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Abstract

In this paper we propose two interpretations for the discrimination parameter in the

Two-Parameter Logistic Model (2PLM). The interpretations are based on the relation

between the 2PLM and two stochastic models. In the first interpretation, the 2PLM is

linked to a diffusion model so that the probability of absorption equals the 2PLM. The

discrimination parameter is the distance between the two absorbing boundaries and

therefore the amount of information that has to be collected before a response to an item

can be given. For the second interpretation, the 2PLM is connected to a specific type of

race model. In the race model, the discrimination parameter is inversely related to the

dependency of the information used in the decision process. Extended versions of both

models with person-to-person variability in the difficulty parameter are considered. When

fitted to a data set, it is shown that a generalization of the race model that allows for

dependency between choices and response times (RTs) is the best-fitting model.

Keywords: Item Response Theory, Item Discrimination, Two-Parameter Logistic Model,

Diffusion Model, Race Model, Response Times
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Two interpretations of the discrimination parameter

In this paper we would like to shed some light on the interpretation of the

discrimination parameter in the Two-Parameter Logistic Model (2PLM; Birnbaum, 1968).

Assume a person responds to an item with two response alternatives, A and B. Let X be

a random variable that takes the value 1 if alternative A is chosen and 0 if the person

chooses alternative B. A possible model for the choice probability is the 2PLM

(Birnbaum, 1968):

Pr(X = 1) =
exp (α(θ + β))

1 + exp (α(θ + β))
, (1)

where the parameters θ and β are the location parameters because they refer to the

positions on the latent continuum of the person and item, respectively. The parameter α

is known as the item discrimination parameter. In the basic interpretations, the item

discrimination quantifies how well the single latent dimension is measured by the item.

Likewise, it is a measure of the nonlinear correlation between the item and the latent

dimension. Such interpretations resemble the interpretation of a factor loading in factor

analysis. However, both accounts are merely verbal paraphrases of the role of α in

Equation (1). More explanatory interpretations have been proposed by Colonius (1981)

and, more recently, by Embretson (1999).

In the following, two new interpretations of the discrimination parameter will be

developed by considering the 2PLM to be the choice probability arising from two different

stochastic models: a diffusion model and a race model. For both type of models, we will

indicate under which conditions the choice probabilities equal the 2PLM and how the

discrimination parameter may be interpreted.

The organization of the rest of the paper is as follows. First, the diffusion model is
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discussed and then the race model. It is shown that both models assume independence of

choices and RTs. Extensions of both models are proposed that relax the independence

assumption. Subsequently, we present an example in which the models are fitted to

personality inventory data. Finally, the paper is closed with a discussion of the results.

The diffusion model and the 2PLM

In the diffusion model it is assumed that in order to decide between alternatives A

and B, information has to be sequentially sampled from the stimulus and mapped onto a

single signed counter. If the counter hits an upper or lower boundary, the corresponding

response is given (i.e., alternative A for the upper boundary and B for the lower one). A

Wiener process with constant drift and variance and two absorbing boundaries (Cox &

Miller, 1970) can represent such an accumulation process mathematically. Throughout the

rest of the paper, we will use the terms ”diffusion process” or ”diffusion model” to refer to

this Wiener process, although many other diffusion processes exist (e.g., Cox & Miller,

1970).

The amount of accumulated information at time d is denoted by the continuous

random variable Z(d). At the start of the deliberation process (i.e., d = 0), Z(0) equals z.

The process ends if the evidence counter reaches an upper absorbing boundary α or a

lower absorbing boundary 0 at some time (where 0 < z < α). The time needed to reach

one of the boundaries is represented by a random variable D, which is the decision time.

There are three other essential characteristics of the diffusion process. First, the

mean rate of information accumulation of the process is called the drift rate, denoted by

µ, and it is assumed to be constant over time. If µ is positive and large, this means that a

person tends to sample more information in favor of the alternative corresponding to the

upper boundary (alternative A). If it is large but negative, the person tends to sample

more evidence for alternative B. It will be assumed that the drift can be decomposed as
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follows:

µ = θ + β, (2)

where θ is the person component and β the item (or stimulus) component of the drift rate.

Holding θ constant, information in favor of the upper barrier alternative can be

found more easily for an item with a larger β compared to one with a smaller β. Hence,

the parameter β is an item main effect on the drift rate. Ratcliff (1985) and Ratcliff,

Van Zandt, and McKoon (1999) present a related idea to the decomposition in

Equation (2) where the −θ is a criterion threshold that has to be exceeded by β to attain

a positive drift rate. In our model, these criterion thresholds are subject to interindividual

differences.

A second feature of the information accumulation process is its volatility. While the

mean rate of information accumulation is constant over time, the actual accumulation rate

varies over time due to the stochastic nature of the process. In a small time interval ∆d,

the variance of the change in the internal counter Z(d) equals σ2∆d. If this variance is

large, the process behaves more volatile, and if it is small, the trajectory of Z(d) over time

will not deviate much from the mean drift rate.

A third property of the diffusion process is the location of the starting point z.

Dependent on the value for the starting point, there may be a bias toward one of the

response alternatives. If z > α/2, there is a bias toward alternative A, while z < α/2

indicates a bias toward alternative B. In the case that z = α/2, there is no bias.

The observed response time (RT) will not be exactly equal to the decision time

because additional processes take place in the time between the onset of the stimulus and

the final response besides the decision. Therefore, the observed RT, represented by the

random variable T , is decomposed into the decision time D and a residual time Ter:
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T = D + Ter.

The residual time represents for instance the time needed to encode the item and to

prepare the response. For simplicity, it is assumed that Ter is constant over persons and

items. For an extension of the model where the residual time is assumed to be randomly

distributed, see Ratcliff and Tuerlinckx (2002).

Let the random variable X denote the choice response (i.e., the boundary of

absorption) and the random variable T the observed RT. The joint density of X and T

can then be written as follows (Cox & Miller, 1970):

fX,T (x, t) =
πσ2

α2
exp

(
(αx − z)(θ + β)

σ2
− (θ + β)2

2σ2
(t − Ter)

)

×
∞∑

m=1

m sin
(

πm(αx − 2zx + z)
α

)
exp

(
−1

2
π2σ2m2

α2
(t − Ter)

)
, (3)

which is only nonzero for t > Ter. Because the joint density in Equation (3) does not

change if the parameters θ, β, α, σ and z are all multiplied by a constant K, the model is

not identified and therefore one of the parameters has to be restricted to an arbitrary

value. For simplicity, we set σ = 1.

From Equation (3), the probability of absorption at the upper boundary (see e.g.,

Cox & Miller, 1970; Luce, 1986): Pr(choosing alternative A) = Pr(X = 1) =

exp(−2z(θ+β))−1
exp(−2α(θ+β))−1 . If the diffusion process is unbiased (z = α/2), then the probability of

absorption in the upper boundary reduces to:

Pr(X = 1) =
exp (−α(θ + β)) − 1
exp (−2α(θ + β)) − 1

=
exp (α(θ + β))

1 + exp (α(θ + β))
, (4)

which shows that the choice probability model for an unbiased diffusion model with

absorbing barriers and with drift decomposed into a person and an item part equals the

2PLM. In the unbiased diffusion process, the discrimination parameter α is the distance
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between the two absorbing boundaries.

The diffusion model interpretation of the item discrimination implies that items

with different discrimination parameters have different speed-accuracy trade-off functions

(SATFs) (Luce, 1986), as if they were different conditions in an experiment. The SATF

refers to the relation between the expected RT and the ”accuracy” of the response. A

response is defined to be accurate in this context if the mean drift rate µ = θ + β and the

manifest response (X) match. Such a match occurs if the case θ + β > 0 corresponds with

reaching the upper boundary and therefore response alternative A is chosen (X = 1).

(Vice versa, choosing response alternative B (X = 0) when θ + β > 0 results in a

mismatch.) A match also occurs if θ + β < 0 and X = 0. From Equation (4), it can be

seen that the distance between the boundaries (or item discrimination) is related to the

probability of misclassification. When α increases, Pr(X = 1) increases if θ + β > 0, so

that the probability of giving a response that is in correspondence with the latent

disposition increases. In addition, a larger α results in a larger expected decision time

(since more information has to be accumulated, and that takes a longer time), but the

response is expected to be more accurate. In conclusion, better discriminating items will

require more time under the diffusion model.

Usually, the boundary separation is seen as a criterion under subject control while

in our interpretation it is a property of an item. However, this is not a contradiction. In

the model proposed here, it is possible that the subjects determine the location of the

absorbing boundaries, but that the item has an influence on the subjects in setting the

boundaries (see also Grice, 1968); therefore, it can be seen as an item main effect.

The race model and the 2PLM

In the race model described here, it is assumed that each choice alternative (A or B)

is represented by a decision node. Each decision node receives connections from several
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information nodes, as shown in Figure 1. After encoding the item, the information nodes

will become activated and they consequently perform a race to activate their

corresponding decision node. The first-activated decision node determines the choice

response.

INSERT FIGURE 1 ABOUT HERE

The number of information nodes associated with each decision node, denoted as

NA and NB , is determined by the person and item parameter as follows:

NA ≈ N exp(θ) exp(β)

NB ≈ N exp(−θ) exp(−β), (5)

where N is the grand mean of the number of information nodes and exp(θ), exp(β) and

their inverses represent deviations from this grand mean. The number of information

nodes is restricted to be positive, therefore they are decomposed in a multiplicative way,

resembling a loglinear representation for a frequency table (Agresti, 2002). The left-hand

and right-hand sides in Equation (5) are only approximately equal because the number of

actual information nodes has to be a natural number and exp(θ) and exp(β) are usually

not natural numbers. In the following, however, we will assume that the equality holds.

Next, we consider the (marginal) race time to pass activation from the ith

information node to decision node u (u = A,B; i = 1, . . . , Nu), denoted as Tui. It is

assumed that this race time is Weibull distributed with scale parameter λ and shape
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parameter γ so that its survivor function is:

STui(t) = Pr(Tui > t) = exp (−λtγ) . (6)

The mean of this distribution is λ− 1
γ Γ
(
1 + 1

γ

)
(with Γ(·) is the gamma function). If γ

equals 1, then Equation (6) becomes the survivor function of an exponential distribution.

The univariate marginal race times for the information nodes are assumed to be

distributed identically, but the race times of information nodes connected to the same

decision node will not have to be independent. We allow for dependencies in race times

because the information nodes may coactivate each other in the decision process, leading

to positively correlated race times.

To induce the within-decision node dependency between the race times, we use the

technique of copulas (Joe, 1997). A copula is a function used to create a joint survivor

function from given univariate marginal survivor functions with a certain dependency

structure, while still retaining the Weibull survivor functions from Equation (6) as the

univariate marginals. As suggested already by the term copula, several univariate

marginal survivor functions are ”coupled” to yield a joint survivor function, but without

affecting the univariate marginal survivor functions.

In this paper, we use a multivariate generalization of a Gumbel-Hougaard copula

(Hougaard, 1986a, 1986b; Joe, 1997) applied to the marginal Weibull survivor functions

from Equation (6). The joint survivor function of the vector of race times connected to

decision node u, represented as (Tu1, . . . , TuNu), then equals:

STu1,...,TuNu
(tu1, . . . , tuNu) = Pr(Tu1 > tu1, . . . , TuNu > tuNu)

= exp


−

(
Nu∑
i=1

λωtγω
ui

) 1
ω


 , (7)
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where u = A,B and i = 1, . . . , Nu and ω is a dependency parameter (with ω ≥ 1 to ensure

a proper probability density). It is easy to see that the marginal survivor function of Tui is

still equal to Equation (6):

Pr(Tui > t) = Pr(Tu1 > 0, . . . , Tui > t, . . . , TuNu > 0)

= STu1,...,TuNu
(0, . . . , tui, . . . , 0) = exp (−λtγ) . (8)

The parameter ω in Equation (7) is the dependency parameter and it quantifies the

amount of dependency between the race times of the information nodes connected to a

single decision node. The case ω = 1 refers to independence because then the multivariate

survivor function in Equation (7) becomes the simple product of the univariate ones as

given in Equation (6). If ω increases, the dependency between the race times also

increases. As ω → ∞ (perfect dependency between the race times), the joint survivor

function becomes equal to exp [−maxi (λtγui)] = mini exp (−λtγui), implying that the joint

survivor function only depends on the fastest race time.

In a next step, the distribution of TA = min(TA1, . . . , TANA
), the minimum of the

race times from information nodes connected to decision node A, is derived:

STA
(t) = Pr(TA > t) = Pr(min(TA1, . . . , TANA

) > t) = Pr(TA1 > t, . . . , TANA
> t)

= STA1,...,TANA
(t, . . . , t) = exp

(
−λN

1
ω
A tγ

)
. (9)

As can be seen from Equation (9), TA is distributed as a Weibull random variable with

parameters λN
1
ω
A and γ. A similar derivation leads to the survivor function of TB , which is

Weibull distributed with parameters λN
1
ω
B and γ. The two random variables TA and TB

are independently distributed.

With the distribution of random variables TA and TB , we are in a position to define
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the choice probabilities and the distribution of the decision time D = min(TA, TB). We

start with the probability of choosing alternative A:

Pr(X = 1) = Pr(TA < TB) =
∫ ∞

0
fTA

(tA)
(∫ ∞

tA

fTB
(tB)dtB

)
dtA

=
N

1
ω
A

N
1
ω
A + N

1
ω
B

=
exp

(
2
ω (θ + β)

)
1 + exp

(
2
ω (θ + β)

) =
exp (α(θ + β))

1 + exp (α(θ + β))
, (10)

where we have used Equation (5) and set 2/ω equal to α.

From Equation (10), we see that under the race model the discrimination parameter

α equals 2/ω, meaning that it is a measure of dependency between the information nodes.

Therefore, the larger ω, the larger dependency there is among the information nodes, and

the smaller α will be. Conversely, the closer ω to 1, the smaller the dependency among the

information nodes and therefore the larger α. Consequently, α is bounded between 0 and

2 but neither the lower limit nor the upper limit leads to problems: The former is natural

and the latter is only a matter of convention.

In the diffusion model, items with different discriminations had different SATFs.

The same holds for the race model. If θ + β > 0, then one can deduce from Equation (5)

that this means that NA > NB. A correct classification occurs in this case if alternative A

is chosen and a misclassification if alternative B is chosen. The discrimination parameter

α influences the probability of a misclassification in the same way as in the diffusion

model (if α increases, so does Pr(X = 1) when θ + β > 0). But, if α increases, the faster

the response is expected because the information nodes behave more independently.

Dependency among the information nodes can be understood as if a smaller number of

effective information nodes were involved in the decision. In the extreme case of perfect

dependency, the race would consist of one node against another one because all

information node race times within a decision node are equal. To illustrate this, let

ω → ∞, then we can see that the survivor function of the minimum of the race times for
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decision node A in Equation (9) becomes equal to exp (−λtγ) (because

N
1
ω
A → 1 if ω → ∞). However, this is the survivor function of the race time of a single

information node involved in the race to activate decision node A. Therefore, less

dependency means that more nodes are effectively participating in the race such that the

probability of a faster ending becomes more likely. Hence, opposite to the diffusion model,

in the race model we expect that strongly discriminating items take less time to respond.

As for the diffusion model, it is reasonable to decompose the total RT T into the

sum of the decision time and some residual time, the latter denoted again as Ter. The

decision time is represented by a random variable D and equals min(TA, TB). Thus, the

survivor function for T can be derived as follows:

ST (t) = Pr(TA + Ter > t, TB + Ter > t) = Pr(TA > t − Ter)Pr(TB > t − Ter)

= exp
(
−λ

[
N

1
ω
A + N

1
ω
B

]
(t − Ter)γ

)

= exp
(
−λN

1
ω

[
exp

(
1
ω

(θ + β)
)

+ exp
(
− 1

ω
(θ + β)

)]
(t − Ter)γ

)

= exp
(
−λN

α
2

[
exp

(
α

2
(θ + β)

)
+ exp

(
−α

2
(θ + β)

)]
(t − Ter)γ

)

= exp
(
−2λN

α
2 cosh

(
α

2
(θ + β)

)
(t − Ter)γ

)
, (11)

where the last expression follows from the definition of the hyperbolic cosine function:

cosh(x) = 1
2 (ex + e−x). Note that the survivor function of the total RT in Equation (11)

is the survivor function of a Weibull random variable with a support shifted away from

zero by an amount Ter.

From the derivation of Equation (11), it follows that that the choice and RT are

independent in the race model, which is a well-known property of the minimum of two

Weibull distributions (see e.g., Joe, 1997). The density fT (t) corresponding to the

survivor function ST (t) can be obtained easily: fT (t) = −dST (t)
dt . Multiplying the RT
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density with the probability from Equation (10) gives the joint density of X and T :

fX,T (x, t) = 2λγN
α
2

exp (xα(θ + β))
1 + exp (α(θ + β))

cosh
(

α

2
(θ + β)

)
(t − Ter)γ−1

× exp
(
−2λN

α
2 cosh

(
α

2
(θ + β)

)
(t − Ter)γ

)
(12)

Compared to the diffusion model, the race model has three additional parameters:

the shape parameter γ, the connection strength λ and the grand mean of the number of

information nodes N . However, not all parameters in the race model are identified. If we

multiply θ and β with a constant K, divide α by the same constant K, and raise N to the

power K, then the joint density of X and T does not change. This indetermination can be

solved by fixing N to a constant; we choose N = 10.

The conditional accuracy function (CAF)

The diffusion model and the race model discussed in this paper have the strong

assumption that given the parameter values, the choice and RT are independent. For the

race model, the independence of choice and RT has already been mentioned above. For

the diffusion model, the independence assumption can be verified by inserting z = α
2 into

Equation (3) and deriving fT |X(t|X = 0) = fX,T (0,t)

Pr(X=0)
and fT |X(t|X = 1) = fX,T (1,t)

Pr(X=1)
. It

turns out that fT |X(t|X = 0) = fT |X(t|X = 1) = fT (t). Thus, in both models, the length

of the decision time is not informative about the choice probability.

As a consequence of the independence assumption, the mean RTs of both choices,

given the parameter values, are also equal. Therefore, if one would subtract the

conditional mean RT of choosing option A from the conditional mean RT of choosing

option B and plot it for several values of θ, the resulting function would be a horizontal

line located at zero. This is also called a flat conditional accuracy function (CAF). The

assumption of independence between choice and RT is a very restrictive one and often it is
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not justified by the data (see e.g., Ratcliff & Rouder, 1998; Ratcliff et al., 1999).

Therefore, we discuss here for both models some possible extensions that do not rely on

the independence between choice and RT.

A non-flat CAF in the diffusion model For the diffusion model, traditionally two

modifications have been proposed to accommodate a non-flat CAF. The first modification

is to allow for variability in some of the parameters. It has been shown (see e.g., Ratcliff &

Rouder, 1998; Ratcliff et al., 1999) that additional random variability in drift and starting

point from one item to the other can account for a non-flat CAF. Variability in starting

point will not be considered further, because it leads to a functional form for the choice

probabilities that deviates from the logistic 2PLM. For variability in drift however, the

marginal choice probabilities are almost similar to the 2PLM as is demonstrated below.

Drift variability models interactions between persons and items. In Equation 2, the

drift is a simple sum of a person and item parameter. However, under drift variability, the

item parameter β differs over persons. Another interpretation, which amounts to the

same, is that the person parameter θ varies over items. Thus, in case of random drift,

Equation (2) becomes: µ = θ + β + ε, with the common assumption: ε ∼ N(0, τ2). When ε

is added to Equation (3), the integral over the normal density of ε has a closed-form

solution for the joint probability density given that the process is unbiased (z = α/2; see

Tuerlinckx, 2004).

If the drift varies from item-to-item (for the same person), this induces dependency

between the choice response and response time. Ratcliff and Rouder (1998) illustrate why

this is the case. Let us suppose that the θ + β equals 2, but that the variability causes it

to be 1.5 or 2.5 with equal probability. Assume that the item discrimination is 0.5, such

that the probability of choosing alternative A (B) equals 0.8 (0.2) and 0.9 (0.1),

respectively. Furthermore, assume that the mean response times of choosing alternative A
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for both actual drift rates are 1.4s and 1.3s, respectively. Because of the independence

property, the mean response times for choosing alternative B are also 1.4s and 1.3s.

However, if we look at the mean response time of choosing A, averaged over the drift rate

distribution, then this equals: 0.8
0.8+0.9 × 1.4s + 0.9

0.8+0.9 × 1.3s ≈ 1.3s. However, for

alternative B, the mean response time is: 0.2
0.2+0.1 × 1.4s + 0.1

0.2+0.1 × 1.3s ≈ 1.4s. Thus, the

least likely alternative (B in this case) will have the largest mean response time after

averaging over the random drift distribution.

When considering the marginal probability of X = 1, we can make the following

derivation:

Pr(X = 1) =
∫ ∞

−∞
exp (α(θ + β + ε))

1 + exp (α(θ + β + ε))
φ(ε; 0, τ2)dε

≈
∫ ∞

−∞
Φ
(

α

1.7
(θ + β + ε)

)
φ(ε; 0, τ2)dε

= Φ


 α

1.7
√

τ2α2

1.72 + 1
(θ + β)




≈
exp

(
1.7α√

τ2α2+1.72
(θ + β)

)
1 + exp

(
1.7α√

τ2α2+1.72
(θ + β)

) ,

where φ(ε; 0, τ2) denotes the normal probability density with mean zero and standard

deviation τ . In the derivation, we have made use twice of the approximate relationship:

exp(x)
1+exp(x) ≈ Φ

(
x

1.7

)
. Lord and Novick (1968) show that the maximum absolute error of this

approximation is smaller than 0.01. The integral on the second line of the derivation has a

closed-form solution (see e.g., McCulloch & Searle, 2001, p229-230).

Hence, even with random drift, the marginal choice probabilities (after integrating

out ε) are almost exactly equal to the 2PLM. The only difference is that marginally the

new discrimination parameter is equal to 1.7α√
τ2α2+1.72

(which is only a monotone increasing

transformation of α).

A second modification to allow for a non-flat CAF might be to consider other and
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more general types of diffusion processes than the Wiener process, such as the

Ornstein-Uhlenbeck (OU) process in which the drift rate depends on the amount of

already accumulated information (Busemeyer & Townsend, 1993; Diederich, 1997).

However, the marginal choice probability is not equal anymore to the 2PLM and thus

these options will not be considered anymore.

A non-flat CAF in the race model As for the diffusion model, it is possible to model

in the race model interactions between persons and items by allowing for item-to-item

random variation in the person parameter (or vice versa, person-to-person variation in the

item parameter). Hence, we will also consider the random θ + β generalization for the race

model1. (However for the race model, the integration over the probability density of ε has

to be approximated numerically, as opposed to the diffusion model where a closed-form

solution exists.)

Moreover, in the specific case of the race model, there is another very natural

extension (for which there is no corresponding alternative in the diffusion model) that

allows for dependency between choice and RT and that has an exact the connection with

the 2PLM. For the choice probabilities, the 2PLM is taken as a starting point. Then, we

make the conditional survivor function dependent on the choice response as follows:

ST |X(t|x) = exp
(
−2λN

α
2 exδ cosh

(
α

2
(θ + β)

)
(t − Ter)γ

)
, (13)

with the additional parameter δ that regulates the dependency of the RT on the choice

response. If δ = 0 the model simplifies to the model from Equation (11).

Using the formula for the mean of a Weibull distribution, we can derive an

expression for the difference in conditional mean RTs in the delayed race model. For

simplicity, let W denote
[
2λN

α
2 cosh

(
α
2 (θ + β)

)]− 1
γ Γ

(
1 + 1

γ

)
. Then the difference

between the two conditional RTs, E(T |X = 0) − E(T |X = 1), equals W
(
1 − exp

(
− δ

γ

))
,
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where W > 0. If δ equals zero, there is no difference between the conditional mean RTs

for X = 0 and X = 1. However, if δ < 0, then W
(
1 − exp

(
− δ

γ

))
< 0 and therefore

E(T |X = 1) is larger than E(T |X = 0). In that case, choosing option A takes longer than

choosing option B. The reverse relation follows for δ > 0.

This variant will be called the ”delayed” race model because it is assumed that the

decision node for alternative A can be delayed (if δ < 0) without altering the choice

response. The magnitude of the delay depends on the value of δ. On average, the mean

time to activate the decision node A is changed by a factor e
− δ

γ . Of course, it is also

possible that choosing option A is speeded up (which happens if δ > 0), but that is

equivalent to delaying option B. On top of the ”delayed” extension of the race model, one

could additionally allow for variability in θ + β, as in the regular race model.

Example

Method and data In this section, we apply the models presented above to a data set

taken from a study in which 96 second-year students had to fill out a computerized

self-report personality questionnaire. Only a brief summary of the data collection method

is presented here, more details can be found in Tuerlinckx and De Boeck (2004).

The materials were constructed by selecting unipolar traits from a variety of sources

(English and Dutch Big Five markers and a set of traits generated by lay persons). All

English trait names were translated to Dutch. For some of the traits, antonyms were

already available because the traits were selected together with their antonyms from the

bipolar trait pairs; however, for other traits, antonyms had to be collected. Eventually, we

constructed from 97 unipolar traits, 61 bipolar trait pairs. Some traits were used two or

three times, but no identical bipolar trait pairs were constructed.

Besides the 61 target trait pairs related to neuroticism and emotional stability, 102

filler bipolar trait pairs (related to the other four factors of the Big Five) were composed
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and mixed with the 61 target trait pairs. The neurotic alternative was randomly assigned

to the left or right position and one questionnaire form was produced. The first eight

items of the questionnaire were items from the other four factors and the first five of those

served explicitly as examples to practice the instructions. The participants were tested in

separate small cubicles equipped with a personal computer. The 17” screen was placed at

eye level.

The 96 undergraduate participants were asked to choose the trait of the pair that

applies the most to them. They were instructed explicitly to work as accurate and as fast

as possible. They could make a choice by pressing one of two colored keys on a standard

keyboard. Response time was the elapsed time from the appearance of the pair on the

screen until the response was emitted. Stimuli were given in blocks of 10.

Only items with an item-test correlation larger than 0.3 were considered as a

candidate for the analysis (for a justification of this threshold, see Ebel & Frisbie, 1986).

From the reduced pool of 41 items, ten items were randomly sampled for the illustrative

analysis in this paper (because the models were computationally quite complex only ten

items were retained). Descriptions of these items can be found in Table 1 (for the trait

pairs, we used the sans serif font and the neurotic alternative is printed in italic).

Let P denote the number of persons (P = 96) and I the number of items (I = 10).

The entry in the data matrix pertaining to person p (p = 1, . . . , P ) and item i

(i = 1, . . . , I) contains two observations: a choice response xpi and a RT tpi. The pair of

observations (xpi, tpi) is the realization of the pair of random variables (Xpi, Tpi) where

Xpi takes the value 1 if person p chooses the neurotic alternative for item i and 0 if the

person chooses the emotional stable one. The random variable Tpi refers to the time

person p needed to respond to item i. Model parameters will also be indexed if necessary:

θ becomes θp indicating that it is a person-specific parameter and α and β become αi and

βi implying that they are specific to an item. The remaining parameters do not vary with
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persons nor items and thus do not carry an index. If the sum of θp and βi is assumed to

be random (as in the random drift diffusion model), then the quantity εpi is added.

INSERT TABLE 1 ABOUT HERE

Fitted models In order to obtain parameter estimates, we used the maximum marginal

likelihood procedure (see e.g., Fischer & Molenaar, 1995). It is assumed that the θps are a

random sample from a normal population distribution with mean zero and standard

deviation η. (The population mean is set equal to zero for reasons of identification.) Let

fXpi,Tpi(xpi, tpi) denote the density for a pair of observations. Marginalizing over the

person-specific parameters θp gives the marginal likelihood, which will maximized with

respect to the parameters after taking the logarithm:

� = log


 P∏

p=1

∫ ∞

−∞

I∏
i=1

fXpi,Tpi(xpi, tpi)φ(θp; 0, η2)dθp


 , (14)

where φ(θp; 0, η2) denotes the normal probability density with mean zero and standard

deviation η. The integral in Equation (14) is intractable for the models discussed in this

paper and it will be approximated by a Gauss-Hermite quadrature with 10 nodes (e.g.,

Naylor & Smith, 1982). All models discussed in this paper can be fitted with SAS PROC

NLMIXED2 (SAS Institute Inc., 1999).

An overview of the fitted models can be found in the second column of Table 2. For

the diffusion and race models, we estimated the standard versions (see Equations (3)

and (12)), a variant with equal item discriminations (second and fourth row in Table 2)

and an extension of the model with random θp + βi. The delayed race model variant, as

proposed in Equation (13), is also considered as well as a version with random θp + βi.
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Fit of the 2PLM Because we are looking for an explanation of the discrimination

parameter of the 2PLM, we need to make sure in the first place that the 2PLM fits the

choice data. Parameter estimates under the 2PLM (based only on the choice data) are

computed using the maximum marginal likelihood procedure outlined in the previous

section. A difference is that because of identification problems when using only the choice

data, we have to restrict the standard deviation of the distribution of θps to a known

constant (in this case it will be 1) so that all discrimination parameters are estimable.

To test whether the 2PLM fits the data, we conducted two goodness-of-fit tests

based on a parametric bootstrap approach (Efron & Tibshirani, 1993). The parametric

bootstrap method allows one to define any kind of test statistic and simulate (instead of

deriving analytically) its reference distribution. As a first test, an omnibus test was

chosen. Fitting the 2PLM to the observed choice data with the maximum likelihood

method gives as a by-product the deviance, defined as dev = −2�. For the 2PLM applied

to the observed data, this deviance was equal to 931. Next, the estimated parameters were

used to simulate 100 replicated data sets according to the 2PLM. The 2PLM was fitted

again to each simulated data set providing us with 100 replicated deviance values. The

replicated deviances are then used to estimate the p-value of the test as follows:

p̂ =
1

100

100∑
j=1

I(devrep
j > devobs), (15)

where devrep
j refers to the deviance obtained from the jth replicated data set and I(C) is

the indicator function taking value 1 if the condition C is true and zero otherwise. If the

model fits the data, the observed deviance should not deviate too much from the simulated

deviances, resulting in a p̂-value that is not too extreme (not too small nor too large). We

obtained p̂ = 0.65 which indicates a sufficient good fit of the 2PLM to the observed data.

A second test is a graphical one. In a first step, we computed the number of
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endorsed neurotic alternatives sp by participant p (i.e., the sum score) and classified the

sps in three sum score groups: Low (sp = 0, 1), Middle (sp = 2, 3, 4) and High

(sp = 5, 6, 7, 8, 9, 10). For the observed data, the frequencies in the three groups are 27, 44,

and 25, respectively. Then we calculated for each item and each sum score group the

proportion of persons endorsing that item. The crosses in Figure 2 are the observed

proportions. Next, we simulated again 100 data sets using the parameter estimates from

the observed data sets and repeated the aforementioned procedure for all 100 replicated

data sets. The thick bars in Figure 2 denote the 95% confidence intervals of the simulated

proportions. It can be seen that the observed proportions almost never fall outside the

95% confidence bounds. Based on the two previous tests, we conclude that the 2PLM fits

the choice data sufficiently well.

INSERT FIGURE 2 ABOUT HERE

Model selection Following the estimation of the parameters for the several diffusion

and race models, the model fit of each model has to be assessed using methods of model

selection and model checking (for the latter, see the subsection below). For nested models,

model selection can be accomplished using likelihood ratio tests. The likelihood ratio test

statistic is computed by subtracting the deviance of the full model from the deviance from

the reduced model. Asymptotically, the reference distribution for the test statistic

(denoted as L) is a chi-square distribution with degrees of freedom the additional number

of parameters of the full model compared to the reduced model.

Non-nested models (such as the diffusion model and the race model) must not be

compared with the likelihood ratio test and model selection is then often based on
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Akaike’s information criterion (AIC; Akaike, 1977) and the Bayesian information criterion

(BIC; Schwarz, 1978). Both measures add to the deviance of a model a penalty for the

number of free parameters: For AIC the penalty equals 2k (with k the number of

parameters) and for the BIC, it is k log(P ).

From comparing the measures of fit given in Table 2, we may deduce two things.

First, a diffusion or race model with equal item discrimination parameters fits much worse

than the counterpart with free discrimination parameters. Since the model with equal

discrimination parameters is nested within a model with unequal discrimination

parameters, we can use a likelihood ratio test for comparing the fit of the two models.

Both for the diffusion model (L = 53.9, df = 9, p < .0001) and for the regular race model

(L = 128.3, df = 9, p < .0001), this leads to a rejection of the restricted model. Comparing

the AIC and BIC result in an identical conclusion.

INSERT TABLE 2 ABOUT HERE

Second, the AIC and BIC criteria indicate that the race models are better fitting

than the diffusion models. Moreover, there are two race models performing almost equally

well: the delayed race model and the regular race model with random θp + βi. Based on

the AIC there is no difference between the models, but the BIC seems to favor the delayed

race model. Moreover, because the regular race model is nested within both the delayed

race model (setting δ to zero in Equation (13) gives the regular race model) and the race

model with random θp + βi, two likelihood ratio tests can be performed: one to test the

hypothesis that δ = 0 and the other to test the hypothesis that τ = 0. The first test is

significant (L = 8.5, df = 1, p < .01) leading to a rejection of the regular race model in

favor of the delayed variant. The second test is also significant (L = 4.3, df = 1, p < .02;



Interpretation of the discrimination parameter 23

note that in this case, we halved the p-value halved since we are testing a null hypothesis

lying on the boundary of the parameter space, see Stram & Lee, 1994). Thus, the regular

race model has to be rejected twice in favor of two other models (that do not have a

nesting relation with respect to each other).

The parameter estimates for the three models with differing discrimination

parameters (diffusion, race and delayed race model) and random θp + βp can be found in

Table 3. We have chosen to present the random θp + βp versions of the model so that the

information about the τ parameter is given in the table as well. When the random

variability is removed from the models, the estimates of the remaining parameter

estimates change only a little bit and their standard errors decrease slightly. The estimate

for the constant residual RT parameter Ter is very similar across the three models (about

0.5s). The standard deviations of the population distributions for the θps and εpis differ a

lot between the diffusion model and the two race models. That is because the two types of

models measure the θps on a different scale. Consequently, the βis and αis also differ in

magnitude under the two models. If we evaluate the ratio η/τ , it is approximately 1.3 for

the diffusion model but it is around 3 and 3.6 for the race and delayed race model. This

indicates that there is more random θp + βi in the diffusion model than there is in the race

models.

Comparing the estimates of the parameters common to the regular and delayed race

model reveals that they are very similar. The standard errors of the estimated αis in

delayed race model are a little bit larger than in the regular case, but the reverse holds for

the estimated βis and for the common parameters. As can be seen, the estimate of δ is

negative, which means that endorsing a neuroticism item is slower than responding with

the emotional stable alternative.

INSERT TABLE 3 ABOUT HERE
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Model checking The delayed race model (without random θp + βi) seems to be the

best fitting model, but that is only a relative conclusion: It does not show that the

delayed race model actually fits the data and if that is the case, it is still possible that

other models also fit the data relatively well. Therefore, the goodness-of-fit of each

separate model to the data has to be assessed. As above with the testing of the 2PLM, we

constructed test statistics tailored to evaluate specific aspects of the model and derived

their reference distribution using parametric bootstrap. Four specific test statistics are

defined below; two of the tests are summarized with a traditional p-value, the two other

ones are entirely graphical.

As a first test, the overall goodness-of-fit for both models is evaluated with an

omnibus test by comparing the observed deviance with the deviance derived from 100

model-based replicated data sets (see Equation (15)).

For the diffusion model without random drift, it turns out that the replicated

deviance is often larger than the observed one (p̂ = 0.91). This is a somewhat odd

observation and the explanation for it is that the observed data possess too few very large

RTs than expected under the diffusion model. Consequently, this results in a lower

deviance than expected because such extreme observations lower the likelihood. For the

race model without random θp + βi, the deviances for the replicated data sets are in 58%

of the cases larger than the observed deviance (p̂ = 0.58), indicating that the overall fit of

the race model is very good. Also the delayed race model (without random θp + βi), with

an estimated p-value is 0.47, fits the data very well. For the random drift diffusion model,

the estimated p-value equals 0.99 (indicating an even worse fit than the variant without

random drift). For the random version of the regular and delayed race model, the
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estimated p-values are 0.59 and 0.58, respectively.

Second, we looked at how well the three models can explain the conditional mean

RTs displayed in Table 1. In Figure 3, the plots on the left-hand side shows the residuals

(observed minus expected conditional mean RTs) versus the observed conditional mean

RTs for the diffusion model and the random drift diffusion model, respectively. The points

referring to an emotional stable answer are denoted by an asterisk and points referring to

a neurotic answer by a circle; two points that belong to the same item are connected by a

dotted line. The expected conditional mean RTs are estimated with model-based

simulations. To assess the variability in the residual plot, we applied the same technique

to four simulated data sets and these plots are shown at the right-hand side of the figure.

Hence, the four plots on the right constitute the reference distribution for the residual

plots. If the model fits, the observed and replicated plots should be indistinguishable.

For both diffusion models, there are two striking differences between the observed

and replicated plots. First, in the observed plots, almost all residuals (there is only one

small exception) corresponding to emotional stable responses are negative, meaning that

their mean observed RTs are smaller than what is expected from the model. This is not

the case in the replications, indicating a source of misfit. Second, the replicated

conditional mean response times are from time rather large compared to the observed

ones. For the observed plots, the values on the abscissa run roughly from 1.2s to 2.1s,

while for the replicated data this range is often extends from 1.2s to almost 3s.

INSERT FIGURE 3 ABOUT HERE

In Panel A of Figure 4, residual plots are shown for the regular race model without

(top row) and with random θp + βi (bottom row). For the regular race model, the
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observed residual plot seems to contain larger residuals than the replicated versions.

Moreover, the residuals for the neuroticism answers are all positive (with one small

exception) while that is not the case in the replicated plots. The latter problem is less

serious in the race model with random θp + βi, but the former (larger observed residuals)

is still a problem. Note that the scale of the ordinate in Figure 4 is different from Figure 3

because the residuals from the race model are smaller than those from the diffusion model.

Panel B of Figure 4 contains the observed and simulated residual plots for the

delayed race model without and with random θp + βi. As can be seen, the observed and

replicated residual plots for the delayed race model without θp + βi do not differ in a

systematic way.

Note also that for the delayed race models (without random θp + βi), the expected

conditional mean RTs is at most 0.20s off the mark (while for the regular race model with

random θp + βi, the maximum observed residual is 0.23s). The three largest residuals in

the delayed race model (without random θp + βi) fit are for the mean RTs for choosing

pessimistic in item 6 (0.18s which gives a relative prediction error of 1000.19
1.78 ≈ 11%),

touchy in item 7 (−0.14s resulting in a relative prediction error of about −6%) and erratic

in item 10 (0.20s leading to a relative prediction error of about 12%).

INSERT FIGURE 4 ABOUT HERE

In a third test, we ignored the RT data and estimated the discrimination parameters

only using the choice data (i.e., estimating the 2PLM). Then, the estimated discrimination

parameters were correlated with the mean RTs (i.e., a correlation over items). For the

observed data, this correlation was highly negative, −0.75. In a next step, the procedure

was repeated for 100 model-based simulated data sets to see whether the models can
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reproduce the observed correlation. For the diffusion model, all replicated correlations

between the discrimination parameter estimated from the choice data and the mean RTs

were larger than the observed one and almost always positive, confirming the known fact

that the diffusion model predicts a positive relation between the discrimination parameter

and mean RT. The same was true for the diffusion model with random drift: It predicted

systematically too high correlations. For the race model, 22% of the reproduced

correlations were more negative than the observed one and for its random θp + βi variant,

this was 16%. For the delayed race model, 33% of the correlations based on the replicated

data were smaller than the observed correlation and the random θp + βi version had in

18% of the cases simulated correlations smaller than the observed one. Hence, we conclude

that the correlation test shows a good fit for the race models because they are able to

explain the negative correlation between item discrimination and mean RT, which is not

the case for the diffusion model. The value of this test can hardly be overestimated

because the strong negative correlation found between average RT and item

discrimination as found in the data is totally irreconcilable with the diffusion model where

a stronger discrimination implies a longer expected response time.

A final test of the models concerns the independence of choice and RT. For the

diffusion and regular race model, the RT and choice response are independent conditional

upon the true model parameter values. Because we do not know the true θps, the sum

score will be used as a proxy for θp instead. Again, the participants are divided in groups

based on their sum score (see the section on the fit of the 2PLM). It can be assumed that

each of these three groups are more or less homogeneous with respect to θp. Next, the

difference between the mean RT for emotional stable responses (i.e., Xpi = 0) and neurotic

responses (i.e., Xpi = 1) is computed for a particular item i in each group and then the

differences are averaged over items.

The same procedure (constructing the three sum score groups, computing the



Interpretation of the discrimination parameter 28

average difference in conditional mean RTs within each group) is then applied to 100

simulated data sets under each of the six considered models (diffusion, regular race and

delayed race model, all without and with random θp + βi). Next, the observed and

replicated approximated CAFs are compared in six plots: one for each model with on the

abscissa the three sum score groups and on the ordinate for each group the difference

between the mean RTs for Xpi = 0 and Xpi = 1, averaged over the items. The results are

shown in Figure 5; the two left panels contain the results for the diffusion models, the

middle ones the results for the regular race models and the right panels for the delayed

race models. The bold solid line represents the observed data, the bold dashed line the

mean of the replicated data. The two thin solid lines are the 95% credibility interval

bounds computed from the replicated data. (The thin dotted line is the zero line.)

For the observed data, the average time to endorse the neurotic alternative takes

about 0.6s longer than to choose the emotional stable alternative in the Low group

(people with a low position on the neuroticism continuum). On the other hand, in the

High group (persons with a high position on the neuroticism continuum) the endorsement

of the neurotic alternative is about 0.1s faster than choosing the emotional stable

alternative. In the Middle group, we observe that endorsing the neurotic alternative takes

about 0.2s longer compared to the emotional stable alternative.

As expected, the mean replicated CAF for the diffusion and regular race model

without random θp + βi almost coincides with the zero line. For the diffusion model

without random drift, the observed CAF falls well within the 95% credibility bounds in all

three sum score groups (mainly thanks to the very wide intervals), that is not the case for

the race model. The mean replicated CAF of the delayed race model without random

θp + βi does not coincide with the zero line and it has a slightly steeper profile than the

two previous competing models. The observed CAF falls nicely within the 95% credibility

bounds for the delayed race model. For the random θp + βi versions of the diffusion and
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regular race model, the mean replicated CAF clearly looks more similar to the observed

one and for the regular race model, the observed CAF also falls within the 95% confidence

bounds. For the delayed race model with random θp + βi, the situation is very similar to

graph on the top row. All race models produce narrower confidence bands than the

diffusion models.

INSERT FIGURE 5 ABOUT HERE

Interpretation The presented model evaluation rules out the diffusion model as a

viable underlying response model. The delayed race model without random θp + βi is

retained as the best fitting model (lowest AIC and BIC, and no deviations with respect to

the model diagnostics) and we will focus in the interpretation on this model.

Research on the representation of personality traits in memory (Klein & Loftus,

1993; Klein, Loftus, Trafton, & Fuhrman, 1992) has revealed that traits are often linked to

exemplar information (concrete behaviors) and/or abstract information (the behavioral

information is already summarized in a few abstract representations linked to the

self-descriptive trait). If the response process depends (even only partially) on the use of

exemplar information, then one expects that correlations can be found between the

parameter estimates and measures related to the behavioral information. If these

correlations are found, they will aide in the interpretation of the race model parameters.

Recall that the discrimination parameter in the race model is directly function of the

dependency between the information nodes in the decision process. From the estimated

discrimination indices in Table 3, we can derive that, for instance, more independent

information is available for the trait pair panicky vs calm (α̂ = 0.71) than for the pair
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touchy vs imperturbable (α̂ = 0.14).

Now is there a compelling reason why some trait pairs discriminate more than

others? Tuerlinckx and De Boeck (2004) argued that a variable that might help to explain

these differences in discrimination is category breadth. Category breadth has many

aspects (Buss & Craik, 1983) and two are relevant for this research. First, it refers to the

category volume and as such it is defined as the number of distinct behaviors subsumed by

a trait (Hampson, John, & Goldberg, 1986). A second aspect of category breadth refers to

the amount of dependency among the behaviors belonging to a trait or the number of

distinct behaviors subsumed by the trait (Hampson et al., 1986). If the response process is

based on behavioral exemplars, then the second aspect indicates that category breadth

should correlate with the discrimination parameter from the race model, because the

discrimination parameter is inversely related to the dependency between the information

nodes. Category breadth is usually defined for single traits, but it can be extended easily

to pairs of traits. We have collected ratings for the average breadth of the trait pairs in

our example here (for details of the rating procedure, see Tuerlinckx & De Boeck, 2004).

The category breadth ratings and the estimated discrimination parameters correlate

significantly (r = 0.56, df = 8, p < .05, one-sided), supporting our interpretation of the

discrimination parameter.

The correlation between category breadth and the discrimination parameter is not

perfect of course. First of all, only 10 items were considered in this research (but with

more than 40 items, the correlation is still around 0.6; see Tuerlinckx & De Boeck, 2004).

Second, it is likely that the decision process is only partially based on exemplar

information. Other information that is likely to be used in the decision process are

previously made trait inferences. Third, the other relevant aspect of category breadth (the

category volume) plays a role too. In the two race models, the number of information

nodes considered for a particular item by a person is equal to NA + NB (see
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Equation (5)). It is clear that for a given θ, the number of nodes increases if the absolute

value of β increases. Therefore, we expect |β| to be related to category breadth too,

because |β| is reflects the category volume. Also this correlation turns out to be significant

(r = 0.63, df = 8, p < .05, one-sided). Moreover, if we reconsider the correlation between

the discrimination parameter and category breadth, but now controlling for |β|, the latter

correlation becomes even stronger (r = 0.75, df = 7, p < .01, one-sided). These results

show that the race model interpretation of the discrimination parameter is supported by

substantive evidence from personality psychology.

Discussion

In this paper we derived the 2PLM as the choice probability part of two different

kinds of stochastic models: an unbiased diffusion model and two race models with

dependencies between the racing information (one with independence between choice and

RT and the other without the latter assumption). We obtained two novel interpretations

of the discrimination parameter. In the case of the diffusion process, the discrimination

parameter is a quantification of the amount of information that has to be collected before a

response to an item is given. In the case of the race models, the discrimination parameter

is a function of the dependence among the bits of information on which the decision is

based. The two types of stochastic models provide, besides the choice probabilities, also a

RT distribution which makes it possible to distinguish empirically between them.

It is also shown that one might add random variability to the sum of the person and

item parameters, θp + βi, and that this still leads to a model for the choice data that is

practically indistinguishable from the 2PLM. Adding random variability to θp + βi leads

to a model with person-by-item interactions. With binary data only, such an interaction

model is overparametrized, but when additionally RTs are collected, the contribution of

the interaction may be tested. However, the estimate of the interaction variance (τ) may
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hinge on the particular model assumptions, as was the case in our example. Therefore,

model checking should proceed the interpretation of the model.

For the particular data set analyzed in this paper, it was demonstrated that the

delayed race model has a better fit than the diffusion and the regular race model (even

adding random error to θp + βi does not lead to a better fit for the latter two). Moreover,

it appears that the delayed race model fits most aspects of the data quite well, while the

diffusion and regular race model fail to do so for important aspects of the data. In

addition, the discrimination parameter under the race model can be interpreted and this

interpretation is validated by external information.

Of course, the fact that the delayed race model is more appropriate for the data

considered in this paper does not imply at all that the (delayed) race model will always

outperform the diffusion model. The diffusion model is shown to be a plausible response

model in many psychological tasks. One of the reasons we find that a race model fits

better, may be related to the fact that the mean RTs on the items run into several

seconds, while in the more traditional applications of diffusion models the average RTs are

below one second (Ratcliff, 2002). It is possible that the diffusion model is not very well

suited for fitting data from tasks that produce such a wide range of RTs.

The diffusion model presented in this paper is a version of a model that has been

applied frequently in two-alternative forced choice tasks (see e.g., Ratcliff, 1978; Ratcliff

et al., 1999). However, the presented version of the race model is rather new and an

important concern regarding these race models are the results of Marley and Colonius

(1992) and Dzhafarov (1993). They have shown that any set of choice probabilities and

RTs can be modeled by an arbitrary race model. Consequently, this means that the

specific setup of a race model should be motivated by external factors (other than the

data). Our specific formulation of the race model is chosen for two reasons. First, the

choice probability under the race model was constrained to be the 2PLM. This constraint
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already rules out several other possible race models. Second, the conceptualization we

choose is especially suited for the example discussed. From the research on the

representation of personality traits (Klein et al., 1992; Klein & Loftus, 1993; see above), it

seems plausible to consider that the information nodes in the race model exactly code for

these discrete bits of information representing exemplar (but also abstract) information

concerning a personality trait.

The interpretations for the discrimination parameter we propose in this paper is

especially suited for two-alternative forced choice items for which the response alternatives

are two concrete responses (and not a class of possible responses). This requirement

excludes ability items. Although an ability item could be conceived as a two-alternative

forced choice item where the person has to choose between a correct response and a wrong

response, there are often many wrong responses and only one correct response, so that the

”wrong” response is actually a heterogeneous class of responses.

As already mentioned above, the connection outlined between the 2PLM and the

two stochastic models may have implications for the 2PLM itself, such that in some

situations there may be a need to alter the 2PLM. For example, consider the failure by

the diffusion and regular race model to account for the dependency between choice and

RT. As a consequence, there is a need to expand the models and we have considered such

possibilities (adding random error to θp + βi and introducing the delayed race model).

However, there are many other ways one could adjust the models such that they become

more realistic. We did not pursue other courses of action here because such changes of the

joint distribution of RTs and choice probabilities may produce models whose marginal

choice probability component deviates strongly from the 2PLM. The main objective of our

research was to construct models that may help in the process of understanding the

meaning of the discrimination parameter, rather than proposing alternatives for the

2PLM. Moreover, we have shown that the 2PLM fits the choice data, hence there was no
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urge to modify the choice model. However, in other applications it may prove necessary to

reject the 2PLM on empirical grounds as a model for the choice probabilities in order to

arrive at a well-fitting joint model for choices and RTs.

In conclusion, we believe it is worth looking for good and testable interpretations of

the discrimination parameter. Without such an interpretation, the 2PLM is merely

reduced to a curve fitting tool, with the item discrimination as a parameter that is

inserted to give the model more flexibility but without a theoretical and substantive basis

for the discriminations to differ from one another.
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Footnotes

1The random θ + β extension will not be denoted as a random drift race model

because there is no drift rate in the race model.

2Upon request the SAS code can be obtained from the first author.
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Table 1
Descriptive statistics (proportion neurotic alternatives endorsed, conditional mean RTs and
standard deviations) for the 10 items.

Item Proportion Mean RT Mean RT Sign.
neurotic Neurotic Emot. Diff.a

Neurotic Emotional stable choices (SD) (SD) stable (SD)
alternative alternative

1 nervous relaxed 0.35 1.52 (0.62) 1.30 (0.39) ∗

2 panicky calm 0.29 1.45 (0.57) 1.26 (0.47)
3 despondent lively 0.13 1.80 (0.89) 1.45 (0.64)
4 depressed optimistic 0.14 1.57 (0.91) 1.17 (0.55) ∗

5 timid intrepid 0.49 1.88 (0.99) 1.65 (0.62)
6 pessimistic optimistic 0.15 1.78 (0.99) 1.20 (0.59) ∗

7 touchy imperturbable 0.58 2.05 (0.90) 2.04 (1.15)
8 uncontrolled controlled 0.14 1.80 (0.63) 1.51 (0.68)
9 melancholy light-footed 0.57 1.73 (0.58) 1.66 (0.64)
10 erratic balanced 0.27 1.72 (1.04) 1.24 (0.47) ∗

Note. a An asterisk in this column indicates a significant difference (p < 0.05) between the
logarithm of the two conditional mean RTs for the item using a two-samples t-test.



Interpretation of the discrimination parameter 42

Table 2
Fit statistics for various models.

−2� AIC BIC
1 Diffusion model with unequal item discriminations 2420 2464 2521
2 Diffusion model with equal item discriminations 2474 2500 2534
3 Diffusion model with random drift 2405 2451 2510

4 Race model with unequal item discriminations 2320 2369 2430
5 Race model with equal item discriminations 2449 2479 2517
6 Delayed race model 2312 2362 2426
7 Race model with random θp + βi 2316 2362 2428
8 Delayed race model with random θp + βi 2310 2366 2430
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Table 3
Parameter estimates (and asymptotic standard errors below) for the diffusion model, regular
race model and delayed race model with θp + βi.

Diffusion Race Delayed race
General parameters

Ter 0.48 0.51 0.51
(0.01) (0.003) (0.003)

η 0.80 4.66 4.26
(0.12) (1.65) (1.60)

τ 0.58 1.46 1.17
(0.10) (0.63) (0.58)

γ – 1.90 1.89
(0.06) (0.06)

λ – 0.14 0.15
(0.03) (0.03)

δ – – −0.21
(0.08)

Item Item-specific parameters
α β α β α β

nervous relaxed 2.41 −0.47 0.56 −1.89 0.61 −1.59
(0.14) (0.16) (0.19) (0.89) (0.22) (0.81)

panicky calm 2.03 −0.63 0.67 −2.11 0.71 −1.81
(0.10) (0.16) (0.21) (0.87) (0.23) (0.80)

despondent lively 2.93 −1.31 0.41 −5.86 0.43 −5.29
(0.19) (0.18) (0.15) (2.17) (0.16) (2.05)

depressed optimistic 2.48 −1.48 0.60 −4.87 0.64 −4.29
(0.15) (0.20) (0.19) (1.79) (0.21) (1.64)

timid intrepid 2.73 0.02 0.36 0.38 0.40 0.42
(0.15) (0.15) (0.15) (0.66) (0.17) (0.60)

pessimistic optimistic 2.54 −1.41 0.57 −4.92 0.61 −4.35
(0.16) (0.20) (0.18) (1.80) (0.20) (1.65)

touchy imperturbable 2.94 0.19 0.11 3.15 0.14 2.57
(0.16) (0.14) (0.10) (3.12) (0.12) (2.51)

uncontrolled controlled 3.12 −1.28 0.37 −6.36 0.38 −5.98
(0.21) (0.18) (0.14) (2.41) (0.15) (2.38)

melancholy light-footed 2.81 0.19 0.36 1.21 0.41 1.20
(0.17) (0.15) (0.15) (0.85) (0.18) (0.79)

erratic balanced 2.38 −0.80 0.61 −2.84 0.65 −2.45
(0.13) (0.17) (0.19) (1.06) (0.21) (0.97)
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Figure Captions

Figure 1. A schematic representation of the race model. The circles at the top are the

information nodes racing to activate the two decision nodes (at the bottom), which are

corresponding to alternatives A and B. The horizontal lines connecting the information

nodes refer to possible dependencies between the information nodes (with dependency

parameter ω).

Figure 2. Graphical goodness-of-fit test for the 2PLM. For each of the three sum score

groups (Low with sp = 0, 1, Medium with sp = 2, 3, 4, and High with sp = 5, 6, 7, 8, 9, 10

where sp is the sum score) the proportion endorsed neurotic responses for each item

(separate panels) in the observed data were computed (denoted by the crosses). The same

was done for 100 simulated data sets and 95% confidence intervals were computed for the

replicated proportions (the thick lines).

Figure 3. The two most left-hand side plots contain the residual plots for the diffusion

model (top row) and for the diffusion model with random drift (bottom row) as a function

of the observed conditional mean RTs. Asterisk points refer to the mean response times

and residuals of the emotional stable responses and circles to those of the neurotic

responses. The reference distribution of the residuals is simulated by generating under

each model four replicated data sets which have been subjected to the same kind of

analysis as the observed data. These replicated residual plots are for each model shown

the four right-hand side plots.

Figure 4. Panel A: Observed (left-hand side plot) and replicated (four right-hand side

plots) residual plots for the regular race model (top row) and race model with random

θ + β (bottom row) as a function of the conditional mean RTs. Panel B: Observed

(left-hand side plot) and replicated (four right-hand side plots) residual plots for the
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delayed race model (top row) and delayed race model with random θ + β (bottom row) as

a function of the conditional mean RTs. In both panels, asterisk points refer to emotional

stable responses and circles to neurotic responses (see also caption of Figure 3).

Figure 5. For each of the three sum score groups (Low, Medium, and High; see also the

caption of Figure 2 for a definition of the groups), the difference in mean RT for choosing

the emotional stable alternative and the mean RT for choosing the neurotic alternative is

plotted. The bold solid line with the stars represents the observed relation, the outer two

thin solid lines refer to the 95% credibility interval bounds (based on 100 simulations).

The bold dashed line with the crosses represents the average profile of the simulated data.

Panel (a) contains the results of the diffusion model; panel (b) of the regular race model,

(c) of the delayed race model, (d) of the diffusion model with random drift, (e) of the

regular race model with random θp + βi, and (f) of the delayed race model with random

θp + βi.
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