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Summary. To model the time evolution of the event rate in recurrent event data a crucial
role is played by the timescale used. Depending on the selected timescale the interpretation
of the time evolution will be entirely different, both in parametric and semiparametric frailty
models. The gap timescale is most appropriate when studying the recurrent event rate as
a function of time since the last event, whereas the calendar timescale keeps track of actual
time. We show both timescales in action on data of an asthma prevention trial in young
children. The frailty model is further extended to include both timescales simultaneously as
this might be most relevant in practice.
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1. Introduction

Recurrent event data have mostly been analysed using standard survival techniques with
an additional adjustment for the correlation between events originating from the same
individual, leading either to marginal models (Prentice et al. (1981); Wei et al. (1989)) or
to frailty models (McGilchrist and Aisbett (1991)). Both marginal models and conditional
models have been used in a parametric and semiparametric context (Mahé and Chevret
(1999)).

Little attention, however, has been given to the timescale that is used for subsequent events
and the interpretation attached to it. Different timescales can be used (Kelly and Lim
(2000)). The most often used timescale is the gap time: after an event, the subject starts
again at time 0 and the time to the next event corresponds to the number of days it takes
to experience the next event. Alternative timescales are the total time and the calendar
time. With total time, the time to any event corresponds to the time since randomisation
regardless whether other events have been experienced meanwhile. Calendar time keeps
track of time since randomisation, as in total time, but the duration of the time at risk for
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an event corresponds to the duration of the time at risk in the gap time representation (see
Figure 1 and explanation in the next section).

In this paper, we investigate the effect of the use of the different timescales on the frailty
model and on its interpretation, based on an asthma prevention trial in young children.
Children with high risk for asthma (but not yet experiencing it) enter the study at the age
of 6 months and are followed up for 18 months. They are randomised to placebo or drug.
Apart from the drug effect, other points of interest are the evolution of the asthma recurrent
event rate over time, and how the appearance of an event influences the event rate. These
issues are particularly important in this study as children of 6 months differ substantially
from children of 2 years and therefore physicians want to know from this study how the
asthma event rate changes with age.

These points of interest will be tackled by making use of two different timescales, the
calendar time and gap time in the context of frailty models; we also will extend the model
to accomodate both processes in one and the same model.

2. Recurrent event data representation

Recurrent event data can be represented in different ways depending on the timescale used.
As a starting point, the representations introduced by Kelly and Lim (2000) are used, but
they are extended in order to account for a specific issue in asthma data: when a patient has
an asthma attack that can last for several days, he/she should not be considered to be at risk
for an asthma attack at that time. Kelly and Lim (2000) distinguish between total time,
gap time and calendar time. The time at risk for an event in total time representation starts
at time 0 when the subject enters the study until the particular event is experienced. It is
unclear, however, what to do with the time when the subject was not at risk, either because
of censoring or experiencing an asthmatic event. This timespan should be subtracted but
then the total time does no longer present the actual time since randomisation. Furthermore,
total time representation has little intuitive appeal because a subject is at risk for all his/her
events at the start of the study even when it is known that particular events can only
happen after previous events have taken place. Therefore, we do not consider total time in
the remainder. In case of gap time representation, the time at risk starts at zero, but the
length of the time at risk now corresponds to the time since the end of the previous event
(or study entry in case of first event) until the time of the particular event. In calendar
time formulation, the length of the time at risk period is the same, but the start of the at
risk period is not reset at zero but at the actual time since study entry (see Figure 1).

Assume there are in total N subjects. A particular subject has different periods at risk
during the total observation time, that are separated from each other by either an asthmatic
event that lasts one or more days, or by a period during which the subject was not under
observation. If there are r; at risk periods for patient i, then the complete information on
asthma attacks for patient ¢ can be presented by r; triplets

((ti11, ti12,051), - - 5 (Birs1s a2, Oiry))

where for the jt" triplet, t;j1 is the start of the 4t at risk period, t;jo is the end of the jth
period and §;; is the censoring indicator and ;11 = 0.
The hazard function for the frailty model with calendar time is given by

)\(t) o Ao(t)Ul exp (ﬁwl) for tz’jl S t S tijg,j = 1, N K1
10 otherwise
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where A\g(¢) is the baseline hazard which is assumed to be independent of both the event
history and the covariates of the subject and Uj; is the frailty term for the i*" patient.

The frailty terms Uy, ... ,Uy are assumed to be independent with common frailty den-
sity. As frailty density we will only consider the one parameter gamma density with mean
one and variance 6

w1 exp(—u/0)

o) = =g i gy

The likelihood function corresponding to this hazard is then given by

N r;
TTTT (o)™ exp (= As (251, tig0))

i=1j=1
with cumulative hazard
tij2
Aj (tij1, tije) = /)\i(t)dt.
tij1

In the case of gap time, part of the information in the triplets is redundant, and we
could summarize the information in the triplets alternatively as

((tizz — tin1, 0i1), - - - 5 (timg2 — tirs1, Oiry))

In other words, only the length of the time at risk is needed, and not the particular time
(relative to study entry time) when the patient is at risk.
The hazard function for the frailty model with gap time is given by

/\(t) o )\o(t — tijl)Ui exp (—6.’&) fOI' tijl S t S tijg,j = 1, N 1
10 otherwise

and the corresponding likelihood function is, as before,
N r; i
TTTT ti2))° exp (= Ai (tij1, tij2))
i=1j=1

but now with different meaning for the hazard A;(.) and cumulative hazard A;(.,.).
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3. Parametric frailty models for recurrent event data

The Weibull baseline hazard is taken as an example of the parametric frailty model for
recurrent event data; it has a straightforward interpretation. Other parametric hazard
rates can be used such as the lognormal. As mentioned in Section 5, the algorithms for
these two parametric assumptions are available in R.

The hazard function for calendar time (Model 1: Weibull-calendar) is

/\(t) - )\C,-th’yc—lUi exp (ﬁx,) for tijl <t< t,’jg,j =1,...,r;
10 otherwise

with resulting likelihood function

N r; bis
H H [()\C'yctzj“;lUi exp (ﬁx,)) exp (—Ac x (t?jc2 — tzjcl) U; exp (Bx;))

i=1j=1

The hazard function for gap time (Model 2: Weibull-gap) is

M) = 4 Ao (t—tij1)" " Usexp (Bw:)  for iy <t <tijp,j=1,...,7;
¢ 0 otherwise

with resulting likelihood function

N T 6ij
111 [(/\ﬂg (tij2 — ti1)™ ™" Usexp (ﬁxi)) exp (—Ag X (tij2 — tij1)" Usexp (B:))

i=1j=1

In the special case of a constant baseline hazard rate, Ag(t) = A, the likelihood func-
tions for the gap time and calendar time are equal, related to the fact that the exponential
distribution is memoryless.

All the previous likelihood expressions contain the frailty terms U; but not the frailty
parameter 6. The easiest way, in the parametric case, to deal with the unobserved frailty
terms is to integrate out the frailty density, thus obtaining the observable likelihood (Klein
(1992); Duchateau et al. (2002)). A closed form for the observable likelihood for the one
parameter gamma density is given by

i

dij
frg sy Qo o)

oI L, i3
(% + 21 Ae X (t5 — t5)) exp(ﬂw,})
=

1
i=1 ]

for the calendar time with d; = Z;’:l d;5, the number of asthmatic events for subject i.
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For the gap time the observable likelihood is

7

r 5ij
A tiso — tis Yo—1 i

O )

7T)

i=1

~ di+g’
(% + 21 Ag X (tijz — tij1)e eXP(ﬂﬂUz’))
‘7:

The Weibull-calendar and the Weibull-gap model are presented in Figure 2. It is clear
that an event does not influence the hazard rate in the Weibull-calendar time model (Figure
2a) whereas the hazard rate changes abruptly after an event in the Weibull-gap time model
(Figure 2b).

4. Extension of parametric frailty models

In the parametric models presented in Section 3, we did not take into account that the first
event is different in nature from the subsequent events. Subjects that enter the study did
not experience an asthmatic event yet. Therefore, Model 2 of Section 2 based on gap time
can be extended to include a separate term for the first event. In this extended model, we
assume the following hazard rate

Ayt~ U; exp (Bz;) for 0 < t < t;19
Az(t) = )‘gﬁ)/g (t — tijl)’ygil Ul exp (5.%1) fOI' tijl S t S tijg,j = 2, N 1
0 otherwise

with for the special case vy = 1 (Model 3: Weibull-gap-first event exp) a constant hazard
rate for the first event and for the more general model (Model 4: Weibull-gap-first event
Weibull) a hazard rate based on Weibull distributed event times for the first event.

Parameter estimates for this extended models can be obtained in a similar way as before
by maximising the observable likelihood based on this new hazard function. An example of
such a model is given in Figure 2c. Before the first event the hazard rate is constant with
an abrupt change when the first event occurs.

Up to now, we have considered either gap time or calendar time. The model can be
extended further to take into account both time since study entry, as in the calendar time
and time since last event, as in the gap time. We will consider the following model (Model
5: Weibull-calendar-gap) based on the Weibull distribution with the hazard function given
by

Ayt 1U; exp (Bx;) for 0 < t < t;19
)\,(t) = ()\C’)/Ct’yc_l + )\g’)/g (t — tijl)’yg_l) U; exp (ﬁwl) for tijl <t< tijg,j =2,...,715
0 otherwise

Parameter estimates for this model can again be obtained by maximising the observable
likelihood based on this new hazard function.
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The contribution of risk period j from individual ¢ to the cumulative hazard is given by

Ai(tij1,tije) = ActiipUi exp () forj=1
AL (N x (t5 — t]5) F Ag X (tijo — tij1)"°) Usexp (Bz;)  for j =2,...,r

An example of Model 4 is given in Figure 2d. Even before the first event the hazard
rate decreases with an abrupt increase in hazard rate upon the occurrence of an event.

5. Semiparametric frailty models for recurrent event data

The baseline hazard function is left unspecified in case of the semiparametric model. The
difference between the calendar time and the gap time is now in terms of risk sets.

In calendar time (Model 6: Cox frailty-calendar), the risk set at time 0 consists of all
patients being at risk for their first event only as compared to gap time (Model 7: Cox
frailty-gap) for which each patient contributes a number of r; risk periods at time 0.

The partial likelihood function in the case of the calendar time (without ties) is given
by

N 7;
i U; exp (Bz;)
11 |=
i=1;=0 kz Yi (tij2) U exp (Bz)
=1

with

1 if patient k at risk at time ¢;;2
Vi (ti2) = { 0 otherwise

and the partial likelihood function in the case of the gap time (without ties) is given by

67;j

ﬁ ﬁ — U; exp (Bz;)
i=1j=0 Z Z Y (tij2) Uy exp (Bz)

k=11=0

with

L if (ke — trn) > (Bij2 — tijn
Vi (tig2) :{ 0 ot}EerWise )=t 2
It is shown in Klein (1992) how parameter estimates for these Cox models can be
obtained by the EM-algorithm, making use of these partial likelihood expressions in the
maximisation step. In order to study the effect of the frailty term in the Cox model, Cox
models without the frailty terms are additionally fitted to the data, both for the calendar
(Model 8: Cox -calendar) and the gap (Model 9: Cox frailty-calendar) time.
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6. Application to recurrent asthma event data

Parameter estimates of the different models introduced in Sections 3, 4 and 5 are shown
in Table 1 for the asthma recurrent event data. For Models 1 and 2 (not taking into ac-
count the different nature of the first event), the model based on calendar time leads to a
larger treatment effect and heterogeneity estimate than the model based on gap time. With
respect to the evolution of the recurrent event rate since time of randomisation (calendar
time), the baseline hazard rate is close to a constant value (A, = 0.2299) with . = 1.02935.
Thus the recurrent event rate does not seem to increase or decrease as a function of time
since randomisation. On the other hand, the baseline hazard rate for gap time is decreasing
over time, with 7, = 0.8286. Thus the recurrent event rate is larger immediately after an
event and is decreasing with time since last event.

When extending the gap time model to include a constant and different hazard rate

for the first event (Model 3), the AIC is decreasing substantially and thus this extended
model seems to fit the data better. The parameter estimates for the extended model are
similar, but the decrease of the recurrent event rate with time since the last event is more
pronounced (v, = 0.762) and the constant hazard rate for the first event is substantially
smaller (Ay = 0.217) than for the subsequent events. When replacing the exponential dis-
tribution for the first event time with the Weibull distribution (Model 4), the AIC only
decreases slightly. The hazard rate for the first event time increases with time (v = 1.105).
The last parametric model (Model 5) where both timescales are considered jointly leads to
a further decrease of the treatment effect. The hazard rate is now decreasing as a function
of time since randomisation as well (7. = 0.9458), and the decrease of the recurrent event
rate with time since last event is even more pronounced 7y, = 0.687. This model, however,
has a much higher AIC than the two previous models.
Finally, the semiparametric models lead to similar results as their parametric counterparts.
In the case of calendar time (Model 6), the treatment effect and heterogeneity estimates
are almost the same, whereas in the gap time, both the treatment effect and the hetero-
geneity are slightly smaller in the semiparametric model (Model 7). Finally, the exclusion
of the frailty term does not have a large impact on the estimation of the treatment ef-
fect as can be seen in Models 8 and 9. Algorithms have been developed in R (available
from http://eduforum.rug.ac.be/ biometrie/software.html) to fit all previous models for
the Weibull and the lognormal distribution. The different models are depicted in Figure 2
using as parameter values the estimates obtained from the recurrent asthma event data.

7. Discussion

The use of different timescales leads to quite different interpretation of the data as in
the asthma recurrent event data example. The calendar timescale and the gap timescale
model two different and important aspects of the data. In the gap timescale, the effect
of a recurrent event on the recurrent event rate of the subsequent event can be studied,
and this seems to be the most important time evolution of the recurrent event rate in the
example, together with the distinct hazard rate for the first event. In the calendar timescale,
evolution of the recurrent event rate since randomisation is studied, and there seems to be
only a marginal time effect on the recurrent event rate in the example, regardless whether
this effect is modelled alone or jointly with the gap timescale. It is remarkable that the
parametric and semiparametric models lead to almost the same parameter estimates when
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Table 1. Parameter estimates with standard error of different models based on calendar time, gap
time or both.

Model B (s.e.) 0 (s.e.) A (s.e) v (s.e.)  Parameter  AIC
1.Weibull - -0.2998 0.5737 0.2299 1.02935 Xe/Ye 3906.8
calendar (-0.0152)  (0.0055) (0.00092)  (0.00126)
2.Weibull - -0.2544 0.4017 0.3159 0.82862 Ag/ g 3863.0
gap (0.0121)  (0.0041)  (0.00066)  (0.00059)
3.Weibull - gap -0.2513 0.3716 0.3464 0.7620 Ag/Yq 3838.4
first event exp (0.0117)  (0.0040)  (0.00083)  (0.00068)
0.2172 As
(0.00047)
4.Weibull - gap 202585  0.3912  0.3439 0.7641 Ao/7s  3837.2
first event Weibull ~ (0.0121)  (0.0044)  (0.00084)  (0.00068)
0.1780 1.105 Ar /s
(0.00076)  (0.00374)
5.Weibull-gap -0.2451 0.4212 0.134 0.687 A/ g 3885.4
calendar (0.0126)  (0.0045)  (0.00073)  (0.00203)
0.2098 0.9458 Ae/ e
(0.00203)  (0.00085)
6.Cox frailty- -0.302 0.579
calendar (0.123)
7.Cox frailty- -0.241 0.396
gap (0.11)
8.Cox - -0.308
calendar (0.071)
9.Cox- -0.221
gap (0.071)

using either gap time or calendar time: the difference between gap timescale and calendar
timescale is far larger than between parametric and semiparametric models.

If it is expected that the recurrent event rate will not change as a function of the time since
randomisation, the analysis can be based solely on the gap timescale and it can thus be
studied how the hazard rate evolves after an event has taken place. For instance in asthma
trials with adults followed over time, a dramatic change of the recurrent event rate is not
expected. In our example, however, which was based on young children, it was expected
that the recurrent event rate would evolve over time, so that in such cases we should fit the
different models presented in the paper. It turned out, however, that also for these young
children, the recurrent event rate was not changing substantially over time but did so as a
function of the time since the last event.
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Fig. 1. The event history for two patients (a) where a line denotes time at risk, a filled box
corresponds to asthma attack time and an empty box is censored time, together with the calendar
time (b), gap time (c) and total time (d) representation.
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Fig. 2. The hazard as a function of time for a subject depicted at the bottom of the picture according
to (a) Model 1: Weibull-calendar, (b) Model 2: Weibull-gap, (c) Model 3: Weibull-gap-first event

exp and (d) Model 5: Weibull-gap-calendar



