Abstract
Estimation of bivariate and marginal distributions with censored data
AKRITAS, M. G. and I. VAN KEILEGOM
Consider a pair of random variables, both subject to random right censoring. New estimators for the bivariate and marginal distributions of these variables are proposed. The estimators of the marginal distributions are not the marginals of the corresponding estimator of the bivariate distribution. Both estimators require estimation of the conditonal distribution when the conditioning variable is subject to censoring. Such a method of estimation is proposed. The weak convergence of the estimators proposed is obtained. A small simulation study suggests that the estimators of the marginal and bivariate distributions perform well relatively study suggests that the estimators of the marginal and bivariate distributions performs well relatively to respectively the Kaplan-Meier estimator for the marginal distribution and the estimators of Pruitt and van der Laan for the bivariate distribution. The use of the estimators in practice is illustrated by the analysis of a data set.
Last update: March 3, 2004 - Contact : S. Malali