the value

of y stays below bH . Because bH < bH0 , aL ≤ aH0 and
bH8

aH0

dHu
0 (y)

C30 (y)
<∞,

we have by Lemma 2.5 in [15] that ∆0n = O
D
n−1/2(log log n)1/2

i
a.s. We further

have that

1{|∆ty| ≤ 1} ≤ 1{t− h−∆0n ≤ Λ0(y) ≤ t+ h+∆0n}.

15



This implieseeRn,m(t)ee ≤ 1

2h3
,K II,∞∆2

0n{�Λ(Λ−10 (t+ h+∆0n))− �Λ(Λ−10 (t− h−∆0n))
�

≤ R(1)n,m(t) +R(2)n,m(t)
where

R
(1)
n,m(t) =

1

2h3
,K II,∞∆2

0n

^+�Λ(Λ−10 (t+ h+∆0n))− Λ(Λ−10 (t+ h+∆0n))
�

−
+�Λ(Λ−10 (t− h−∆0n))− Λ(Λ−10 (t− h−∆0n))

��

R
(2)
n,m(t) =

1

2h3
,K II,∞∆2

0n

+
Λ(Λ−10 (t+ h+∆0n))− Λ(Λ−10 (t− h−∆0n))

�
.

The identity ΛR = Λ ◦ Λ−10 and condition (A6) implyeeeR(2)n,m(t)eee ≤ 1

h3
,K II,∞∆2

0nLΛR(h+∆0n).

Using the order relation for ∆0n and the condition mh
3/(log logm)2 →∞, we have

√
mhR(2)n,m(t) = oP (1).

To handle the term R
(1)
n,m(t), we use a Taylor expansion and apply Theorem 2.2 in

[15] to obtain

R(1)n,m(t) =
1

2h3
,K II,∞∆2

0n

^+
T (1)n,m(t) + T

(2)
n,m(t)

�
+O
D log logm

m

i]
a.s.

where

T
(1)
n,m(t) =

Γm(t+ h+∆0n)− Γm(t− h−∆0n)

1− F (Λ−10 (t+ h+∆0n))

T
(2)
n,m(t) = Γm(t− h−∆0n)

l
1

1− F (Λ−10 (t+ h+∆0n))
− 1

1− F (Λ−10 (t− h−∆0n))

M
,

with Γm(v) = �F (Λ−10 (v))− F (Λ−10 (v)).
16



Condition (A8) implies

√
mh

1

h3
,K II,∞∆2

0nT
(2)
n,m(t) = oP (1).

To obtain an appropriate order bound for T
(1)
n,m(t) we rely on the following inequality:

T (1)n,m(t) ≤ c
�
sup

|u|≤2Lh
|Γm(t)− Γm(t+ u)|+ 1{∆0n > h}

=
, (19)

with L the Lipschitz constant for F ◦ Λ−10 and c some positive constant, in combi-

nation with Lemma 3.1 in [15] and an exponential probability inequality for ∆0n.

Lemma 3.1 in [15] yields

sup
|u|≤2Lh

|Γm(t)− Γm(t+ u)| = O
X
(log logm)1/2

m
∨
w
h logm

m

W1/2~
a.s.

Apply the DKW-inequality (see the appendix) to obtain

1{∆0n > h} = OP
D
e−nch

2i
,

for some constant c > 0. Using (19), the orders obtained for the two terms in the

right hand side of that expression and condition (A3), we obtain

√
mh

1

2h3
,K II,∞∆2

0nT
(1)
n,m(t) = oP (1).

As a final conclusion, we have

√
mhR(1)n,m(t) = oP (1).

5.4 Proof of Theorem 1

The proof simply consists of collecting expressions (7), (8), (9), (10), (11), (12),

(13), (14), (15), (16) and (17). This gives the iid representation with the order in

probability for the remainder term. To prove the moment order for Cn,m(t) one may

revise all the steps in the proof using equation (1.17) in Theorem 1 in [7].

17



5.5 Proof of Corollary 1

Using the moment order for the remainder term of the iid representation given in

Theorem 1 and Cauchy-Schwarz inequality, the bias and the variance of the estimator

results in

E[�λR(t)− λR(t)] =
1
2
λIIR(t)DKh

2 + o(h2) + o
D
(mh)−1/2

i
.

Var
D�λR(t)i = VarDA(2)m (t)i+VarDB(1.1)n,m (t)

i
+ o
D 1
mh

i
+o
D
mh−

1
2

D
Var
D
A
(2)
m (t)
ii 1

2
i
+ o
D
mh−

1
2

D
Var
D
B
(1.1)
n,m (t)

ii 1
2
i
. (20)

The statement in Corollary 1 yields then on obtaining expressions for the variances

of the terms in (20). Let us consider the first one,

Var
D
A
(2)
m (t)
i
=

2

mh2

18
−1

v8
−1
E[4ξi(t− hu)4ξi(t− hv)]K I(u)K I(v)dudv.

For u < v we have (see (1.9) in [7]) that

E[4ξi(t− hu)4ξi(t− hv)] = Ψ(t− hv),
where the function Ψ has been defined in Section 3.

Note that ϕI(s) =
λ(s)

C(s)
and ΨI(s) =

λR(s)

C(Λ−10 (s))
. Therefore using (A10), with ∆1tv

a value between t− hv and t,

Var
D
A(2)m (t)

i
=

2

mh2

18
−1

v8
−1

Ψ(t− hv)K I(u)K I(v)dudv

=
2

mh2

18
−1

v8
−1

[Ψ(t)− hvΨI(t) + h
2v2

2
ΨII(∆1tv)]K

I(u)K I(v)dudv

=
CK
mh

λR(t)

C
D
Λ−10 (t)

i +OD 1
m

i
,

since
18

−1

v8
−1
K I(u)K I(v)dudv =

K2(v)

2

eeeee
1

−1
= 0,

18
−1

v8
−1

vK I(u)K I(v)dudv = −CK
2
,

18



and

eeeee
18

−1

v8
−1
v2K I(u)K I(v)dudv

eeeee ≤ 12,K I,∞.
The variance of the second term in (20) is

Var(B(1.1)n,m (t)) =
2

nh2

18
−1

v8
−1

E[4ξ0(t− hu)4ξ0(t− hv)]λR(t− hu)λR(t− hv)K I(u)K I(v)dudv.
Recall the definition of Ψ0. Using again (1.9) in [7] we have for u < v that

E[4ξ0(t− hu)4ξ0(t− hv)] = Ψ0(t− hv).
Note that ϕI0(s) =

λ0(s)

C0(s)
and ΨI0(s) =

1

C0(Λ
−1
0 (s))

.

Therefore, with ∆2tv,∆3tu and ∆4tv intermediate points,

Var(B(1.1)n,m (t)) =
2

nh2

18
−1

v8
−1
[Ψ0(t)− hvΨI0(t) +

h2v2

2
ΨII0(∆2tv)]

×[λR(t)− huλIR(t) +
h2u2

2
λIIR(∆3tu)]

×[λR(t)− hvλIR(t) +
h2u2

2
λIIR(∆4tv)]K

I(u)K I(v)dudv

=
CK
nh

λ2R(t)

C0(Λ
−1
0 (t))

+O
p1
n

Q
,

since
1$
−1

v$
−1
uK I(u)K I(v)dudv =

CK
2
.

5.6 Proof of Corollary 2

It is a straightforward consequence of Theorem 1, Corollary 1 and the Central Limit

Theorem for triangular arrays. Using Lyapunov condition, we only need to check

that there exist some c > 0 such that

E

Xeeee8 4ξi(t− hu)K I(u)dueeee2+c
~
<∞ (21)

E

Xeeee8 4ξ0i(t− hu)K I(u)dueeee2+c
~
<∞. (22)
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Standard arguments give some bound for the term in (22):

eeee8 4ξi(t− hu)K I(u)dueeee ≤ δ0i4C0(Λ0(Z0i)) +
b08

a
H0

d 4Hu
0 (s)4C20 (s) .

The last term (non random) can be directly bounded by a constant using (A5). On

the other hand

E

eeeee δ0i4C0(Λ0(Z0i))
eeeee
2+c
 < b08

a
H0

d 4Hu
0 (s)4C2+c0 (s)

<∞,

using, once more, condition (A5). Now, the inequality (a+ b)2+c ≤ 21+c(a2+c+ b2+c)
(valid for any pair of positive real numbers, a and b) and condition (A1) lead to

(22). The proof of (21) is completely parallel to that of (22). For this reason we

skip it.

Appendix: a Dvoretzky-Kiefer-Wolfowitz-type inequality for ∆0n

Simple algebra gives

|�Λ0(y)− Λ0(y)| ≤ y8
aF0

|C0(v)− C0n(v)|
C0n(v)C0(v)

dHu
0n(v) +

|Hu
0n(y)−Hu

0 (y)|
C0(y)

+

y8
aF0

|Hu
0n(v)−Hu

0 (v)|
C20 (v)

d|C0(v)|.

Define An =

l
sup

aF0≤y≤bH
|C0n(y)− C0(y)| ≤ d

2

M
for some d > 0. On An we have

C0n(y) ≥ C0(y)− d
2
.

Recall condition (A4) and take d = α−10 L0(aH0)(1 − H0(bH)). We then have that
C0(y) = α−10 L0(y)(1−H0(y)) ≥ d. From this discussion we arrive at the conclusion:

20



on An we have C0n(y) ≥ d/2. Now use the inequality above to obtain

P (∆0n > h) ≤ P
w
2

d2
C0n >

h

3

W
+ P

w
1

d
H0n >

h

3

W

+P

 1
d2
H0n

bH8
aF0

|dC0(y)| > h

3

+ P (Acn),
where

C0n = sup
aF0≤y≤bH

|C0n(y)− C0(y)|
H0n = sup

aF0≤y≤bH
|Hu

0n(y)−Hu
0 (y)|.

Since Hu
0 and H

u
0n are monotone we can apply the DKW-inequality to H0n (see [5]).

Following [7], p 224, we also have a DKW-inequality for C0n. The function C0 is of

bounded variation. We therefore obtain

P (∆0n > h) ≤ C1 exp(−D1nh2)

for some constants C1 > 0 and D1 > 0.
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[3] Ćwik, J., Mielniczuk, J. (1993). Data-dependent bandwidth choice for a grade

density kernel esimate. Statist. Probab. Lett. 16 397—405.

[4] Doksum, K. A. and Sievers, G. L. (1976). Plotting with confidence: graphical

comparisons of two populations. Biometrika 63 421—434.

[5] Dvoretzky, A., Kiefer, J.C. and Wolfowitz, J. (1956). Asymptotic minimax char-

acter of the sample distribution function and of a classical multinomial estimator.

Ann. Math. Statist. 33 642—669.

21



[6] Gastwirth, J.L. and Wang, J.-L. (1988). Control percentile test procedures for

censored data. J. Statist. Plann. Inference 18 267—276.

[7] Gijbels, I. andWang, J.-L. (1993). Strong representations of the survival function

estimator for truncated and censored data with applications. J. Multivariate

Anal. 47 210—229.

[8] Handcock, M. and Janssen, P. (2002). Statistical inference for the relative den-

sity. Sociol Methods and Res. 30 394—424.

[9] Holmgren, E. B. (1995). The P-Pplot as a method of comparing treatment effects.

J. Amer. Statist. Assoc. 90 360—365.

[10] Hyde, J. (1977). Testing survival under right censoring and left truncation.

Biometrika 64 225—230.

[11] Klein, J.P and Moeschberger, M.L. (1997) Survival Analysis, techniques for

censored and truncated survival data. Springer, New York.

[12] Li, G., Tiwari, R. C. and Wells, M. T. (1996). Quantile comparison functions

in two-sample problems, with application to comparisons of diagnostic markers.

J. Amer. Statist. Assoc. 91 689—698.

[13] Switzer, P. (1976). Confidence procedures for two-sample problems. Biometrika

63 13—25.

[14] Tsai, W.Y., Jewell, N.P. and Wang, M.C. (1987). A note on the product limit

estimator under right censoring and left truncation. Biometrika 74 883—886.

[15] Zhou, Y. and Yip, P. (1999). A strong representation of the product-limit es-

timator for left truncated and right censored data. J. Multivariate Anal. 69

261—280.

22


