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Abstract

We treat bivariate nonparametric regression, where the design of experiment can be
arbitrarily irregular. Our method uses second-generation wavelets built with the lift-
ing scheme: Starting from a simple initial transform, we propose to use some predictor
operators based on a generalization in two dimensions of the Lagrange interpolating poly-
nomial. These predictors are meant to provide a smooth reconstruction. Next, we include
an update step which helps to reduce the correlation amongst the detail coefficients, and
hence stabilizes the final estimator. We use a Bayesian thresholding algorithm to denoise
the empirical coefficients, and we show the performance of the resulting estimator through
a simulation study.

Keywords: biorthogonal wavelet transform, irregular two-dimensional design, lifting scheme,
relaxation.

1 Introduction

Nonparametric curve estimation by wavelets has been widely used to treat the univariate
model

Yi = m(Xi) + εi, i = 1, . . . , n ,

where ε1, . . . , εn are noise. In case the regressors Xi are equispaced and the sample size n
is a power of two, classical wavelet methods can be applied, and the nonlinear thresholding
schemes of Donoho and Johnstone [15, 12, 13, 14] have proved powerful to obtain estimators
which perform well even in the presence of discontinuities (jumps or cusps) in the underlying
function m. However, the simplicity of the standard wavelet algorithms is largely lost when,
for example, the design on which the regression curve is observed is no longer fixed and
equidistant, or the sample size is no longer a power of two. Consequently, a large number of
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papers have been devoted to finding some procedures that remove these restrictions. Most
of these methods use some preliminary step to get back to the equidistant design situation
and then apply a traditional orthogonal wavelet transform [3, 18, 24, 11, 1]. Note that these
methods do not easily generalize beyond the one-dimensional setting.

In contrast, the algorithms presented in [9, 31] use some biorthogonal wavelet transforms
that deal directly with the irregularity of the grid. The filters associated to these transforms
are built with the lifting scheme [29, 4], a general tool for the construction of wavelet trans-
forms on arbitrary domain. Such transforms are said to be of ‘second-generation’ [29]. The
method presented in [9] easily generalizes to half-regular grids, which are built by taking the
Cartesian product of two irregular one-dimensional grids [10].

In this paper, we consider the nonparametric regression problem where the design of
experiment is bivariate and arbitrarily irregular. Our aim is to provide a good estimation
even in the presence of discontinuities in the signal. To achieve this aim, we propose some
wavelet-type estimators for the model

Zk = m(Xk, Yk) + εk, k = 1, . . . , n , (1.1)

where the errors εk are independent of (Xk, Yk) with E(εk) = 0,Var(εk) = σ2
ε .

Similarly to the procedures proposed in [9, 31] in the irregular one-dimensional case, we
use the lifting scheme to construct some multiscale transforms adapted to the grid. Indeed,
the lifting scheme allows to build wavelet filters in the time-domain as follows. First, an initial,
often trivial, transform is performed. Next, a predictor operator is chosen to produce better
detail coefficients. Finally, the values of the scaling coefficients are updated. In [20], Jansen,
Nason and Silverman have already treated the model (1.1) using a wavelet transform built
with the lifting scheme. The transform proposed in [20] uses a linear least square prediction
in order to compute the detail coefficients, and a so-called ‘minimum norm’ update.

The contribution of the present paper is twofold. First, we propose to use some predictor
operators that are based on relaxation, a possible generalization in two dimensions of the
Lagrange interpolating polynomial. Note that, in the context of data smoothing, the use of
predictor operators that are based on a relaxation formula is new. Some stability problems
may arise when using a predictor based on a relaxation with third order differences [16].
We propose here some ways to stabilize this prediction. Second, we use an update operator
which performs a local semi-orthogonalization. Similarly to what was observed in [9], some
simulation study shows that bringing the biorthogonal transform closer to a semi-orthogonal
one with such an update improves the quality of the denoising procedure, and hence of the
resulting estimator.

In order to obtain a wavelet estimator, we adopt the Bayesian thresholding algorithm
proposed by Johnstone and Silverman in [22, 23] since it has already proved to be efficient
to treat data coming from the model (1.1), see [20] for more details. The proposed wavelet
transforms, coupled with this Bayesian denoising, produce several estimators for the regres-
sion function m in the model (1.1). We compare these estimators through a simulation
study. In contrast to more traditional nonparametric regression techniques such as, e.g., lo-
cally weighted regression, wavelet methods offer a multiscale representation of the data. This
means that the original data can be described by the scaling coefficients living at coarsest
scale together with the detail coefficients that have survived the Bayesian thresholding.

The remaining part of this paper is organized as follows. In Section 2, we briefly recall
the basic setting of a multiscale decomposition in the second generation context, and we
introduce the lifting scheme in its general form. Section 3 explains the particular instance of
the lifting scheme needed in our irregular bivariate setup, whereas in Section 4, we detail the



construction of our proposed predictor and update operators. Section 5 briefly recalls the
Bayesian algorithm of Johnstone and Silverman [22, 23] and the different wavelet estimators
produced. Finally, the simulation study of Section 6 compares the performance of these
estimators.

2 Preliminaries

2.1 Multiscale decomposition

We first briefly recall the basic setting of a multiscale decomposition. More can be found
in [5, 29]. Consider a multiresolution analysis (MRA) in a general L2 space, i.e. a strictly
increasing and dense sequence V := {Vj}j≥j0 of closed subspaces of L2,

Vj ⊂ Vj+1 , j ∈ Z , and clos

∞⋃

j=j0

Vj = L2 for any j0 ∈ N .

Between successive spaces in V, construct algebraic complements Wj such that

Vj+1 = Vj ⊕Wj ,

where ‘⊕’ denotes the inner sum of disjoint linear spaces. The complement space Wj is not
necessarily orthogonal to Vj. A fine-resolution space Vj can then be written as a telescopic
decomposition into a coarser-resolution space and intermediate complement spaces,

Vj = Vj0 ⊕
j−1⊕

i=j0

Wi . (2.1)

With the notational convention that Wj0−1 := Vj0 , we call the sequence {Wj}j≥j0−1 a multi-
scale decomposition (MSD).

The spaces Vj and Wj are equipped with bases,

Vj = closL2 span Φj, Φj := {ϕjk | k ∈ Kj } ,
Wj = closL2 span Ψj, Ψj := {ψjm | m ∈Mj } ,

with Kj and Mj some index sets. Any basis Φj for the space Vj is called a set of scaling
functions, and any basis Ψj for any type of complement space Wj , j ≥ 0, is a set of wavelets
at level j.

Due to the multiresolution structure of the spaces Vj and Wj , there exist refinement
coefficients {hjlk} and {gjlm} such that

ϕjk =
∑

l∈Kj+1

hjlk ϕj+1,l , ψjm =
∑

l∈Kj+1

gjlm ϕj+1,l . (2.2)

It is convenient to rewrite the refinement relations (2.2) as matrix expressions

Φj = Φj+1Hj and Ψj = Φj+1Gj , (2.3)

where Φj is a row vector containing the functions {ϕjk, k ∈ Kj}.
Biorthogonal bases generalize orthogonal bases in that different bases are used for analysis

and for synthesis of the signal: a primal MSD, generated by the basis Φj0∪
⋃∞
j=j0

Ψj is used to



reconstruct the signal, whereas a dual MSD, with spaces Ṽj0 and W̃j spanned by Φ̃j0 and Ψ̃j,
respectively, is used for decomposition. Both MSD’s must be linked through biorthogonality
relations, i.e.,

〈
ϕjk , ϕ̃jk′

〉
= δkk′ ∀ j ,

〈
ϕjk , ψ̃jm′

〉
= 0 ∀ j, k,m′ ,〈

ψjm , ϕ̃jk′
〉

= 0 ∀ j,m, k′ ,
〈
ψjm , ψ̃jm′

〉
= δmm′ ∀ j ,

(2.4)

where δkk′ is the Kronecker symbol.
In the univariate case, if there exists a dual MSD satisfying (2.4), the resulting pair of

biorthogonal wavelet bases allows the following decomposition of any function m.

m(x) =
∑

k

sj0,kϕj0,k(x) +
∑

j,k

〈m, ψ̃jk〉ψjk(x) , (2.5)

where sj0,k := 〈m, ϕ̃j0,k〉 and dj,k :=
〈
m, ψ̃jk

〉
.

The dual refinement operators H̃j and G̃j are defined analogously to (2.3):

Φ̃j = Φ̃j+1H̃j and Ψ̃j = Φ̃j+1G̃j . (2.6)

Inserting the refinement relations in (2.4) gives the conditions to have biorthogonal filters

H̃∗jHj = I , G̃∗jHj = 0 ,

H̃∗jGj = 0 , G̃∗jGj = I ,
(2.7)

with H̃∗j denoting the Hermitian conjugate of H∗j . Let sj := {sj,k, k ∈ Kj} and dj := {dj,k, k ∈
Mj}. The forward wavelet tranform is given by

sj = H̃∗j sj+1 ; dj = G̃∗jsj+1 ,

and the inverse transform is achieved as follows.

sj+1 = Hjsj +Gjdj .

The order of a MRA in the second-generation setting is defined as follows.

Definition 2.1. The (polynomial) order of a univariate MRA is given by

Ñ := max{n | ∃j? such that ∀j ≥ j? : Πn−1 ⊂ Vj } ,

where Πn−1 is the space of polynomials of degree at most n− 1.

When the order of a MRA is Ñ and an associated dual MSD exists, the analyzing wavelets
ψ̃jm with j ≥ j? have Ñ vanishing moments, i.e., the space W̃j is orthogonal to ΠÑ−1 for
j ≥ j?. Symmetrically, the primal wavelets are said to have N vanishing moments if, for j
greater than a given level j ′, Wj is orthogonal to ΠN−1.



2.2 Lifting scheme in general

Starting from two initial pairs of biorthogonal filter (H o
j , G

o
j) and (H̃o

j , G̃
o
j), it is possible to

gradually improve the properties of these filters using the lifting scheme [8, 28, 29]. Note
that, often we have Ho

j = H̃o
j and Goj = G̃oj . The lifting scheme states that, for any operator

Pj , new pairs of biorthogonal filters can be found as

(Hj := Ho
j +GojPj , Gj := Goj) and (H̃j := H̃o

j , G̃j := G̃oj − H̃o
jP
∗
j ) . (2.8)

It suffices to check that the biorthogonality relations are still satisfied. In this operation, one
obtains new primal refinement matrices Hj, while the dual refinement matrices H̃o

j remain
unchanged.

Naturally, the roles of the primal and the dual side in (2.8) can be interchanged, giving
for any operator Uj the new biorthogonal filter pairs

(Hj := Ho
j , Gj := Goj −Ho

jUj) and (H̃j := H̃o
j + G̃ojU

∗
j , G̃j := G̃oj) . (2.9)

The operations (2.8) and (2.9) are commonly called prediction and update steps, respectively.
In this paper, we propose a wavelet-type transform adapted to an irregular bidimensional

grid. Coupled with a Bayesian thresholding scheme, this wavelet-type transform allows us to
estimate the regression function m(.) of the model (1.1) at the data points {(Xk, Yk)}nk=1.

Our wavelet transform uses finite biorthogonal filters built with a particular instance of
the lifting scheme. To present this transform, we define some compactly supported scaling
functions {ΦJ , Φ̃J} at the finest level J (the level of the observations). Using refinements
relations (2.3)- (2.6) and appropriate filters we obtain an expression for the scaling functions
Φj, Φ̃j and for the wavelet functions Ψj , Ψ̃j at coarser levels j = J − 1, J − 2, . . .. Since our
filters are finite, all these functions are compactly supported.

Note that the lifting scheme itself does not assure that these scaling and wavelet functions
form a biorthogonal basis that generates a proper function space. To prove that Φj is a proper
basis for Vj , it is necessary to first show the existence of the limit of the subdivision scheme
aj+1 = Hjaj, j ≥ j0, with aj0 = {aj0,k} = {δk,k0} for each k0 ∈ N. Such a proof is beyond
the scope of this paper. In the univariate case on irregular grids, Daubechies et al. analyze
in [6, 7] the existence of this limit.

Throughout the paper, we denote by Φj,I = {ϕj,k|k ∈ I} the set of scaling functions whose
location indices are in I. When dealing with filters, scaling or wavelet functions, the subscript
j will always denote the level. The location index of the basis function is given by the index
of the vertex on which this function is defined. For example on the grid χj at level j, ϕj,k
indicates the scaling functions associated to the vertex k. Note that, with this convention, a
vertex keeps its location index across scales.

3 Lifting scheme for second generation wavelets in two dimen-
sions

3.1 Neighborhood of a point and definition of the scales

In a two-dimensional arbitrary grid, the notion of neighborhood is no more straightforward.
In order to define the connectivity between the vertices, we use Delaunay’s triangulation on
the irregular experimental design [2, 25]. The Delaunay triangulation of a set of vertices in
the plane is a set of triangles connecting the vertices and satisfying an ‘empty circle’ property:



the circumcircle (that is, the circle that goes through the three vertices of a given triangle)
of each triangle does not contain any points of the triangulation.

The Delaunay triangulation is the dual structure of a set of cells, called the Voronoi
diagram. Each vertex of the plane is associated to a cell in the Voronoi diagram, which is
built as follows: the Voronoi cell of the vertex v contains all locations that are closer to v
than to any other vertices in the plane. Indeed, each edge of the Voronoi cell is the bisector of
an edge from the Delaunay triangulation. This shows the connection between the Delaunay
triangulation and the Voronoi diagram: the circle circumscribed about a Delaunay triangle
has its center at the corner of a Voronoi polygon, see Figure 1.

Figure 1: A Delaunay triangulation (plain line) with its dual structure, the Voronoi diagram
(dashed line). The points of the grid are represented with a circle. Each edge of a Voronoi
polygon is the bisector of an edge of the Delaunay triangulation, hence the center of the circle
circumscribed about a Delaunay triangle is a corner of a Voronoi polygon. This representation
is taken from [25].

In data smoothing with wavelets, the finest level is given by the observations, that is the
finest level grid χJ is made of the design points.

In one dimension, starting from the finest level, it is always possible to begin the lifting
scheme with the Lazy transform, that is, to split the data into ‘even’ and ‘odd’ points: if
KJ := {0, . . . , n− 1} is the index set at finest level, KJ−1 := {2k, k = 0, 1, . . . , dn/2e − 1} is
the index set of the ‘even’ points andMJ−1 = {2k + 1, k = 0, . . . , b(n)/2c − 1} contains the
indices of the ‘odd’ points. At level J − 2, the set KJ−2 is further split into two, and so on.
By doing so, we impose a dyadic structure on the levels.

In two dimensions on irregular lattices such a dyadic structure is no longer trivial or even
possible. Instead, we have to find a consistent way of splitting the data and of defining the
different levels. We want to produce a multilevel grid, that is, a sequence of grids (χj)

J
j=0

such that χj ⊂ χj+1.
At the level of the data, the scaling function ϕJ,k(x) corresponding to the vertex k is

approximated by the indicator (or characteristic) function of a cell, centered at k and built
as follows. Take one triangle τ for which k is a corner, and draw its three medians, which
meet at the barycenter b. Consider the part of the median that starts at the middle of an
edge to whom k belongs and stops at the barycenter. From this barycenter b, follow the part
of this other median that starts at the middle of the second edge of τ to whom k belongs



and stops at the same barycenter b. Repeat this operation with all the neighboring triangles
of the vertex k. Figure 2 shows an example of this construction of a cell associated to the
scaling function ϕJ,k. The area of this cell is easily computed: attribute one third of the
area of each triangle (in the Delaunay triangulation) to each of its vertices. The sum of all
contributions to a given vertex k gives the area of the cell associated to ϕJ,k(x), that is, it
gives the integral of ϕJ,k(x). We denote this integral AJ,k. Note that, in the case of a regular,
hexagonal lattice, this procedure produces cells corresponding to the Voronoi polygons.
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Figure 2: Determination of the support of the scaling function ϕJ,k associated to the vertex
k. The medians of the triangles for which k is a corner are drawn. Consider the line which
starts at the middle of an edge to whom k belongs and that ends at the barycenter of one
(of the two) neighboring triangle. This line is an edge of the polygonal which delimitates the
support of ϕJ,k. In (b), the support of ϕJ,k, which has an area AJ,k is represented with a
filled pattern.

The dual scaling functions ϕ̃J,k are the Dirac functions, and hence the scaling coefficients
{sJ,k} at the beginning of the transform are just the observations {Zk}.

We now present the particular instance of lifting scheme that we use. This requires to
define a type of hierarchy amongst the grids {χj}.

3.2 Prediction of one scaling coefficient per scale

In the algorithms proposed in this paper, at a given scale j, only one scaling coefficient is being
predicted before its immediate neighbors are updated. This means that χj+1 \ χj = {v0},
where v0 is the vertex whose scaling function ϕj+1,v0 has the smallest support. Indeed, we
want to process fine scale details first before proceeding to coarse scale features.

In this context, the initial filters of the lifting scheme are defined as follows.

G◦j = G̃◦j = {v0} in the sense that G̃◦∗j sj = sj+1,v0

H◦j = H̃◦j = {N (v0)} in the sense that H̃◦∗j sj = sj+1,N (v0) (3.1)

where N (v0) represents the neighborhood of v0. The nature of the predictor operator Pj
determines the type of neighborhood N (v0) chosen, see Section 4.1 below. In comparison, in
one dimension on a dyadic grid, the effect of the initial filters would be to split the data into
‘even’ and ‘odd’ points, that is:

H◦j = H̃◦j = {2k, k = 0, . . . , 2j − 1} ; G◦j = G̃◦j = {2k + 1, k = 0, . . . , 2j − 1} (3.2)



Now, using the refinement relations Φj = Φj+1Hj and Ψj = Φj+1Gj , the prediction step
described in (2.8), and the initial filter (3.1), we obtain an expression for the new, lifted,
primal scaling functions in two dimensions:

Φj,N (v0) = Φj+1,N (v0) + ϕj+1,v0Pj,N (v0), (3.3)

where Pj,N (v0) is a row vector of length #N (v0) containing the prediction weights. Integrat-
ing (3.3) gives, for each k ∈ N (v0)

Aj,k = Aj+1,k + Pj,kAj+1,v0 . (3.4)

The detail coefficient corresponding to the vertex v0 is computed as :

dj,v0 = G̃∗jsj+1

= G̃◦∗j sj+1 − PjH̃◦∗j sj+1

= sj+1,v0 − Pj,N (v0)sj+1,N (v0) . (3.5)

The detail coefficient thus encodes the difference between the scaling coefficient and its pre-
dicted value, based on its neighbors. This illustrates the choice of the name ‘predictor’ or
‘prediction’ for the operator Pj . The primal high-pass filter Gj does not change during the
prediction step. Hence, following the refinement equation (2.3) the wavelet corresponding to
dj,v0 is just the scaling function of the previous step.

The prediction step is followed by an update (or primal lifting) step, whose first aim is to
keep

∑
k sj,kAj,k constant across scales. By biorthogonality, this is equivalent to providing

the primal wavelet ψj,v0 with one vanishing moment. This update step ensures the stability
of the wavelet transform. The relations in (2.9) give:

sj,N (v0) = H̃∗j sj+1

= H̃o∗
j sj+1 + UjG̃

∗
jsj+1

= sj+1,N (v0) + Ujdj,v0 (3.6)

and

ψj,v0 = ϕj+1,v0 − Φj+1HjUj

= ϕj+1,v0 −
∑

k∈N (v0)

ϕj,kuj,k , (3.7)

where G̃j and Hj have been modified by the prediction step. If we want ψj,v0 to have a
vanishing moment, that is, a zero-integral, we have to impose that

Aj+1,v0 =
∑

k∈N (v0)

Aj,kuj,k . (3.8)

Since there are more than one update value uj,k, we use the remaining degrees of freedom to
further improve the stability of the transform. This is explained in more detail in Section 4.2.

Every time a scaling coefficient is being predicted and replaced by a detail coefficient,
its vertex is taken away from the triangulation. This creates a new, slightly coarser grid
χj and new scaling functions around v0: the space previously occupied by ϕj+1,v0 is taken
by the surrounding scaling functions Φj+1,N (v0). The new integrals are computed using
expression (3.4).



As an illustration, we now give an example of operators Pj and Uj in the setting of an
univariate regular grid. Given the initial filters in (3.2), we take Pj = 1, where 1 denotes the
identity matrix. Equation (3.5) then reduces to

dj,k = sj+1,2k+1 − sj+1,2k , (3.9)

that is, the detail coefficients represent the difference between two neighboring scaling coef-
ficients. Next, we take Uj = 1/2. This yields the scaling coefficients sj,k, where

sj,k = sj+1,2k − dj,k/2 (3.10)

that is, sj,k is the average between two scaling coefficients from the next finer scale. It is
clear that the expressions (3.9) and (3.10) give the usual Haar transform, written in the form
of the lifting scheme [30].

3.3 Order of predictor and update operators

In order to improve the properties of the filters Hj and G̃j , the predictor operator Pj must
be such that, if the scaling coefficients {sj+1,v0 ; sj+1,N (v0)} are lying on a polynomial curve
of order q, the corresponding detail coefficient dj,v0 is equal to zero. The predictor operator
Pj is then said to be of order q.

Since dj,v0 =
〈
m, ψ̃j,v0

〉
, a predictor of order q provides ψ̃j,v0 with Ñ = q + 1 dual

vanishing moments. In words this means that ψ̃j,v0 ‘is blind to’ polynomial of order smaller
or equal to q. This property allows to have a sparse representation of the data. We will
investigate the properties of some predictor operators of order one and two by means of a
simulation study. Section 4.1 explains how to obtain such predictors.

On the primal side, only one vanishing moment is needed for our regression purpose. In
Section 4.2, we present two types of update operators.

3.4 Geometrical setting: description of an arbitrary grid

Before proceeding to the description of the multiscale transform, we need some representation
of the geometry and of the topology of an arbitrary grid in two dimensions. Our notations are
inspired by [16, 17, 27]. A triangulated mesh is denoted as a pair (P,K), where P describes
the geometric aspect of the grid and K provides the topological, or connectivity information
as follows. P is a set of N point positions, P =

{
pi ∈ R3|1 ≤ i ≤ N

}
. In our functional

setting, pi = (xi, yi, zi) where xi and yi have independent coordinates. The value zi is called
the function value of the vertex i.

To describe the connectivity in the triangulation of the design of experiment, also called
parameter plane, we use the set K, which is composed of subsets of

{
1, . . . , N

}
. These subsets,

called simplices, come in three types: vertices v = {i} ∈ V, edges e = {i, j} ∈ E and faces
(also called triangles) τ = {i, j, k} ∈ F . As said before, the triangulation F on the finest level
is given here by Delaunay’s algorithm. Consider a central vertex v0 (in our transform it will be
the point to be predicted). We describe its neighborhood using connectivity (or topological)
information. Its 1−ring neighbors form a set V1(v0) = {j|{v0, j} ∈ E}, see Figure 3(a).
Kv0 := #V1(v0) is the degree of v0. The edges from v0 to its 1−ring neighbors form a set
E1(v0) = {{v0, j}|j ∈ V1(v0)}. The flap corresponding to the edge e = {i, j} is defined as the
vertex k such that the two triangles {v0, i, j} , {k, i, j} ∈ F have the edge e in common, see
Figure 3(b), where a 1−ring neighbors with flaps is represented. The vertices in this figure,



except the central vertex v0, form a set V2(v0), and E2(v0) denotes the set of its interior edges.
The neighborhood w(e) of an edge is formed by the four vertices of its two incident triangles,
see Figure 3(c).
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Figure 3: (a) 1−ring neighborhood. The vertices except the center one form V1(v0) and the
bold edges form E1(v0). In (b), the 1−ring neighborhood with flaps (denoted by circles) is
represented. The vertices except the center one form V2(v0) and the bold edges form E2(v0).
(c) Neighborhood w(e) of the edge e = {j, k}, formed by the four vertices {j, k, l1, l2} of the
two incident triangles.

4 Multiscale transform adapted to an irregular bidimensional

grid

In order to fully describe our proposed multiscale transforms, three specifications have to be
made: how to construct a predictor operator Pj at a given level j, how to find an update
operator, and finally how to deal with the vertices that are lying at the boundary of the
domain. These three topics are developed in Section 4.1, 4.2 and 4.3, respectively.

4.1 Predictor operators for scattered design points

4.1.1 Least squares prediction

In the setting of irregular bidimensional designs, a first type of prediction operator has been
proposed in [20]. It consists of computing Pj,v0 as the least squares plane that goes through
the scaling coefficients sj+1,V1(v0). This predictor is of order one, that is, two dual vanishing
moments are produced. An immediate extension is given by the quadratic least squares
polynomial, which is defined on V2(v0). Let xV2(v0), yV2(v0) be the vectors of the neighbors’
coordinates and (xv0 , yv0) be the coordinates of the central point v0 chosen at level j. In
the interior of the domain, we always have #V2(v0) ≥ 6, so we are able to estimate the
parameters β = [β0 βx βy βx2 βxy βy2 ]′ of the model

zt = β0 + βxxt + βyyt + βx2x2
t + βxyxtyt + βy2y2

t + et, et i.i.d, E(et) = 0 .



The design matrix of this least squares problem is

X = [1 xV2(v0) yV2(v0) x
2
V2(v0) xV2(v0)yV2(v0) y

2
V2(v0)],

where 1 is a (#V2(v0) × 1)-vector of ones. The least squares estimator of β is given by
β̂ = (X ′X)−1X ′sj,N (v0), and the predicted value for this scheme is obtained as

Pjsj,N (v0) = [1 x(v0) y(v0) x2(v0) x(v0) · y(v0) y2(v0)] · β̂ . (4.1)

If all the values of the scaling coefficients {sj,N (v0), sj,v0} are lying on a quadratic polynomial
curve, then obviously the predicted value will be equal to sj,v0 , hence dj,v0 = 0. This means
that ψ̃j,v0 has three vanishing moments, or, equivalently, that Pj defined in (4.1) is of order
two.

4.1.2 Prediction based on relaxation: introduction

We now introduce another method of building a prediction operator, based on the subdi-
vision schemes proposed by Guskov [16]. Consider a function f : χ → R, where χ is a
grid in R2, specified by a finite (or at most countable) set collection of vertices. We denote
f(v) := f(xv, yv) the function value at the vertex v. In the remaining part of Section 4.1,
we consider the generic problem of finding a prediction of f(v0) using the function values
of neighbor points of v0. The obtained predictor operator can then be cast into the lifting
scheme framework by replacing, for a given level j, χ by χj, the grid at level j, and f(v) by
sj,v, the scaling coefficients at level j, where v ∈ χj.

One contribution of this paper lies in the application of predictors that are based on the
minimization of second and third order differences for wavelet denoising. This minimization
provides a formula for prediction that is related to the multivariate Lagrange interpolation.

A p−th order difference is defined as the difference between two divided differences of
order p − 1. In the univariate case, divided differences of consecutive orders satisfy the
following recursive relation [6, 16].

f [p+1]({x0, . . . , xp+1})
p+ 1

=
f [p]({x1, . . . , xp+1})− f [p]({x0, . . . , xp})

xp+1 − x0
.

This recursion is initialized by taking f [0]({x0}) = f(x0). The generalization to the mul-
tivariate setting however is not straightforward, and can be made in various ways. In this
paper, we adopt the definitions proposed by Guskov in [16].

Divided differences of order p are defined on a stencil collection Ω[p]. Let P(χ) denote the
set of point positions of the vertices present in the grid χ. The zero-th order divided difference

at the vertex v is the function sample value: f
[0]
v = f(v). Hence the stencil collection for f [0]

equals the set of vertices : Ω[0] := P(χ). Following [16], we set Ω[1] := F , the set of faces (or
triangles). For second order divided differences, the stencil collection is made of one triangle
together with his three neighbors:

Ω[2] := ({v1, v2, v3, v4, v5, v6} : {v1, v2, v3}, {v3, v2, v4}, {v1, v3, v5},
{v2, v1, v6} ∈ F) ,

see Figure 4.
Sections 4.1.3 and 4.1.4 introduce the formulas to compute the second and third order

differences, respectively. Section 4.1.5 then presents how to combine these quantities to build
a predictor operator.



�� ���
��� ������

������

	�	


����
����

������

����

������

PSfrag replacements

(a)f [0] (b)f [1] (c)f [2]

1

23

4

5

6

Figure 4: Stencils for divided differences.

4.1.3 First order divided differences and second order differences

In [16], the author provides a formula for the first divided difference f
[1]
τ = [f

[1]
x (τ), f

[1]
y (τ)],

τ ∈ F that behaves like a first order derivative, i.e. if f is constant on τ , the vector f
[1]
τ

is zero. In other words, f
[1]
τ is the gradient of the linear spline that interpolates f on τ .

Considering the normal nτ = [−f [1]
x (τ),−f [1]

y (τ), 1], second order differences are defined as
42
ef = nτ2 − nτ1 , where the two faces (τ1, τ2) have the edge e in common. Obviously, 42

ef
is orthogonal to e, and is parallel to the parameter plane [17]. Hence only its signed length,
noted D2

ef , counts. The expression for D2
ef depends linearly on four function values at the

vertices w(e) = {j, k, l1, l2}, see [16, 17]:

D2
ef =

∑

l∈w(e)

ce,lfl . (4.2)

The coefficients are given by

ce,l1 =
Le

A[l1,k,j]
, ce,l2 =

Le
A[l2,j,k]

ce,j = − LeA[k,l2,l1]

A[l1,k,j]A[l2,j,k]
, ce,k = − LeA[j,l1,l2]

A[l1,k,j]A[l2,j,k]
(4.3)

where A[k1,k2,k3] is the signed area of the triangle formed by (xk1 , yk1), (xk2 , yk2), (xk3 , yk3) in
the parameter plane, and Le is the length of the segment between (xk, yk) and (xj , yj), as in
Figure 3(c), see [16, 17]. Figure 5 illustrates that D2

ef is the difference between two normals
of f across a common edge e.

4.1.4 Second order divided differences and third order differences

On the stencil ξ = {1, 2, 3, 4, 5, 6} of Figure 4(c), it is possible to compute the quadratic
polynomial that interpolates the points (xi, yi, fi), i = 1, . . . , 6. This allows us to compute

the second order divided difference f [2](ξ) = [f
[2]
xx(ξ), f

[2]
xy (ξ), f

[2]
yy (ξ)] by solving the following

system. 


1 x1 y1 x2
1/2 x1y1 y2

1/2
1 x2 y2 x2

2/2 x2y2 y2
2/2

1 x3 y3 x2
3/2 x3y3 y2

3/2
1 x4 y4 x2

4/2 x4y4 y2
4/2

1 x5 y5 x2
5/2 x5y5 y2

5/2
1 x6 y6 x2

6/2 x6y6 y2
6/2







C
Cx
Cy

f
[2]
xx(ξ)

f
[2]
xy (ξ)

f
[2]
yy (ξ)




=




f1

f2

f3

f4

f5

f6




(4.4)
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Figure 5: The normals nτ1 and nτ2 represent a measure of the gradient of the linear spline
that interpolates f on τ1 and τ2, respectively. The faces τ1 and τ2 having the edge e in
common, the second order difference at the edge e is defined as the difference between these
two normals.

It is easy to see [16] that whenever (4.4) has a unique solution, the following system also has
a unique solution:


D2

(τ123 ,τ234)(x
2/2) D2

(τ123 ,τ234)(xy) D2
(τ123 ,τ234)(y

2/2)

D2
(τ123 ,τ135)(x

2/2) D2
(τ123 ,τ135)(xy) D2

(τ123 ,τ135)(y
2/2)

D2
(τ123 ,τ126)(x

2/2) D2
(τ123 ,τ126)(xy) D2

(τ123 ,τ126)(y
2/2)






f

[2]
xx(ξ)

f
[2]
xy (ξ)

f
[2]
yy (ξ)


 =



D2

(τ123 ,τ234)f

D2
(τ123 ,τ135)f

D2
(τ123 ,τ126)f




(4.5)
where τ123 = {v1, v2, v3}, τ234 = {v2, v3, v4}, τ135 = {v1, v3, v5} and τ126 = {v1, v2, v6}. The
notation D2

τijk ,τjkl
indicates the second order differences computed at the edge {j, k} which

is at the intersection of the two faces τijk and τjkl. The system (4.5) supplies the relation
needed to compute f [2] from second order differences only. This computation asks for the
inversion of a matrix, and as such fails for the stencils which lead to a singular matrix in the
system (4.5). More precisely, if all the points of a stencil ξ ∈ Ω[2] lie on an algebraic curve of
second order, the matrix will be singular and f [2](ξ) does not exist [16]. A stencil for which
f [2] does not exist is called nonadmissible. Figure 6 presents one admissible stencil and two
nonadmissible stencils. Figure 6(d) presents a mesh fragment where no second order divided
difference exists.

Third order differences are defined as the difference between two divided differences,

D3
ξ1,ξ2f := f

[2]
ξ2
− f [2]

ξ1
, (4.6)

where the central triangles in the stencils ξ1 and ξ2 are adjacent, see Figure 7.

Formally, third-order differences are defined on the set of ordered pairs of stencils E [3]
,

where

E [3]
= {(ξ1, ξ2) : ξ1, ξ2 ∈ Ω[2],∃(τ1, τ2) ∈ F with τ1 ∩ τ2 ∈ E and ξ1 ∩ ξ2 = τ1 ∪ τ2} . (4.7)

In words, third order differences represent the change in the second derivative as we go from
the stencil ξ1 to the neighboring stencil ξ2.

From the above definitions (4.2) and (4.6), it is clear that the operators Dp+1
η , defined

on adequate stencils η, annihilate polynomials of degree p. This property will be kept if we
combine in an adequate way these differences in order to obtain a predictor operator of order
p. The next section explains how to build such a predictor.



(a) (b) (c) (d)

Figure 6: (a) One admissible stencil for f [2]. (b) and (c) represent nonadmissible stencils. In
(b), all the vertices lie in the union of two straight lines, in (c) they lie on a circle. (d) gives
a combination of stencils of the type represented in (c). It is a mesh fragments where no f [2]

exists.
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Figure 7: Stencil for third order differences, made of two adjacent stencils for second divided
differences. The two central triangles have filled patterns.



4.1.5 Prediction based on a relaxation formula

In this section, we explain how to obtain a predictor of order p, (p = 1, 2) based on a so-called
relaxation formula [17].

Relaxation formula in general Beside the least squares prediction, it is possible to find
a prediction operator based on the minimization of a quadratic energy defined as

E =
∑

η∈E [p+1]

∥∥Dp+1
η f

∥∥2

2
, p = 1, 2 , (4.8)

where E [2]
:= {(τ1, τ2) : τ1, τ2 ∈ F , τ1 ∩ τ2 ∈ E}. The definition for E [3]

is given in (4.7).
We now consider the energy E as a function of fv0 . We are looking for the value Pfv0

that minimizes E(fv0). Hence, fv0 is treated here as a variable argument, and all the other

quantities in E are considered as constant. For the minimization, only the stencils η ∈ E [p+1]

which contain the vertex v0 are important:

Pfv0 = arg min
∑

η∈E [p+1]|v0∈η

∥∥Dp+1
η f

∥∥2

2
. (4.9)

If, inDp+1
η f , we separate the quantities that contain the variable fv0 from the other quantities,

we can write Dp+1
η f = aη + fv0bη. The expression for Pfv0 is then easily obtained by setting

the partial derivative of E with respect to fv0 equal to zero:

Pfv0 = −
∑

η∈E [p+1]|v0∈η
〈aη , bη〉

∑
η∈E [p+1]|v0∈η

〈bη , bη〉
. (4.10)

Note that, for the prediction of order one, the quantities aη and bη are scalars, since only the
signed magnitude of D2

ef matters, see equation (4.11) below. When p = 2, aη and bη are

vectors of length three, since we use the system (4.5) to compute f
[2]
η and hence D3

ηf . This
is further detailed below.

We now look at the set of vertices (also called support) used to compute the prediction
and we develop the expression (4.10) for p = 1 and 2.

Relaxation with second order differences In case of second order differences, we con-
sider in E(fv0) the sum over all the edges e for whom v0 belongs to the neighborhood w(e),
i.e. the set E2(v0). This means that the neighborhood N (v0) used for prediction is V2(v0),
see Figure 3(b). For p = 1, the formula (4.10) becomes:

Pfv0 =
∑

j∈V2(v0)

wv0,jfj, wv0,j = −
∑
{e∈E2(v0)|j∈w(e)} ce,v0ce,k∑

e∈E2(v0) c
2
e,v0

, (4.11)

where the coefficients ce,· are given by (4.3). Since the prediction operators based on a
relaxation formula reconstruct exactly constant functions, we have that

∑
j wv0,j = 1.
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Figure 8: Complete support for prediction using third-order differences.

Relaxation with third order differences An example of a support for the prediction
based on third order differences is represented in Figure 8. Such a support is rather large
for a practical implementation. Hence, following Guskov [16], we use a reduced support,
constituted of the set V2(v0), as in the case of second-order differences. Indeed, V2(v0)

contains the stencils η ∈ E [3]
that are closest to the central vertex v0.

Since we take V2(v0) as support for the prediction, for each stencil η involved in the
relaxation procedure, v0 belongs to the intersection of the two central triangles represented

in Figure 7. Consider now the second divided difference f
[2]
ξ1

, where a typical stencil ξ1 is
represented in Figure 4(c). Suppose that, in this Figure 4(c), the central vertex has the index
1: v0 = 1. We define the three following edges: e1 = {2, 3}, e2 = {1, 3}, e3 = {1, 2}. The
system (4.5) allows us to write

f
[2]
ξ1

= A−1




∑
i∈{1,2,3,4} ce1,ifi∑
i∈{1,2,3,5} ce2,ifi∑
i∈{1,2,3,6} ce3,ifi


 , (4.12)

where A is the matrix of the system of equations (4.5), and the coefficients {ce,i} are given
in (4.3). Next, we separate in (4.12) the quantities that contain f1 from the other quantities
and obtain:

f
[2]
ξ1

= A−1




∑
i∈{2,3,4} ce1,ifi∑
i∈{2,3,5} ce2,ifi∑
i∈{2,3,6} ce3,ifi


+ f1A

−1



ce1,1
ce2,1
ce3,1




= aξ1 + f1bξ1 .

The above operation is repeated for the neighboring stencil of ξ1, denoted ξ2, see Figure 7
for a schematic representation. The union of ξ1 and ξ2 gives the stencil η for third order
differences, and we have:

D3
ηf = (aξ2 − aξ1) + f1(bξ2 − bξ1) = aη + f1bη = aη + fv0bη . (4.13)

It remains to apply the formula (4.10) to obtain the relaxed value Pfv0 .

4.1.6 Instabilities of the relaxation based on third-order differences

In this paper, one of our objective is to use the relaxation formula (4.10) to build predictor
operators tailored to an irregular grid. However, we saw in Section 4.1.4 some restrictions to



the use of second order divided differences: f
[2]
ξ does not exist if the stencil ξ is nonadmissible,

that is, if all the vertices in the given stencil lie in the union of two straight lines or on a
circle.

When dealing with irregular grids, there will always be some stencils that are close to
a nonadmissible stencil. This will lead to a bad conditioning of the matrix in (4.5), and to
instabilities in the reconstruction.

However, since we know for which class of stencils some problems arise, we can choose
in advance the neighborhood N (v0) used for prediction in such a way that most of the
instabilities are removed. In other words, if necessary, we will not use the neighborhood
V2(v0) given by the triangulation to compute Pfv0 . Instead, we use a neighborhood which is
as close as possible to V2(v0), but where all the second order divided differences are computed
with a good precision (i.e. the matrix to be inverted is well-conditioned). Note that the lifting
scheme allows us to choose freely the neighborhood used for prediction.

We now present the two main situations which lead to an ill-conditioned prediction oper-
ator, together with some solutions to stabilize the prediction.

1. A flap of an edge belonging to E1(v0) belongs at the same time to the 1−ring neighbors
V1(v0). This happens when a triangle, having v0 as one of its vertex, is subdivided into
three subtriangles. Figures 9(a) and 9(c) give two examples of such situations. The
stencil to compute f [2] is close to the mesh fragment represented in Figure 6(d) and
thus leads to a badly conditioned matrix.

The solution proposed is the following. In the neighborhood N (v0) used for the predic-
tion, we do not include the inner vertex i that generates the three subtriangles. Next,
a new flap has to be found in the given triangulation, as illustrated in Figures 9(b)
and 9(d).

2. At least four vertices that belong to V1(v0) are approximately on a line. In this case,
we are close to the situation of Figure 6(b). In order to detect such situations, for
each quadruple of neighboring points in V1(v0), the least squares line that goes through
these four points is computed. If the associated R2−statistics (which represents the
percentage of the variance of the data explained by the linear model) is larger than
90%, this means that a model where these four points are on a line is valid, and hence
that we are close to the situation of Figure 6(b).

The remedy to this problem is to take in N (v0) only the first and last of these points
that are nearly on a line. So a new edge (the edge e = {a, d} in Figure 10(b)) is created,
and a flap is attributed to this edge, see Figure 10(b). The new stencil is admissible,
but, in order to construct it, we use another triangulation than the initial one.

These two modifications allow us to remove most of the instabilities that cause large bias in
the reconstruction.

4.2 Update operator

The aim of the update step is to keep
∑

kAjksjk constant across scales. By biorthogonality re-
lationships, this is equivalent to providing the primal wavelets with one vanishing moment. In
order to obtain one primal vanishing moment, we must build a vector Uj = [uj,1, . . . , uj,#N (v0)]
that satisfies equation (3.8). The remaining degrees of freedom are used to improve the sta-
bility of the transform.
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Figure 9: In (a), the three triangles generated by the vertex i will provoke some instabilities in
the computation of the corresponding second divided difference f [2]. The solution represented
in (b) is to ignore the vertex i for the prediction of v0 and to find in the triangulation a new
flap l corresponding to the edge e. This makes the stencil stable. In(c), two triangles are
imbricate and in (d) the corresponding stable stencil is represented in plain line.
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Figure 10: In (a), a R2−statistics superior to 90% has been detected. When computing f [2]

on the stencil belonging to Ω
[2]

and having {v0, b, c} as central triangle, the matrix to be
inverted will be badly conditioned. In (b), we ignore for prediction the vertices b, c. Amongst
the three flaps l1, l2, l3, we choose to keep in (b) the one with the smallest index (l2 in this
case). This convention allows to always have a perfect reconstruction of a noisefree signal.
In (b), the new neighborhood will produce a stable prediction. But the triangulation used is
slightly different from the given Delaunay’s triangulation (represented in dashed line).

A first possibility is to take the update values {ujk} that are of minimum l2−norm, as
Jansen et al. proposed in [20]:

uj,k =
Aj,kAj+1,v0∑
l∈N (v0)A

2
j,l

. (4.14)

We call this first update U
(1)
j = {ujk} the minimum norm update operator. To understand

that this choice has a stabilizing effect, we remind that the update step modifies the primal
wavelet basis functions according to (3.7). If the update coefficients have a large magnitude,
the lifted wavelet function ψj,v0 will be close to the space spanned by the scaling functions
ϕj,k at the coarser level, hence ϕjk and ψj,v0 will be far from orthogonal. Minimizing the
update coefficients norm is a straightforward and fast way to avoid such unstable situations.

Thinking of a stable transform as a close-to-orthogonal one, we can also use the remaining
degrees of freedom to perform a local semi-orthogonalization of the transform. More precisely,
we take first ujk as in (4.14) to provide the wavelet ψj,v0 of equation (3.7) with one vanishing
moment. Next we orthogonalize ψj,v0 with respect to the space Vj,N (v0) := span

{
Φj,N (v0)

}

by performing a second update with values

uj,N (v0) =
〈
Φj,N (v0) ,Φj,N (v0)

〉−1 〈
ψj,v0 ,Φj,N (v0)

〉
,

as it is proposed in [26] for example. With this second step however, the vanishing moment
is lost. To restore it, we multiply the elements of the update operator by an appropriate
constant c. The whole update operator is:

U (2) = c
(
U (1) +

〈
Φj,N (v0) ,Φj,N (v0)

〉−1 〈
ψj,v0 ,Φj,N (v0)

〉)
(4.15)

We call this second update operator U (2) minimum norm update operator followed by a local
semi-orthogonalization.



4.3 Treatment of the boundary points

The stencil used for a prediction at v0 based on a relaxation procedure or on quadratic least
squares is the second neighborhood V2(v0). However, when a vertex in V1(v0) lies on the
boundary of the domain, or when v0 itself lies on the boundary, the whole neighborhood
V2(v0) cannot be defined, hence the transform must be adapted.

If one of the first neighbors V1(v0) is lying on the boundary, we always use the linear least
squares prediction, even if, inside the domain, another predictor operator is utilized.

Now, if the vertex v0 chosen to be predicted itself is on the boundary, the task of finding
a good prediction becomes more delicate since no information is available ‘on the other side’
of the boundary. This means that, if we want to keep using linear least squares prediction,
some kind of extrapolation (in contrast to interpolation) is inevitable.

In this paper, we use the treatment of boundary proposed by Jansen, Nason and Silverman
in [21]. In this scheme, special precautions are taken in order to reduce instabilities. First,
neighbors on long, narrow triangles at the boundary are not taken into account for prediction.
As a matter of fact, these triangles are eliminated all together. Second, if only two neighbors
are available, prediction becomes extrapolation. The method then adopts a plane which fits
the two neighbors, and which is constant in the direction orthogonal to the line connecting
them.

5 Nonlinear wavelet estimator

The previous section described some wavelet transforms that adapt to an irregular bidimen-
sional grid. Consider again the model (1.1), where the errors are independent, of zero mean
and variance σ2

ε . The next section recalls the Bayesian thresholding scheme proposed in [20]
and used in the simulation study of Section 6. Let d̃jk be the resulting thresholded detail
coefficients. The nonlinear wavelet estimator is

m̂(x, y) =
∑

k

ŝj0,kϕj0,k(x, y) +
J−1∑

j=j0

∑

k

d̃jkψjk(x, y).

Here, we restrict ourself to models with homoscedastic errors. However, it is possible to
treat heteroscedastic errors (where εk = σ(Xk, Yk)ek, and the ek are i.i.d.) in a three-step
procedure. First a pilot estimator m̂0(x, y) is obtained using a linear denoising scheme.
Second, the residuals rk := Zk − m̂0(x, y) are computed and the variance function σ2(.) is
estimated from the data set (Xk, Yk, r

2
k) with a linear wavelet estimator. The estimation of

σ2(x, y) allows us to estimate the variance of the detail coefficients, and we can then apply
the Bayesian thresholding scheme.

5.1 Bayesian thresholding scheme

Thresholding is a common technique for wavelet coefficient selection. Classical data-adaptive
procedures such as SURE [14] or Generalized Cross-Validation [19] for example, treat all
detail coefficients equally: only the magnitude of the coefficient (normalized by its standard
deviation) determines whether or not the coefficient will be selected. In reality, not all coef-
ficients are equal: at coarse scales, for instance, detail coefficients usually convey important
information. The optimal threshold for those coefficients is thus lower than at fine scales This
calls for a scale-dependent threshold assessment. However, for such procedure to be efficient,



the number of coefficients, and the degree of sparsity within each scale should be sufficiently
large.

In our setup of irregular bidimensional designs, scale is a continuous notion. Indeed,
every basis function, as well as every data point, has its own scale. Therefore, a fully data
dependent method not only requires a data dependent threshold choice, but also a different
threshold for every single coefficient.

A way to determine these thresholds is to use an empirical Bayes method, see [22, 23].
For every detail coefficient, we estimate the prior probability p̃ that the corresponding basis
function catches an important data feature, such as edges (singularities). This probability
depends on the scale, which can be measured by the support of the basis function. The
estimation of the probability p̃ is done in two steps. First, detail coefficients with similar
scales are grouped into artificial resolution levels. From these data, we estimate the relative
number of large coefficients. This relative number of important coefficients is a rough estimate
for the requested prior probability. In a second step, the estimation is further corrected
according to the exact support of every basis function. Besides a prior probability on two
classes of coefficients (important and not important), we also need to specify a prior density
on noise-free wavelet coefficients in both classes. We adopt the heavy tail model proposed by
Johnstone and Silverman [22, 23] which has already proved to be effective in the framework of
scattered data smoothing [20]. This model assumes non-important coefficients to be exactly
zero, while important coefficients are distributed according to a continuous mixture of a
normal by a Beta density, in such a way that the tail of the resulting density behaves like a
Cauchy. If we call V the unknown noise-free wavelet coefficient, and W the corresponding
observed value, we can write for the posterior density:

fV |W (v|w) = fV |W (v|w, V = 0)P (V = 0|W = w)

+fV |W (v|w, V 6= 0)P (V 6= 0|W = w).

The posterior probability P (V 6= 0|W = w) then follows from the prior p̃ = P (V 6= 0) and
Bayes’ rule:

p∗ := P (V 6= 0|W = w) =
P (V 6= 0)fW (w|V 6= 0)

fW (w)
.

A second application of Bayes’ rule is necessary to fill in the posterior density for V , given
that V belongs to the class of important coefficients:

fV |W (v|w, V 6= 0) =
fV (v|V 6= 0)fW |V (w|v)

fW (w|V 6= 0)
.

In this equation fV (v|V 6= 0) is the heavy tail prior. The conditional noise model fW |V (w|v)
is a normal density: fW |V (w|v) = φσε(w − v), where φσε is the zero-mean normal density
with standard deviation σε. Convolution of the heavy tail prior and the density of the errors
provides the density fW (w|V 6= 0). Then, from fW (w|V 6= 0) and p̃ := P (V 6= 0), we easily
obtain the noisy coefficient density fW . For more details, we refer the reader to [20, 22, 23].

5.2 Recapitulation of the different estimators

In Section 4, we saw how to build several wavelet transforms for an irregular two-dimensional
grid. These wavelet transforms, used in conjunction with the Bayesian denoising scheme
described above, produce eight different wavelet estimators of the regression function in the
model (1.1): four obtained with the minimum norm update and four with the minimum norm
update followed by a local semi-orthogonalization.



The four predictor operators that we consider here are the following.

1. Prediction based on relaxation with second order differences (called ‘linear relaxation’
hereafter),

2. Prediction based on relaxation with third order differences (‘quadratic relaxation’), with
the stabilization procedure proposed in Section 4.1.6.

3. Linear least squares prediction on the 1−ring neighbors.

4. Quadratic least squares prediction on the 1−ring neighbors and flaps.

6 Simulation study

6.1 Parameters of the simulation study

We tested the proposed estimators on data sets of sample size n = 700. The irregular grid is
generated by taking uniform regressors in the model (1.1): Xk ∼ U [0, 1] and Yk ∼ U [0, 1]
in the model (1.1).

We consider three test functions.

1. A linear function (‘Plane’)
m(x, y) = 4x+ y . (6.1)

2. A piecewise linear function (‘Piece-linear’)

m(x, y) = (2x+ y)1{3x−y<1} + (10− x)1{3x−y≥1} . (6.2)

3. A quadratic function (‘Quad’)

m(x, y) = 6− 12x+ 12x2 + 3y − 5y2 . (6.3)

The three test functions are displayed on Figure 11. For each function, the decomposition is
done until only n0 = 10 scaling coefficients remain at the coarsest level grid χj0 .

In this simulation study, we compare the performance of the four predictor operators and
of the two updates described above. In order to specify the variance σ2

ε in the model (1.1),
we define a signal-to-noise ratio as SNR := sd(m)/σε, where

sd(m)2 = Var(m) =
1

n− 1

n∑

t=1

(m(xt, yt)−m)2, (6.4)

where the design (xt, yt)
n
t=1 is a realization of two independent Uniform random variables,

X ∼ U [0, 1], Y ∼ U [0, 1]. The quantity m is equal to the mean value of the m(xt, yt), t =
1, . . . , n. We set the SNR equal to two, which allows us to specify σε. In Figure 11, we show,
for the three test functions, a typical realization of a data set generated with a SNR = 2.

In the literature, the closeness-of-fit is often measured using a ‘residual signal to noise
ratio’ (denoted rSNR), where the ‘noise’ is estimated with the residuals m̂−m :

rSNR(m, m̂) = 10 ∗ log10

(
Var(m)

Var(m̂−m)

)
.
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Figure 11: Test functions together with a typical realization of a noisy data set with a
SNR = 2: (a) Linear function (Plane) (b) Noisy ‘Plane’ function (c) Piecewise linear function
(Piece-linear) (d) Noisy ‘Piece-linear’ function (e) Quadratic smooth function (Quad) (f)
Noisy ‘Quad’ function.



In this expression, Var(m) = n−1(
∑n

k=1(m(xk, yk)−m)2), where m is the mean value of m.
We can also compute a residual SNR for the initial observations z = {zk}nk=1:

rSNR(m, z) = 10 ∗ log10

(
Var(m)

Var(z −m)

)
.

In our simulation study, we found it convenient to measure the performance of an estimator
m̂ by an efficiency ratio:

Eff(m̂) =
rSNR(m, m̂)

rSNR(m, z)
. (6.5)

A good estimator will have a large efficiency Eff > 1. On the opposite, if Eff ≤ 1, it means
that the estimator does not do better than the raw data from the rSNR point of view. This
may happen when some instabilities occur.

For B = 50 different data sets, we computed the efficiency using (6.5) and summarized
the information by taking the median, first and third quartiles over these B efficiency values.
Note that the different estimators were computed on the same data sets. Thus, although the
number of runs is not large, a difference in the efficiency values reveal a different behaviour
of the estimator.

6.2 Simulation results

We now present and discuss the results of the simulation studies. In the graphs, we represent
realizations where the corresponding estimate has an efficiency close to the corresponding
median efficiency reported in the table.

Table 1 gives for each test function, the efficiencies of the eight estimators obtained by
combining the four predictors and the two updates. Two main features of the behaviour of
these estimators emerge from this table.

1. The transforms with minimum norm update lead to estimators which behave similarly,
in the sense that, for the four predictor operators, the inter-quartile intervals overlap
each other. However, in terms of median efficiency, the linear least squares prediction
performs the best. One explanation for this may be that the least squares prediction
operation already includes some kind of smoothing, since it computes a regression plane
(as opposed to a type of interpolation) on an appropriate set of neighbors. Hence,
typically smaller absolute values of the noisy detail coefficients are observed when using
a least squares prediction as compared to a prediction based on relaxation. Thus, the
correction (3.6) of the update step is of smaller magnitude, and this improves the quality
of the estimator.

2. For all the predictors, performing a local semi-orthogonalization in the update sig-
nificantly improves the efficiency of the estimator, in the sense that the inter-quartile

intervals obtained with U
(1)
j and U

(2)
j do not overlap. As already observed in [9], adding

to the transform an update step which brings the transform closer to an orthogonal one
makes the denoising more efficient. With this second update, the linear relaxation gives
the best median efficiency for the Plane and Piece-linear function, whereas the quadratic
relaxation provides the best median efficiency for the quadratic function (6.3).

Figure 12 represents the estimation of the ‘Plane’ function using linear least squares prediction
and semi-orthogonalization in the update. The efficiency is larger than three, which means
that the estimation is good. In the graphs, we represent the triangulation effectively used



Table 1: Results of the simulation study using Bayesian denoising scheme and eight different
wavelet transforms, obtained by combining four predictor operators and two updates. One
detail coefficient is produced at every scale. The four predictor operators are obtained as
follows: 1. relaxation on second order differences (Lin relax), 2. relaxation on third order
differences (Quad relax), 3. linear least squares (Lin LS), and 4. quadratic least squares
prediction (Quad LS). The two update operators are the minimum norm update and the
minimum norm update followed by a local semi-orthogonalization. For each function and
each transform, the first line in the table gives the median efficiency Eff over the B = 50
runs. The numbers between brackets represent the inter-quartile intervals of the efficiency
Eff. The sample size is n = 700 and the SNR used to generate the data sets is taken equal
to two.

Plane

Minimum norm update

Predictor: Lin relax Quad relax Lin LS Quad LS

2.636 2.805 3.029 2.903
[2.509; 2.894] [2.472; 2.967] [2.758; 3.200] [2.4827; 3.116]

Minimum norm update and semi-orthogonalization

Predictor: Lin relax Quad relax Lin LS Quad LS

3.287 3.217 3.273 3.249
[2.970; 3.618] [3.008; 3.474] [2.981; 3.489] [2.934; 3.488]

Piece-linear

Minimum norm update

Predictor: Lin relax Quad relax Lin LS Quad LS

1.379 1.389 1.573 1.368
[1.237; 1.499] [1.236; 1.483] [1.471; 1.634] [1.231; 1.426]

Minimum norm update and semi-orthogonalization

Predictor: Lin relax Quad relax Lin LS Quad LS

1.817 1.776 1.702 1.723
[1.711; 1.877] [1.698; 1.851] [1.618; 1.773] [1.629; 1.777]

Quad

Minimum norm update

Predictor: Lin relax Quad relax Lin LS Quad LS

2.108 2.156 2.384 2.071
[1.930; 2.267] [1.920; 2.280] [2.183; 2.491] [1.919; 2.264]

Minimum norm update and semi-orthogonalization

Predictor: Lin relax Quad relax Lin LS Quad LS

2.625 2.662 2.643 2.608
[2.493; 2.747] [2.440; 2.741] [2.490; 2.768] [2.383; 2.715]



during the wavelet transform, where the long, narrow triangles present at the boundary have
been removed.

Figure 12: Estimation of the linear function (6.1) (n = 700, SNR = 2). The linear least
squares predict operator is used, together with the minimum norm update followed by semi-
orthogonalization. The efficiency Eff obtained for this estimate is equal to 3.273.

The estimation of the piecewise linear function (6.2) is not easy since a discontinuity is
present in the underlying signal. Moreover, our data set has a small sample size of n = 700 and
a low signal-to-noise ratio. This situation makes the task of any denoising scheme difficult.
We represent in Figure 13 two estimators obtained with relaxation on second order differences.
In Figure 13(a), the minimum norm update is used, whereas in Figure 13(b), a local semi-
orthogonalization in the update has been performed. In both cases, the discontinuity line can
be distinguished from the smooth parts of the function. In Figure 13(b), the smooth parts
are better estimated than with the minimum norm update alone. In both cases however,
some spikes still subsist, due to noisy coefficients which have survived the Bayesian shrinkage
procedure.

Figure 14 gives some examples of the estimation of the quadratic function (6.3) when using
as predictor the relaxation on third order differences (Figure 14(a)), or the quadratic least
squares prediction (Figure 14(b)). The update performed is the minimum norm update with
local semi-orthogonalization. Both predictor performs in a similar way. On this example, the
quadratic relaxation seems to provide a smoother estimate than the quadratic least squares
prediction.

Note that, since the filters used in the wavelet transform are of finite length, the compu-
tational load of all the methods is still O(n) as in the classical case. However, in practice,
the linear least squares prediction provides the fastest algorithm because there is no need
to find the second neighbors V2(v0) with this method. On the opposite, the relaxation on
third order differences is the slowest method since it requires the detection of the potentially
unstable situations and the intensive inversion of matrices of size 3 × 3, see equation (4.12)
and (4.13). (The methods based on prediction with relaxation on second order differences
and with quadratic least squares have similar computational time.)



(a)

(b)

Figure 13: Estimation of the piecewise linear function (6.2) on two data sets, both having
n = 700 observations and a SNR = 2. Relaxation on second order differences is used to predict
the ‘odd’ scaling coefficients. In (a), only a minimum norm update has been implemented,
whereas in (b), the minimum norm update was followed by a local semi-orthogonalization.
The efficiency Eff is equal to (a) 1.379, (b) 1.817.



(a)

(b)

Figure 14: Estimation, on two data sets (n = 700,SNR = 2), of the quadratic function (6.3).
The update performed is a minimum norm update followed by local semi-orthogonalization.
In (a), the stabilized relaxation with third order differences is used as prediction operator,
whereas in (b) quadratic least squares prediction has been utilized. The efficiency Eff is equal
to (a) 2.662, and (b) 2.608.



7 Conclusion

We proposed here different wavelet transforms suitable for the denoising of a regression
function defined on an irregular bivariate grid. Combining four possible predictors with two
types of update, we obtain eight wavelet transforms, and hence eight different estimators.
The four predictors yield estimators which behave in a similar way. On the other hand,
performing a local semi-orthogonalization during the update improves the quality of the
smoothing. When using local semi-orthogonalization, the resulting estimators have proved
to work well for smooth or piecewise smooth functions.

The vertices lying on the boundary must be treated with special care in order to obtain
a good estimator. Here we use the stable method proposed by Jansen, Nason and Silverman
in [21], which avoids the creation of artificial bias at the boundary.

The nonparametric estimators proposed here are of a wavelet type, that is, there are
based on the idea of multiscale representation of the data. In other words, the denoised data
can be represented in the wavelet domain by a few scaling coefficients present at the coarsest
scale together with the detail coefficients that survived the Bayesian shrinkage procedure.
The estimated function can be represented on a coarser grid than the original data, and in
this sense some compression of the data is possible.
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