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Abstract

In item-response theory, subjects often give answers to several questions, leading

to correlated measurements. The correlation that arises in this way between the

measurements of a single subject has to be taken into account in an appropriate way.

If responses are binary, logistic random-effects models could be used to model the

correlation through subject-specific effects. Often, one is interested in finding latent

classes or clusters in the whole population. Recently, a SAS-macro has been developed

to allow for finite mixtures of random-effects models, such that subpopulations can be

identified. The SAS-macro actually covers a broader range of random-effects models,

but we will show how the macro can be used to analyse latent class models in the

case of repeated binary measurements. We will use a dataset on complex reasoning

problems where the hypothesis is tested that there are three latent classes of reasoners.

Key words: Conditional reasoning, Heterogeneous model, IRT models, Normality as-

sumption, Random effects, Repeated measurements
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1 Introduction

In studies where subjects contribute more than one measurement, the correlation between

these measurements has to be taken into account. One way is to use mixed models in which

subject-specific effects (random effects) model the correlation. For continuous data, linear

and nonlinear mixed models could be used (Verbeke and Molenberghs, 2000; Davidian and

Giltinan, 1995). For binary, count and categorical data, generalised linear mixed models

are adopted (Breslow and Clayton, 1993). E.g., in item-response theory (IRT), subjects

often give binary responses on several items and IRT models could be analysed using logistic

random-effects models (Rijmen, Tuerlinckx and De Boeck, 2002). When the interest lies

in finding clusters in the whole population, these models can be extended to incorporate

discrete mixture models (Mislevy and Verhelst, 1990). In this case it is assumed that there

exist unknown latent classes where each class can be represented by an IRT model.

In this paper, we will present a SAS-macro (Spiessens, Verbeke and Komárek, 2002)

for fitting finite mixtures of nonlinear and generalised linear mixed models and apply it to

a latent class analysis involving IRT models. It will be shown how the model can be fitted

using the macro and the results will be discussed extensively.

Spiessens, Verbeke and Komárek (2002) extend the normality assumption for the random

effects to incorporate mixtures of normal components and use this to classify clustered data

into the different mixture components. Verbeke and Lesaffre (1996) already did this for

linear mixed models (see also Muthén and Shedden, 1999).

In the next section, the example dataset is described and several models will be intro-
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duced. Afterwards in Section 3, the methodology introduced by Spiessens, Verbeke and

Komárek (2002) for fitting finite mixtures of nonlinear and generalised linear mixed models

is given. Section 4 shows how the macro can be used in our example. Finally, Section 5

gives a discussion about the obtained results.

2 Latent class models for complex reasoning problems

2.1 Classical logistic random-effects models

The dataset has been taken from Rijmen and De Boeck (2001). They set up an experiment

with 214 high school students between 16 and 19 years of age. The participants had to solve

30 reasoning problems and for each problem, the possible outcomes were ‘necessarily true’

if they thought that the conclusion must be true, ‘necessarily false’ if they thought that the

conclusion must be false, ‘undecidable’ if they thought that the conclusion could be true or

false and ‘I don’t know’ if they couldn’t solve the problem. The latter option was given to

avoid guessing behaviour. For 12 problems, the correct answer was ‘necessarily true’. Twelve

other questions had ‘necessarily false’ as correct answer and for 6 problems the conclusion

was ‘undecidable’. The last 6 problems were used as ‘filler items’ to make sure that the

correct conclusion was sometimes something else as ‘necessarily false’ or ‘necessarily true’

and were not included in the analysis.

Rijmen and De Boeck (2001) wanted to test whether it is necessary to assume that

basic rules differ in their contribution to the difficulty of complex reasoning problems. They
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perform a regression analysis on the 24 proportions which were transformed into their logits

(logit(p) = log[p/(1 − p)]).

Several factors were included in the design and the following three factors were withheld

in the final analysis. The first factor was modus ponens (MP: ‘if p, then q’ and ‘p’, hence

‘q’) versus modus tollens (MT: ‘if p, then q’ and ‘not q’, hence ‘not p’). The second factor

refers to the inferences that were combined with MP or MT: MP + conjunction (C: ‘p’ and

‘q’ yields ‘p and q’), disjunctive syllogism (DS: ‘p or q’ and ‘not p’ yields ‘q’) and disjunctive

modus ponens (DMP: ‘if p or q, then r’ and ‘p’ yields ‘r’). Combinations of these two factors

yield 6 problem types (see also Table 1). The 24 questions that were used in the analyses

were equally divided over the 6 problem types. The last factor that was included in the final

analysis was whether the conclusion was ‘true’ or ‘false’. Factors that were left out of the

model were ‘content of the problems’ and ‘the order of presentation of the premises’. Both

were not significant at the final analysis.

[Table 1 about here.]

From this experiment, Rijmen and De Boeck (2001) conclude that rule theories can

account for the difficulty of the complex reasoning problems, if different weights are allowed

for different basic rules. A reasoning problem with a MT is more difficult to solve than a

problem involving a MP. For the second factor, they find that DS is more difficult than DMP

and DMP is more difficult than MP+C. Finally, a problem with a true conclusion is easier

to solve than a problem with a false conclusion.

Instead of transforming the 24 proportions to their logit values, one could also analyse
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the data using a logistic random-effects model as follows. Denote yij as the jth binary

measurement of the ith subject and the vector yi = (yi1, . . . , yini
)′ contains all the measure-

ments of the ith subject (i = 1, ..., N). In the logistic random-effects model, one models

the probability of success, denoted by pij, conditional on the random effects bi, as

logit(P (yij = 1|bi)) = log

(
pij

1 − pij

)
= x′

ijβ + z′ijbi, (1)

bi ∼ N (µ, R)

yij|bi ∼ Bernoulli(pij)

where the p-dimensional vector β are the fixed-effects parameters (population-level), the

q-dimensional vector bi are the random effects of the ith individual, and the vectors xij

and zij contain the covariates of the ith subject at the jth measurement, corresponding to

the fixed and random effects, respectively. The random effects bi are assumed to follow a

normal distribution with mean µ and covariance matrix R and the distribution of yij given

bi is assumed to be a Bernoulli distribution with mean pij. If all the subjects have the same

number of measurements, we can write ni = n, i = 1, . . . , N . This is the case in our example

dataset where n = 24, the number of items per subject, and the total number of subjects is

N = 214.

In this model, the correlation between measurements of the same individual is modelled

through the random effects bi. Parameter estimation can be done using maximum likelihood,

e.g., through the SAS procedure NLMIXED (SAS Version 8.0, 1999). In this procedure, the

marginal likelihood, in which the random effects have been integrated out, is maximised and

the integration can be performed, e.g., using (adaptive) Gaussian quadrature (Lesaffre and
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Spiessens, 2001).

Special cases of model (1) are the Rasch model and the linear logistic test model (LLTM).

In the Rasch model, only random-intercepts are used (zij = 1 and bi = bi ∼ N (0, σ2))

and for each item, a binary covariate is included in the model, that is

x′
ij = (0 . . . 0 1︸︷︷︸

j

0 . . . 0), j = 1, . . . , n,

and β is a n-dimensional vector.

In the LLTM, x′
ij can contain several item-specific covariates. In our example, x′

ij =

(xij1, xij2, xij3, xij4, xij5) is a five-dimensional design vector for item j, coding the six problem

types and whether the conclusion of the item was ‘true’ or ‘false’, i.e.,

xij1: intercept, 1 for all i

xij2: 1 for the MP problems, 0 for the MT problems

xij3 and xij4: two dummy variables encoding the MP+C, DS and DMP problems:

1 0 for MP+C

0 1 for DS

0 0 for DMP

xij5: 1 for the ‘false’ problems and 0 for the ‘true’ problems.

In Section 4, the LLTM will be analysed and discussed.
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2.2 Finite mixtures of logistic random-effects models

Rijmen and De Boeck (2002) investigate the hypothesis that there are three levels of per-

formance associated with conditional reasoning. This can be done by extending model (1)

to incorporate finite mixtures of normal distributions, i.e., we will assume that

logit(P (yij = 1|bi)) = log

(
pij

1 − pij

)
= x′

ijβ + z′ijbi, (2)

bi ∼
G∑

g=1

πgN (µg, R)

yij|bi ∼ Bernoulli(pij)

where G is the number of mixture components. The probability of belonging to component

g is πg, such that
∑G

g=1 πg = 1. Further, µg is the mean of the gth component and it is

assumed that each component has the same covariance matrix R. This constraint is needed

to avoid infinite likelihoods (Böhning, 1999, p. 199). Let the density of a multivariate normal

distribution with mean µg and covariance matrix R be denoted by φµg,R(.). The joint density

function of yi can then be written as

fi(yi) =
∫

fi(yi|bi)g(bi) dbi

=
∫

fi(yi|bi)
G∑

g=1

πgφµg ,R(bi) dbi

=
G∑

g=1

πg

∫
fi(yi|bi)φµg ,R(bi) dbi

=
G∑

g=1

πgfig(yi).

It is seen that the density function of yi comes from a mixture of densities with component

probabilities π1, . . . , πG and component densities fig(yi).

8



Let us now write π = (π1, . . . , πG)′, the vector of all component probabilities and µ =

(µ′
1, . . . ,µ

′
G)′, the vector of all component means. Further, ψ = (β′,µ′, vec(R)′)′ where

vec(R) is a vector with the upper-triangular elements of R stacked on top of each other and

θ = (ψ′,π′)′, the vector of all parameters in the model. We will now have to maximise the

following loglikelihood

l(θ;y) =
N∑

i=1

log


G∑

g=1

πgfig(yi;ψ)

 . (3)

This loglikelihood will be maximised using the Expectation-Maximisation-algorithm (EM), in-

troduced by Dempster, Laird and Rubin (1977), which is typically used for mixture problems.

This will be described in the next section.

A further extension of model (2) is to allow the parameter vector β to vary between

components. E.g., Rijmen and De Boeck (2002) use a random intercept (with different

means in the latent classes) and allow the effect of MP versus MT (xij2) to be different in

the latent classes. Their model can be written down as:

log

(
pij|g

1 − pij|g

)
= xij1β1g + xij2β2g + xij3β3 + xij4β4 + xij5β5 + big (4)

where pij|g is the probability that the ith person gives a correct answer on the jth question,

given that he belongs to class g. Further, xij = (xij1, xij2, xij3, xij4, xij5)
′ is defined as be-

fore. The vector (β1g, β2g, β3, β4, β5)
′ is the five-dimensional parameter vector corresponding

to the design vector xij in class g. Rijmen and De Boeck (2002) only allow the intercept

and the effect of MP versus MT to vary between the different components. Finally, big is a

random intercept, which corresponds to a persons individual level of reasoning ability. It is
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assumed that these random effects follow a normal distribution with mean 0 and variance

σ2. It will be shown in Section 4 how this model can be fitted using our SAS-macro.

3 Fitting mixtures in logistic random-effects models

3.1 The EM-algorithm

Define the indicator variables wig, i = 1, . . . , N ; g = 1, . . . , G as follows:

wig =


1 if the ith subject belongs to the gth component

0 otherwise.

It follows from this definition that P (wig = 1) = πg. The joint loglikelihood for the observed

measurements y and for the vector w of all unobserved wig equals:

l(θ;y,w) =
N∑

i=1

li(θ;yi,wi) =
N∑

i=1

G∑
g=1

wig[log(πg) + log{fig(y;ψ)}]. (5)

Maximisation of l(θ;y,w) depends on the unknown indicator variables wig. Therefore,

the expected value of l(θ;y,w), conditional on y will be maximised. In the first step,

the Expectation-step, the conditional expected value of the loglikelihood, referred to as the

objective function Q, will be calculated. Suppose that θ(t) is the current estimate of θ.

Then,

Q(θ; θ(t)) = E[l(θ;y,w)|y, θ(t)]

=
N∑

i=1

G∑
g=1

E[wig|yi, θ
(t)][log(πg) + log{fig(yi;ψ)}] (6)
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where

E[wig|yi, θ
(t)] =

π(t)
g fig(yi;ψ

(t))∑G
g=1 π

(t)
g fig(yi;ψ

(t))

∣∣∣∣∣∣
θ(t)

≡ πig(θ
(t)).

Here, πig(θ
(t)) is the posterior probability of the ith subject to belong to the gth population.

It is seen that the E-step actually reduces to calculating the posterior probabilities.

In the second step of the algorithm, the M-step, we have to maximise the objective

function Q(θ; θ(t)) with respect to θ in order to get the updated parameter vector θ(t+1).

It is seen from (6) that the objective function can be written as a sum of two parts:

Q(θ; θ(t)) = Q1(π; θ(t)) + Q2(ψ; θ(t))

=
N∑

i=1

G∑
g=1

πig log(πg) +
N∑

i=1

G∑
g=1

πiglog{fig(yi;ψ)}. (7)

Maximising the first part of (7) results in updating the component probabilities in the fol-

lowing way:

π(t+1)
g =

1

N

N∑
i=1

πig(θ
(t)),

i.e., the updated estimate of the gth component probability is the average of the posterior

probabilities in this component.

The second part of (7) is more difficult to maximise, since it requires numerical procedures

such as Newton-Raphson. We will now explain how standard software, such as the SAS

PROC NLMIXED, can be used to maximise this part of the objective function. We want to

maximise

Q2(ψ; θ(t)) =
N∑

i=1

G∑
g=1

πig(θ
(t))log{fig(yi;ψ)} (8)
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with respect to ψ. If the posterior probabilities πig(θ
(t)) were integers, this would be the

loglikelihood for the homogeneous model based on observations from
∑N

i=1

∑G
g=1 πig(θ

(t))

individuals.

Maximisation of (8) is equivalent to maximising

A.Q2(ψ; θ(t)) =
N∑

i=1

G∑
g=1

A.πig(θ
(t))log{fig(yi;ψ)}

=
N∑

i=1

G∑
g=1

aig(θ
(t))log{fig(yi;ψ)} (9)

where A is an arbitrary constant and aig(θ
(t)) = A.πig(θ

(t)). By taking A sufficiently large,

and by rounding off the numbers aig to integers, the loglikelihood in (9) can be maximised

as if it was a loglikelihood coming from an homogeneous model with
∑N

i=1

∑G
g=1 aig subjects.

This will be an approximation to maximising the loglikelihood in (8). The larger A, the

better this approximation will be. However, in practice, we would have to multiply our

dataset A times, which would increase the computation time substantially. Fortunately,

the SAS procedure NLMIXED provides a REPLICATE statement which can be used when

modelling datasets where different subjects have identical data. The use of this REPLICATE

statement allows us to increase A without affecting the computation time, such that the

loglikelihood in (8) can be approximated arbitrarily close.

The algorithm will iterate between the E-step and M-step until the difference between

two successive loglikelihood evaluations in (3) is smaller than some small value ε, that is

until

|l(θ(t);y) − l(θ(t+1);y)| < ε.

12



In practice one often uses ε = 1e − 08 as stopping criterion. The maximum likelihood

estimate of θ is denoted by θ̂. In the SAS-macro it is possible to specify other stopping

criteria such as the maximal absolute difference between two successive parameter estimates

or the derivative of the loglikelihood in (3).

3.2 Standard errors

One of the drawbacks of the EM-algorithm is that it doesn’t provide standard errors auto-

matically. For this, one would have to calculate the observed information matrix, i.e., the

negative of the second derivative of the loglikelihood in (3). One of the reasons for using

the EM-algorithm was to avoid this calculation.

Louis (1982) provides a procedure to approximate this observed information matrix

I(θ,y). In the case of finite mixture problems, it can be shown (McLachlan and Krish-

nan, 1997) that I(θ,y) can be approximated by the empirical observed information matrix

Ie =
N∑

i=1

s(yi, θ̂)s
′(yi, θ̂)

where

s(yi, θ̂) = E

{
∂li(θ;yi,wi)

∂θ

∣∣∣∣∣ yi

}
.

It is seen that this approximation can be expressed in terms of the conditional expectation

of the gradient of the loglikelihood in (5), evaluated in θ̂. The computation of the second

order derivative of this loglikelihood is not needed.
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3.3 Empirical Bayes estimation

The EB estimates in the SAS PROC NLMIXED are defined as the mode of fi(bi|yi, θ) ∝

fi(yi|bi, θ)g(bi), the posterior distribution of the random effects, conditional on yi. How-

ever, because of the possible multimodality of the random-effects distribution under the

heterogeneous model, this definition is not suitable anymore. The posterior distribution of

bi can also be written as

fi(bi|yi, θ) =
G∑

g=1

πig(θ)fig(bi|yi,ψ),

where fig(bi|yi,ψ) is the posterior density function of bi, conditional on the fact that bi

was sampled from component g in the mixture. Therefore, it is natural to calculate the EB

estimates under the heterogeneous model as

b̂i =
G∑

g=1

πig(θ̂)b̂
(g)

i

where b̂
(g)

i is the EB estimate of the random effect for the ith subject in the gth component.

3.4 Classification of clustered data

Classifying clustered data based on the EB estimates can be potentially dangerous, because

these EB estimates have different distributions for all subjects and are shrunk toward the

mean. It is common practice, when working with mixtures, to classify these clusters based

on the posterior probabilities. A subject will be classified into the component for which it

has the highest posterior probability to belong to.
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3.5 Accelerating the EM-algorithm

The EM-algorithm often converges very slowly because of flat loglikelihoods. Therefore,

we have implemented the accelerator of Jamshidian and Jennrich (1997). They argue that

the accelerator needs good starting values and recommend to use a few EM-steps until

the difference between two successive values of the loglikelihood is smaller than 0.5 before

switching on the accelerator.

4 An application of the SAS-macro

4.1 The linear logistic test model

Let us now first have a look at the LLTM of Section 2.1. This can be fitted using the SAS

PROC NLMIXED (SAS Version 8.0, 1999) in the following way:

proc nlmixed data=reasoning;

parms beta1=1 beta2=0 beta3=0 beta4=0 beta5=0 s2=1;

eta = b + beta1*X1 + beta2*X2 + beta3*X3 + beta4*X4 + beta5*X5;

expeta = exp(eta); p = expeta/(1+expeta);

model y ~ binary(p);

random b ~ normal(0,s2) subject=idnr;

estimate ’MP+C versus DS’ beta3 - beta4;

run;

15



In this case the random intercept, b, follows a normal distribution with mean 0 and vari-

ance σ2. The PARMS statement gives starting values for the parameters. The loglikelihood

for this model was −2642.29 and the maximum likelihood estimates can be found in Ta-

ble 2. Since β̂2 is positive, it is seen that questions with a MP are easier to answer than

questions with a MT. For the second factor in the model, the parameter β3 expresses the

difference between MP+C and DMP and β4 expresses the difference between DS and DMP.

The difference between MP+C and DS can be estimated using an estimate statement and is

the difference between β3 and β4. From Table 2 we see that MP+C is easier than DMP and

DMP is easier to answer than DS. Finally, questions with a ‘false’ answer are more difficult

to answer than questions with a true answer. This can be seen from β̂5 which is negative.

[Table 2 about here.]

A figure of the estimated random-effects distribution in the one-component model to-

gether with the EB-estimates of the random effects is shown in Figure 1(a). Only 15 different

EB-estimates can be distinguished because each person gave at least 10 out of 24 correct

answers. Since we only fit a random-intercepts model, the sufficient statistic is the sum of

the correct answers, leaving only 15 different possibilities.

[Figure 1 about here.]

4.2 Latent class analyses

Rijmen and De Boeck (2002) tried to find subclasses of individuals in this dataset and came

up with a 3-component model, as shown in Section 2.2. The following syntax can be used in
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our macro to fit model (4). First, we have to create a dataset containing starting values for

the different parameters in the model. Starting values were taken from the one-component

analysis (see Table 2), except for σ2 which was taken a little bit smaller than 0.65 because

it represents the variance within a component and not the total variance.

data startv;

input parameter$ estimate;

cards;

beta11 0.5

beta12 1

beta13 1.5

beta21 0.8

beta22 0.9

beta23 1

beta3 0.86

beta4 -0.81

beta5 -0.55

s2 0.5

;

run;

options nonotes;
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run;

%HetNlmixed(DATA = reasoning, OPTIONS = %str(qpoints=5 noad),

PARMS = startv, SUBJECT = idnr, RESPONSE = y, COMPSPEC = X1 X2,

PROGRAMSTAT =

%str(eta = b*X1 + beta11*X11 + beta12*X12 + beta13*X13 + beta21*X21 +

beta22*X22 + beta23*X23 + beta3*X3 + beta4*X4 + beta5*X5;

expeta = exp(eta); p = expeta/(1+expeta);), MODELSTAT =

%str(y ~ binary(p)), RANDOMSTAT =

%str(b ~ normal(0,s2)), ESTIMSTAT = %str(

estimate ’overall intercept 1’ beta11+beta21/2+(beta3+beta4)/3+beta5/2;

estimate ’overall intercept 2’ beta12+beta22/2+(beta3+beta4)/3+beta5/2;

estimate ’overall intercept 3’ beta13+beta23/2+(beta3+beta4)/3+beta5/2;

estimate ’deviation intercept 3-1’ beta13+beta23/2-beta11-beta21/2;

estimate ’deviation intercept 2-1’ beta12+beta22/2-beta11-beta21/2;

estimate ’overall effect X2’ beta21*PI1+beta22*PI2+beta23*(1-PI1-PI2);),

G = 3, DECISION = 2, STOPRULE = 1e-08, A = 1e06, ACCEL = yes,

ACCSTART = 0.5, MAXITER = 1000, ENDPOST = poster, EB = ebest,

EBmean = %str(’beta11’,’beta12’,’beta13’));

We will now briefly describe the syntax of the macro. Details can be found in Spiessens,

Verbeke and Komárek (2002).
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In the DATA statement, the name of the dataset is specified. The OPTIONS statement

can be used to specify options for the SAS PROC NLMIXED. Here, we have used non-

adaptive Gaussian quadrature with 5 quadrature points to speed up the algorithm. As

Lesaffre and Spiessens (2001) show, one has to be very careful when non-adaptive Gaussian

quadrature is used, but in this case, satisfactory results were obtained with this small number

of quadrature points. The dataset containing the starting values is given in the PARMS

statement. The variable containing the identification numbers of the subjects (idnr) is put

in the SUBJECT statement. The RESPONSE statement contains the name of the response

variable (y). The component specific effects that are used in the model are specified in

the COMPSPEC statement. In this case, X1, which is also a random effect, and X2 are

specified. The PROGRAMSTAT and MODELSTAT statements contain similar programming

and modelling statements as used in the SAS PROC NLMIXED, except that now we specify

three different means β11, β12, β13 for X1 and β21, β22, β23 for X2 corresponding to the three

latent classes. The RANDOMSTAT statement is also similar to the RANDOM statement of

SAS PROC NLMIXED. Here, we only have one random effect b, which corresponds to the

intercept X1. In the ESTIMSTAT statement, different estimate statements can be specified.

This way, we can reproduce the estimates of Rijmen and De Boeck (2002), who use a

different parametrisation, or calculate the overall effect of X2 over the different classes. The

number of components is specified in the G statement. The DECISION and STOPRULE

statements allow to change the convergence criterion. The default (DECISION = 2) is that

the algorithm will stop as soon as two successive loglikelihood evaluations are smaller than
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STOPRULE. One can change the stopping criterion to the maximum absolute difference

between two successive parameter estimates (DECISION = 1) or to the derivative of the

loglikelihood in (3) (DECISION = 3). By default, STOPRULE = 1e-08. The multiplication

factor used in (9) is specified in the A statement. The statement ‘ACCEL = yes’ specifies

that the acceleration of Jamshidian and Jennrich (1997) has to be used. In this case the

acceleration will start when the difference between two successive loglikelihoods is smaller

than ACCSTART = 0.5. Finally, the posterior probabilities and empirical Bayes estimates

are written to the SAS datasets ‘poster’ and ‘ebest’. This is specified in the ENDPOST and

EB statements. The EBMEAN statement is necessary to calculate the EB-estimates. More

details about the macro can be found in Spiessens, Verbeke and Komárek (2002).

The loglikelihood of this model was equal to −2595.69 and the maximum likelihood esti-

mates can be found in Table 3. Note that likelihood ratio tests are not allowed to compare the

one-component with the three-component model, because of boundary problems (Böhning,

1999). Model comparison could be based on other criteria such as the Akaike’s information

criterion (AIC, Akaike, 1974) or the Bayesian information criterion (BIC, Schwarz, 1978).

Based in these criteria, the three-component model is better than the one-component model.

[Table 3 about here.]

From Table 3 it is seen that there is a large component with a component probability of

0.70, a smaller component (0.26) and a very tiny component (0.04). From the intercepts

(β11,β12 and β13) and from the overall intercepts in the different classes (averaged over the

other covariates in the model as was done by Rijmen and De Boeck (2002)) it is seen that
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the reasoning ability is highest for the second class, intermediate for the first class and lowest

for the third class. There is a significant difference between the second and first class, but

the difference between the third and first class is not significant. In all three groups, a MP

question was easier than a MT question. The difference was largest in the third component

and smallest in the first component. The parameters β3, β4 and β5 do not differ much from

the one-component analysis and the same conclusions can be drawn. Rijmen and De Boeck

(2002) interpret the first class as corresponding to unsophisticated reasoners and the second

class to intermediate reasoners. There is no class of sophisticated reasoners, however, Rijmen

and De Boeck (2002) note that this class might show up if the study was conducted among

adults.

In Figure 1(b) the estimated random-effects distribution of the three-component model

is shown, together with the EB-estimates, calculated under this model. Comparing this

figure to Figure 1(a), it is clearly seen that clusters could not have been found based on the

EB-estimates of the one-component model due to the shrinkage effect. Also, in Figure 1(b)

the shrinkage effect is visible. It is seen that the EB-estimates are shrunk toward the overall

mean, compared to the modes of the different components.

To show the effect of speed of convergence, we performed the analysis with and without

the acceleration. Without the acceleration, convergence was reached after 107 iterations.

The analysis took 4:34:14 hours on a Windows NT workstation 4.0, Pentium III 800 Mhz

processor and 256 Mb RAM. With the acceleration, convergence was reached after 35 it-

erations and 1:49:25 hours. The acceleration started after 28 iterations. Another way of
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accelerating the EM-algorithm which is often adopted is to perform only 1 iteration in the

M-step. This can be done by specifying %str(maxiter=1) in the OPTIONS statement of

the macro. However, in this case the algorithm converged only after 301 iterations and took

4:27:22 hours. It is seen that there is only a small gain in time compared to performing a

full M-step, because of the high number of iterations.

5 Discussion

A method for fitting finite mixtures of nonlinear and generalised linear mixed models was

described. It was shown how latent class analyses involving random effects can be performed

using a SAS-macro which was previously introduced by Spiessens, Verbeke and Komárek

(2002). Also mixtures of IRT models (Rasch, LLTM model, . . . ) can be fitted using

the macro. We have applied the macro to a study on complex reasoning ability which was

conducted by Rijmen and De Boeck (2001, 2002). The macro can also be used for latent class

analyses were no random effects are involved. In that case, no RANDOMSTAT statement

should be specified and the variables which have a different effect in the components are

given in the COMPSPEC statement.

The method is based on extending the assumption that the random effects come from a

normal distribution. This assumption is often made for computational reasons, or software

restrictions. However, as shown by Verbeke and Lesaffre (1996), this assumption is difficult

to check, because the random effects are latent, and never observed. Often, empirical Bayes

(EB) estimates are used to study the distribution of the random effects, but these estimates
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have different distributions for all subjects, unless all subjects have the same covariates. The

EB estimates are also shrunk toward the mean, which makes them unsuitable for model

diagnostics, as was shown in our example. Further, if this assumption fails to hold, the

estimates of the parameters in nonlinear and in generalised linear mixed models are biased

(Spiessens et al. 2002; Hartford and Davidian, 2000). Verbeke and Lesaffre (1997) show

that the parameters in linear mixed models do not suffer from this problem. In practice,

misspecifying the random-effects distributions regularly happens, e.g., when an important

categorical variable has been left out of the model.

A drawback of the macro is that convergence can be very slow. However, an acceleration

can be used to speed up the rate of convergence. In our example, using the acceleration,

the algorithm converged 60% faster compared to the algorithm without the acceleration.

No formal test for the number of components has been implemented yet. Usual likelihood

ratio tests are not valid, because of boundary problems (Böhning, 1999). Often one uses

other criteria like AIC or BIC to compare different models. These have also been implemented

in the macro.

Finally, the macro can be downloaded from the homepage of the Biostatistical Centre:

http://www.kuleuven.ac.be/biostat.
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Figure 1: (a) Estimated random-effects distribution and EB-estimates (�) under the one-
component model. (b) Estimated random-effects distribution and EB-estimates under the
three-component model (© the first component; � the second component; ✷ the third
component).
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Table 1: The six problem types for the experiment of Rijmen and De Boeck (2001)

Modus ponens Modus tollens

Modus ponens + IF p, THEN q IF p, THEN q
Conjunction p p

IF r, THEN s IF r, THEN s
r NOT s

q AND s q AND NOT r

Disjunctive syllogism p OR q p OR q
IF r, THEN NOT q IF q, THEN r
r NOT r

p p

Disjunctive modus ponens IF p OR q, THEN r IF p OR NOT q, THEN r
IF s, THEN q IF q, THEN s
s NOT s

r r
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Table 2: Maximum likelihood estimates for the one-component model (ll =
−2642.29, AIC = 5296.58, BIC = 5316.78)

Parameter Estimate SE p-value

β̂1 1.01 0.09 <0.0001

β̂2 0.97 0.07 <0.0001

β̂3 0.86 0.09 <0.0001

β̂4 -0.81 0.08 <0.0001

β̂3 − β̂4 1.67 0.09 <0.0001

β̂5 -0.55 0.07 <0.0001
σ̂2 0.65 0.10 <0.0001

29



Table 3: Maximum likelihood estimates for the three-component model (ll =
−2595.69, AIC = 5215.38, BIC = 5255.77)

Parameter Estimate SE p-value
π̂1 0.70 0.05 <0.0001
π̂2 0.26 0.05 <0.0001
π̂3 0.04 0.01 0.0045

β̂11 0.72 0.10 <0.0001

β̂12 2.27 0.19 <0.0001

β̂13 -1.88 0.39 <0.0001

β̂21 0.73 0.09 <0.0001

β̂22 1.46 0.35 <0.0001

β̂23 5.13 0.52 <0.0001

β̂3 0.88 0.09 <0.0001

β̂4 -0.83 0.07 <0.0001

β̂5 -0.56 0.08 <0.0001
σ̂2 0.11 0.07 0.1008
Estimate statements
overall intercept 1 0.82 0.07 <0.0001
overall intercept 2 2.74 0.25 <0.0001
overall intercept 3 0.42 0.31 0.1755
deviation intercept 2-1 1.92 0.21 <0.0001
deviation intercept 3-1 -0.40 0.32 0.2113
overall effect X2 1.10 0.14 <0.0001
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