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Chapter 1

On the Identifiability and
Estimability of Latent
Class Models: A Bayesian
Analysis

Ernesto San Mart́ın1 and Paul De Boeck2

1.1 Introduction

Latent Class Models are introduced by Lazarsfeld; see, for example, Lazars-
feld and Henry (1968). These modes assume that the population, from
which the observed sample is taken, is composed of m mutually exclusive
latent classes C1, . . . , Ci, . . . , Cm. The parameters of interest here are the
probabilities with which a randomly chosen subject belongs to each of the
latent classes. For each person, l dichotomous measurements are made; let
these be the item scores (incorrect, correct), or the item reactions (nega-
tive, positive). In LCM it is assumed that, for each item, every class Ci

has a specific probability of positive responses: these are the parameters of
interest in the conditional model. For details, see, e.g. Clogg (1995).

To ensure a coherent inference on the structural parameters, their iden-
tifiability is needed. Different solutions to this problem can be found in the
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2 CHAPTER 1. Identifiability and Estimability in LSM

psychometric literature. A first solution can be found in the early works of
Andersen (1954), McHugh (1956) and Madansky (1960). Essentially these
contributions provide algebraic methods to deduce the proportions of the
population in each latent class and the probabilities of positive responses
to each item from the proportions of response parameters in the population
as a whole. These methods are also applied to estimate the parameters of
interest.

Another group of contributions is represented by Goodman (1974) and
Clogg and Goodman (1984). The main concern of these papers is to obtain
parameter estimations from the likelihood function. These authors establish
the identifiability of the parameters of interest from a local identification
point of view. Broadly speaking, it is a matter of inverting the likelihood
function in a neighborhood of the “true” parameter and thus to solve the
likelihood equations.

The two approaches are related since both are based on linear equation
systems defined on the marginal probabilities of response patterns of the
individuals from the population as a whole.

A third approach to analyze this identification problem is motivated by
the hierarchical structure underlying LCMs. As a relevant example, let us
consider the identification analysis proposed by Maris (1999) in the con-
text of Multiple Classification Latent Class Models (MCLCM). MCLCM
consists of two component submodels: (a) a model for the latent class
memberships and (b) a model for the item responses conditional on the
latent class memberships. Maris considers two type of non-identifiability,
one with respect to the conditional model, the other one with respect to
the statistical model (obtained after averaging on the latent class mem-
berships). In a particular case, Maris obtains identification restrictions to
identify the conditional model. Furthermore, these restrictions together
supplementary identification restrictions are used to identify the statistical
model. It should be noticed that, in this heuristic argument, the marginal
model generating the latent class memberships does not play any essential
role.

This paper is motivated by the last approach. At the identification level,
we establish that, under prior independence of the parameters of interest,
the identification of the marginal model is a necessary condition for the
identification of the statistical model. A second result we explore in this
paper deals with the consistency of a Bayesian estimator of the probabilities
of correct responses given the latent class, denoted as P . To establish
this result we use the statistical tools developed by Florens, Mouchart and
Rolin (1990) in the context of Bayesian models. We use the estimability
theory developed by these authors in order to show that the conditional
expectation of the P given the observations and the latent class probabilities
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converges to P . A similar result is established for the probabilities of latent
classes.

This chapter is organized as follows: model specification is detailed in
section 1.2. Next, in section 1.3, the identifiability of the marginal model
generating the latent class memberships is explained to be a necessary con-
dition for the identifiability of the statistical model. Finally, in section 1.4
we establish some results dealing with the estimability.

1.2 Specification of the LCM

Following Novick (1979), an efficient and interpretable tool for structural
modelling is the conditional independence. As a matter of fact, in the con-
text of psychometrics or econometrics the substantive theory leads to for-
malize dependencies between measurements and constructs. Recent works
in graphical models exemplify these statement (Wermuth and Lauritzen,
1990). Moreover, taking conditional independence as basic, a unification of
many statistical concepts is achieved. Thus, not only concepts as sufficient
and consistent statistics can be expressed in terms of conditional indepen-
dence, but also parametric identifiability and estimability. Since conditional
independence is expressed with respect to a probability distribution defined
on the product space “parameters × observations”, the Bayesian approach
becomes adequate to develop structural models and their respective statis-
tical analysis. For a textbook discussion of conditional independence, see
Florens et al. (1990, chapter 2).

Before reviewing the standard specification of LCM, let us introduce the
concept of parametric sufficiency. The relevance of this concept not only
deals with the statistical interpretability of the model, but also with pa-
rameter identifiability and its Bayesian link with estimability (or Bayesian
consistency).

1.2.1 Sufficiency on the parameter space

A characteristic feature of the Bayesian approach is to define a statistical
model as a unique probability measure on the product space “parameters
× observations”, say Q(X,θ), where X represents the observations and θ the
parameters. In this context, parameters and observations have a symmetric
role in the sense that Q(X,θ) = Q(θ,X) and, therefore, X can be considered as
a “parameter” and θ as an “observation”; for details, see Mouchart (1976)
and Florens et al. (1990, chapter 1).

Let us consider a Bayesian experiment given characterized by a proba-
bility Q. According to the sampling definition of sufficiency, a statistic S
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is sufficient if the conditional distribution of X given S(X) does not de-
pend on θ. When θ is a random variable such a definition is equivalent to
X ⊥⊥ θ | S(X). Taking advantage of the symmetric role of parameters and
observations, the definition of a sufficient parameter is similar to that of a
sufficient statistic:

Definition 1.1 A function g(θ) of the parameter is said to be sufficient in
the Bayesian sense if the conditional distribution of X given θ is equal to
that of X given g(θ), that is,

X ⊥⊥ θ | g(θ). (1.1)

Condition (1.1) says that the distribution of X is completely determined
by g(θ), θ being redundant once g(θ) is known. By the symmetry of a
conditional independence relation, it can also be concluded that g(θ) is a
sufficient parameter if the conditional distribution of the redundant part θ,
given the sufficient parameter g(θ), is the same in the posterior distribution
as in the prior distribution, namely p(θ | X, g(θ)) = p(θ | g(θ)). Thus, once
we have learned about g(θ) from the data, we can learn nothing more about
θ, over and above what we knew already; see Dawid (1979) and Florens et
al. (1990, chapter 2).

1.2.2 Model specification

Let us consider n persons indexed by k who belong to m mutually exclusive
classes indexed by i. These persons are asked to answer l items indexed by
j. Let Xk = (Xk1, . . . , Xkj , . . . , Xkl)′ ∈ {0, 1}l be a discrete random vector
representing the responses of a person k to the l items. Let ηk ∈ {0, 1}m

be a random vector such that
∑m

i=1 ηki = 1. Thus, the possible values
of ηk are {e1, . . . , ei, . . . , em}, where ei is a vector containing a 1 in the
i-th coordinate, whereas the other ones are equal to 0. The random vector
ηk represents the class membership of person k to one of the m mutually
exclusive classes. Let π ∈ Sm−1, where Sm−1 = {r ∈ [0, 1]m :

∑m
i=1 ri =

1}. Let P = (pij) be a m× l matrix, where pij = IP[Xkj = 1 | ηk = ei] for
all persons k. The rows of matrix P are denoted by P(i), with i = 1, . . . ,m,
whereas the columns of P are denoted by P (j), with j = 1, . . . , l. Thus, all
the parameters of interest are denoted as θ = (π, P ). Finally, we denote Xn

1

the matrix (X1, X2, . . . , Xn). Similarly, ηn
1 denotes the matrix (η1, . . . , ηn).

The hypothesis necessary to specify the process generating (Xn
1 , ηn

1 , P, π)
are the following:

• C1. ηn
1 ⊥⊥ θ | π ∀n ≥ 1.
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This condition means that the process generating (ηn
1 | π, P ), also called

the marginal model, depends on π only. This condition defines, therefore,
π as a sufficient parameter for ηn

1 .

• C2. Xn
1 ⊥⊥ θ | ηn

1 , P ∀n ≥ 1
This condition means that the process generating (Xn

1 | ηn
1 , P, π), also called

the conditional model, depends on (ηn
1 , P ) only. In other words, P is a

sufficient parameter for the conditional process generating Xn
1 given ηn

1 .

In most applications, the persons to be asked to answer a test are ran-
domly chosen. It seems reasonable to assume that persons’ class member-
ships ηk’s are mutually independent. More precisely,

• C3. ⊥⊥
1≤k≤n

ηk | π ∀n ≥ 1.

• C4. For all n ≥ 1

(i) ⊥⊥
1≤k≤n

Xk | ηn
1 , P, (ii) Xk ⊥⊥ ηn

1 | ηk, P ∀ k = 1, . . . , n.

Property (i) means that the Xk’s are mutually independent conditionally
on (ηn

1 , P ). In other words, this hypothesis means that, conditionally on
the class memberships of a sample of n persons, their responses are not
mutually “contaminated”. Note that this hypothesis does not deal with
the choice of the persons since it is a condition given their membership
class, that is, once the n persons were chosen.
Property (ii) means that the process generating (Xk | ηn

1 , P ) depends on
(ηk, P ) only and not on any other ηk′ with k 6= k′. In other words, property
(ii) says that the measurement Xk is explained by the class membership ηk

only, and not by another one ηk′ with k 6= k′.
Applying successively properties (i) and (ii), condition C4 implies the

following decomposition:

p(Xn
1 | ηn

1 , P ) =
n∏

k=1

p(Xk | ηn
1 , P ) =

n∏
k=1

p(Xk | ηk, P ) ∀n ≥ 1.

• C5. For all k = 1, . . . , n and for all n ≥ 1

(i) ⊥⊥
1≤j≤l

Xkj | ηk, P, (ii) Xkj ⊥⊥ P | ηk, P (j) ∀ j = 1, . . . , l.

Note that this condition can be interpreted as a Bayesian version of local
independence. In particular, property (ii) says that P (j) is a sufficient
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parameter for Xkj given ηk. Applying successively properties (i) and (ii),
it follows that

p(Xk | ηk, P ) =
l∏

j=1

p(Xkj | ηk, P ) =
l∏

j=1

p(Xkj | ηk, P (j)).

Combining conditions C3 and C5, we obtain that

p(Xn
1 | ηn

1 , P ) =
n∏

k=1

l∏
j=1

p(Xkj | ηk, P (j)).

This is the typical expression of the likelihood in the Latent Structural
Model literature; see, e.g., Andersen (1980).

• C6. (ηk | π) ∼ Bern(m)(π) ∀ k = 1, . . . , n ∀n ≥ 1, where Bern(m)

denotes a m-dimensional multi-Bernoulli.
Thus, the probability that a person k belongs to the latent class c is given
by P [ηk = ec | π] =

∏m
i=1 πεc

i = πc for all c = 1, . . . ,m. Note also
that conditions C3 and C6 can equivalently be rewritten as (ηk | π) ∼
iid.Bernm(π).

• C7. (Xkj | ηk, P (j)) ∼ Bern (η′kP (j))∀ j = 1, . . . ,m ∀ k = 1, . . . , n ∀n ≥ 1.
This condition makes explicit that the realization of an observable random
variable depends on an unobservable marginal Bernoulli process. Thus, for
instance, (Xkj | P, ηk = ei) ∼ Bern (pij).

• C8. π ⊥⊥ P .
Bayesian specification of LCM needs to be completed with a prior distri-
bution. We assume that the distribution on (π, P ) is the product of the
prior distributions on π and on P ; other aspects of the prior distributions
remain unspecified in the present specification. There may exist situations
in which this hypothesis is not necessarily realistic, but some identification
results we present in this paper will depend on this condition.

1.3 A necessary identification relationship

Before analyzing some identification problems in LCM, a Bayesian defini-
tion of identification will be discussed.

1.3.1 Minimal sufficiency and identifiability

In the context of a Bayesian experiment, consider a sufficient parameter
φ = g(θ), namely X ⊥⊥ θ | φ, that is, the data X do not increase our prior
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knowledge about θ given φ. It follows that a part of the prior information
is not revised by the observations. Therefore, the parametrization θ is not
“identified” by the data X; see, e.g., Dawid (1979), Florens and Mouchart
(1986), Poirier (1998) and Gelfand and Sahu (1999).

This situation can be avoided if the parameter φ is a minimal sufficient
parameter, that is, if φ is a sufficient parameter and it is a function of any
other sufficient parameter. In such a case, there does not exist a function
of φ, conditionally on which the prior and the posterior distributions are
the same. It follows that if the parametrization of a statistical model is
minimally sufficient, then the parametrization does not contain redundant
information. These considerations motivate the following definition (Flo-
rens and Mouchart, 1984):

Definition 1.2 A parameter θ∗ = h(θ) is said to be Bayesian identified
(or, b-identified) if θ∗ is a minimal sufficient parameter.

It can be shown that a minimal sufficient parameter can equivalently be rep-
resented as a function of countably many sampling expectations of statistics
IE [g(X) | θ]; see Florens et al. (1990, chapter 4.3). In the case of discrete
random variables, the verification that a parameter, say θ, is b-identified
by an observation X reduces to express θ as a function of some sampling
expectation of X. This type of argument will be used in the rest of this
paper.

Remark 1 In a classical set-up, a statistical experiment is defined as a
family of sampling distributions P θ

X indexed by a parameter θ ∈ Θ, where Θ
denotes the parameter space; see, e.g., Barra (1981). The parametrization
θ is said to be identified by the observation if for two different parametriza-
tions θ1 and θ2, there are two different probability distributions P θ1

X and
P θ2

X , that is, if the mapping θ 7−→ P θ
X is injective; see, e.g., Koopmans and

Reirsøl (1950). This is the standard identification concept typically used in
psychometrics and econometrics. Under some technical conditions, it can
be established that identification implies b-identification for all prior dis-
tribution µ defined on Θ; for details, see Florens et al. (1985) and Florens
et al. (1990, chapter 4).

1.3.2 A Minimal sufficient parameter in the statistical
model

In LCM, the statistical model bearing on the observable variables only is
given by
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IP[Xn
1 = xn

1 | π, P ] =
n∏

k=1


m∑

i=1

πi

l∏
j=1

p
xkj

ij (1− pij)1−xkj

 , (1.2)

where xk ∈ {0, 1}l for all k = 1, . . . , n. The mutual independence of the
Xk’s given (π, P ) is implied by conditions C3 and C4. Since Xk ∈ {0, 1}l

and given that the Xk’s are mutually independent conditionally on (π, P ),
the minimal sufficient parameter, and therefore the b-identified parameter
of the statistical model, is given by

IE [Xk | π, P ] =
m∑

i=1

ei
′P pi =



m∑
i=1

pi1πi

...
m∑

i=1

pilπi


∈ [0, 1]l. (1.3)

These are actually the marginal expected values. It is clear that these
minimally sufficient parameters are a function of (π, P ) but not vice versa,
and therefore such a function is not injective. The identification of (π, P ) by
the observations means to introduce additional restrictions in such a way
that (π, P ) becomes the minimal sufficient parameter and, consequently,
that (π, P ) becomes a function of (1.3) indeed. Since the right hand of
(1.3) does not depend on the index k, the number of persons in the sample
does not will provide any additional information to obtain such an injective
function. Finally note that the classical identification problem, namely the
injectivity of the mapping (π, P ) 7−→ IP(· | π, P ), where IP(· | π, P ) is
given by (1.2), is exactly the same. It should be said that, in spite of the
simplicity of the LCM, the identifiability of (π, P ) is a difficult problem.

When we don’t know if a model is identified, a possible approach is to
investigate what can be implied if we assume that the model is identified?
The implied, typically called necessary identification restrictions, are then
imposed on the model. In what follows we establish a condition under
which the identifiability of the marginal model generating ηn

1 is a necessary
condition for the identifiability of the statistical model generating Xn

1 only.

1.3.3 Identification relationship between the marginal
and the statistical models

The following theorem is not only true for the LCM, but also for all Latent
Structural Model characterized by conditions C1, C2 and C8.
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Theorem 1.1 The b-identification of the marginal model (ηn
1 | π) is a

necessary condition for the b-identification of the statistical model (Xn
1 |

π, P ).

Proof: Conditions C1 and C8 jointly imply that P ⊥⊥ π | ηn
1 . This last

condition along with C2 imply that

(i) Xn
1 ⊥⊥, π | ηn

1 , (ii) P ⊥⊥ π | Xn
1 , ηn

1 . (1.4)

Assume that the statistical model is identified, that is, (π, P ) is a minimal
sufficient parameter for Xn

1 . It follows that (π, P ) is also minimal sufficient
for (Xn

1 , ηn
1 ). By the basic properties of the b-identifiability (see Florens et

al., 1990, Proposition 4.5.2), it follows that π is b-identified by (Xn
1 , ηn

1 , P ),
and therefore also by ηn

1 given (1.4.i) and (1.4.ii).
�

Given the independence between of π and P , i.e. condition C8, it is clear
that the statistical model is not identified if the marginal model is not iden-
tified. This shows the role of condition C8 under which the identification
of the marginal model becomes a necessary condition for the identification
of the statistical model.

In the classical LCM, the marginal model is trivially identified. As a
matter of fact, under condition C6, π = IE [ηk | π] for all k ≥ 1. It follows
that π is b-identified by ηk (see the comments immediately after Definition
1.2). Therefore, under condition C8, the identified marginal model is a
necessary condition for the identifiability of the statistical model.

Finally, let us say that Theorem 1.1 is relevant for other Latent Struc-
tural Models in the sense that the specification of the corresponding marginal
model generating the ηk’s should be made in such a way that it be iden-
tified. As a simple example, let us consider a LCM in which P and π are
constrained by means of linear restrictions; see Forman (1985). In this case,
the marginal parameter π is specified as π = V λ + d, where V is a m × t
matrix and λ is the parameter of interest. In this case, the parameter λ is
b-identified by ηk if r(V ) = t. Thus, under this restriction and C8, Theorem
1.1 applies.

1.4 Exact Estimability of P

The concern of this section is to study the Bayesian consistency (or estima-
bility) of P given the data, as an approach to identifiability of P . Let us
start by reviewing some concepts about estimability.
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1.4.1 Estimability and convergence of posterior expec-
tations

Let θ be a parameter to be estimated. Since in a Bayesian set-up the
main concern deals with the “learning by observing” process, the poste-
rior distribution of θ given the data is of interest. Moreover, the infor-
mation contained in the posterior distribution can be uncovered from the
posterior expectation of all functions of the parameter given the data, say
IE [f(θ) | Xn

1 ]. Furthermore, the posterior expectation of f(θ) is the usual
Bayesian estimator corresponding to a quadratic loss function. This pos-
terior expectation always converges almost surely to IE [f(θ) | X∞

1 ], the
posterior expectation of θ given the infinite sequence of observations, pro-
vided that f(θ) be an integrable function [this is due to the Martingale
Theorem]. By analogy to sampling consistency, it seems natural to say
that the Bayesian estimator IE [f(θ) | Xn

1 ] is consistent if its limit is a.s.
equal to f(θ), that is, IE [f(θ) | X∞

1 ] = f(θ) a.s. These facts motivate the
following definition:

Definition 1.3 Let f be any (measurable) function. A parameter f(θ) is
said to be estimable if the posterior expectation IE[f(θ) | Xn

1 ] converges a.s.
to f(θ).

An alternative characterization of estimability can be obtained by using
a basic property of conditional expectation, namely IE [V | W ] = V if and
only if there exists a (measurable) function h such that V = h(W ). As a
matter of fact, a parameter f(θ) is estimable if and only if IE [f(θ) | X∞

1 ] =
f(θ) a.s., which is equivalent to say that f(θ) is a.s. a function of X∞

1 . This
means that the infinite sequence of observations X∞

1 contains the relevant
information necessary to construct estimable parameters. Note that this
provides a Bayesian interpretation about the meaning of a parameter.

Finally, let us say that if there exists a statistic Tn such that it is a
consistent estimator of θ (i.e. Tn −→ θ a.s.), then b is estimable for all prior
distributions on θ. This link between sampling-consistency and Bayesian
estimability helps to consider Definition 1.3 as “Bayesian consistency”. For
details and proofs, see Florens et al. (1990, section 7.4)

Definition 1.3 leads us to consider asymptotic arguments in which the
so-called tail-statistics plays an essential role. Broadly speaking, the tail-
statistic of a sequence of statistics, say {Zn}, depends on the last coor-
dinates Zn but not on the first m ones for any finite m. For a formal
definition and properties, see, e.g., Ellis and Junker (1997, Appendix). The
motivation to introduce tail-statistics is that to prove estimability results
we need the following general results: for a sequence of random objects Zk

iid given θ, it follows that ZT is almost surely (a.s.) the minimal sufficient
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statistics, which is also a.s. an injective function of the corresponding min-
imal sufficient parameter; for a proof, see Theorem 9.3.12 in Florens et al.
(1990). Moreover, if θ is b-identified by Zk, then ZT is a.s. an injective
function of θ.

1.4.2 Main results

Let us establish the following facts implied by the specification of LCM.

• F1. Conditions C3 and C6 imply that {ηk} is an iid sequence given π.
It follows that π is a.s. a function of the tail-latent variable ηT [apply
Theorem 9.3.12 of Florens et al., 1990]

• F2. Conditions C1, C2, C3 and C4 jointly imply that

⊥⊥
1≤k≤n

(Xk, ηk) | π, P ∀n ≥ 1. (1.5)

Moreover, IE [(Xk, ηk) | π, P ] = IE [(X1, η1) | π, P ] for all k ∈ IN. Therefore,
{(Xk, ηk)} is an iid sequence given (π, P ).

• F3. P is b-identified by X∞
1 conditionally on η∞1 , where X∞

1 denotes the
infinite matrix (sequence) (X1, X2, . . . , Xk, . . . ), and η∞1 the infinite matrix
(sequence) (η1, η2, . . . , ηk, . . . ).

Proof of Fact 3: condition C7 implies that IE [Xkj | P (j), ηk = ei] = pij

for all i = 1, . . . ,m and for all j = 1, . . . ,m. It follows that ηk
′P (j) is b-

identified by Xkj conditionally on ηk for all (j, k). Using condition C5, this
last identification relationship implies, by Theorem 2 of Mouchart and San
Mart́ın (2003), that ηk

′P = (ηk
′P (1), . . . , ηk

′P (j), . . . , ηk
′P (l)) is b-identified

by Xk conditionally on ηk for all k ≥ 1. Similarly, this last identifica-
tion restriction along with condition C4 implies that (η1

′P, . . . , ηn
′P ) is

b-identified by Xn
1 conditionally on ηn

1 for all n ≥ 1 (apply Theorem 2 of
Mouchart and San Mart́ın, 2003).
Fact 3 follows if we prove that there exists an injective mapping between
(η1

′P, . . . , ηn
′P, ηn

1 ) and (P, ηn
1 ). It is clear that if there exists a full rank

m×m matrix (with probability one), say η̃, then the desired injectivity can
be established. As a matter of fact, the probability that, in a sample of n
persons, there exists at least one latent class to which any person belongs is
equal to

∑m
i=1 [1− πi]n. Since this probability converges to 0 as n →∞, it

follows that, in an infinite population of persons, we have, with probability
one, at least one person from each latent class. Let us mention that this
asymptotic argument leads to state that P is b-identified by X∞

1 given η∞1 .
�
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The b-identifiability of the conditional model seems an immediate conse-
quence. However, as can be viewed in the proof above, the ηk’s are not
observable. The identifiability of P by the observations is obtained after
evaluating the conditional probability in C7 on the realizations of the ηk’s.
The identification follows after noticing that, in an infinite sampling pro-
cess, all the latent classes are visited at least one time with probability one.

These facts are sufficient to proof the main result of this paper, namely

Theorem 1.2 Assume conditions C1, . . . , C7. It follows that

IE [f(P ) | Xn
1 , π] −→ f(P ) a.s. for all integrable function f. (1.6)

This theorem deals with the asymptotic behavior of the posterior expec-
tation of P given the observations and π, the parameter of the marginal
model. Let us sketch its proof:

• R1. Fact F2 implies, by Theorem 9.3.12 in Florens et al. (1990), that the
minimal sufficient statistics for (π, P ) is a.s. a function of the tail-statistics
(XT , ηT ), and viceversa. Moreover, the same theorem implies that (XT , ηT )
is a.s. a function of the minimal sufficient parameter for (X∞

1 , η∞1 ), and
viceversa. It is important to note that corresponding minimal sufficient
parameter is a function of (π, P ).

• R2. Since ηT is, by definition, a function of η∞1 , fact F1 implies that π is
a.s. a function of η∞1 .

• R3. Conclusion R2 along with fact F3 implies that the minimal sufficient
parameter for (X∞

1 , η∞1 ) is (π, P ) (apply Proposition 4.6.6. of Florens et
al., 1990). Note that this relationship means that (π, P ) is identified by the
complete process (η∞1 , X∞

1 ); this identifiability is a necessary condition for
the identifiability of the statistical model. Condition C8 is not used in this
case.

• R4. Conclusions R1 and R3 jointly imply that the minimal sufficient
statistics (XT , ηT ) is a.s. a function of (π, P ), and vice versa. Moreover,
under fact F1, it follows that (XT , π) is a.s. a function of (π, P ).

• R5. Finally, since (XT , π) is a function of (X∞
1 , π), it follows that P

is a function of (X∞
1 , π). This last conclusion leads, by Definition 1.3, to

statement (1.6).

Theorem 1.2 essentially depends on the actual specification of a LCM,
which leaves unspecified the prior distribution on (π, P ). Therefore, it is
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robust with respect to an arbitrary choices of the prior. Therefore, Theorem
1.2 suggests an algorithm to estimate P , namely to take a fixed realization
of π and then to compute the conditional expectation of P given Xn

1 . This
step can be repeated to compare different Bayesian estimators of P . The
behavior of these estimators, but this issue is outside the scope of the
present paper.

1.4.3 A secondary result on π

It seems interesting to add some secondary results. As a matter of fact, con-
ditions C3 and C4 imply that Xk’s are mutually independent given (π, P ).
Moreover, by (1.3), it follows that the Xk’s are iid given (π, P ). Therefore,
the tail-statistic XT is a.s. equal to the minimal sufficient parameter of
the statistical model given by (1.3). Note that it is equal to π′P . It fol-
lows that (a) (XT , P ) is a.s. a function of (π′P, P ), and vice versa. But
(b) π is identified by X1 given P if r(P ) = m (with probability 1) since
π′ = π′ PP−1. Let us mention that IP[r(P ) = m] = 1 because the elements
of the matrix P are belong to [0, 1]; hence m ≤ l. From (a) and (b) it can
be concluded that (XT , P ) is a.s. a function of (π, P ), and viceversa. We
establish, therefore, the following Proposition:

Proposition 1.1 Assume condition C1, . . . , C7. It follows that

IE [h(π) | X∞
1 , P ] −→ h(π) for all integrable function h.
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