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A RELATION BETWEEN 2 

A Relation between a Between-item Multidimensional IRT Model and the Mixture Rasch 

Model 

 

Two generalizations of the Rasch model are compared: the between-item 

multidimensional model (Adams, Wilson, & Wang, 1997), and the mixture Rasch model 

(Mislevy & Verhelst, 1990; Rost, 1990).  It is shown that the between-item 

multidimensional model is formally equivalent with a continuous mixture of Rasch 

models for which, within each class of the mixture, the item parameters are equal to the 

item parameters of the multidimensional model up to a shift parameter that is specific for 

the dimension an item belongs to in the multidimensional model. In a simulation study, 

the relation between both types of models also holds when the number of classes of the 

mixture is as small as two.  The relation is illustrated with a study on verbal aggression.   

 

Key words: Rasch model, multidimensional IRT models, mixture Rasch model, Saltus 

model.  
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  The Rasch model (Rasch, 1960) is a simple and widespread IRT model developed 

for binary test data.  The model takes the dependency between the responses of the same 

participant into account by assuming a latent person variable.  The latter represents the 

‘ability’, ‘scale’, or ‘trait’ the test is measuring.  Under the Rasch model, the probability 

that a participant n scores one on an item i (Yni  = 1) is given as 
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βi is an item parameter representing the position of item i on the latent scale, and θn 

represents the position of participant n on the same scale.  The θn can be considered either 

as fixed parameters, or alternatively, as random variables with a common distribution 

defined over the population of participants, leading to respectively a functional and 

structural model formulation (de Leeuw & Verhelst, 1986).  In this paper, we take a 

structural model perspective.  The distribution of the latent variables is left unspecified in 

the derivation of our main result, however.  Consequently, this result is free from 

distributional assumptions about the latent variables.  In a separate section, we consider 

the special case of a two-dimensional model with a bivariate normal distribution for the 

latent variables.   

For the structural Rasch model, the marginal probability of a response pattern y is 

 

( ) ( )[ ]
( ) ( )θ

βθ
βθ

θ

dF
yI

i i

ii∫ ∏








++
+

=
=1 exp1

exp
Pr βy ,                     (2) 

 



A RELATION BETWEEN 4 

where I is the number of items, and β the vector of item parameters.  Here and further on, 

the person subscript n is suppressed from notation because we assume a common 

distribution function F for all θn, n = 1,…, N.  A constraint is needed to identify the 

model because we can always add a constant to β, and subtract the same constant from θ 

without altering the likelihood of the model.  We constrain E(θ) to 0, but alternatively, 

one can can also estimate E(θ) from the data, and put some constraint on the item 

parameters. 

  According to the Rasch model, all dependencies between the responses of a 

participant are accounted for by the unidimensional latent variable θ.  This is often 

referred to as the assumption of local stochastic independency: conditional on the item 

and person parameters, all the responses are assumed to be independent Bernoulli 

observations, with the probability of ‘success” given in Equation 1.  The characterization 

of the latent person space in terms of a single unidimensional latent variable means that 

all items are located on the same scale, and that this scale is the same for all persons.   

In this paper, we focus on two generalizations of the Rasch model that relax the 

assumption of the Rasch model of a single underlying unidimensional trait.   

The first extension is an extension towards multidimensionality.  We relax the 

assumption that all items are located on the same scale, and  instead assume that a test 

consists of K subscales or subgroups of items that each can be modeled according to a 

Rasch model.  Let ri be a K-dimensional vector that contains exactly one nonzero 

element, equal to one, indicating the scale the item belongs to.  The model is then defined 

as 
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where θ is now a K-dimensional vector representing the positions on K continuous latent 

traits, and R is a KI × matrix with as ith row ri’.  Analogous to the Rasch model, we use 

the restriction E(θ) = 0 to identify the model.  Since each item measures only one 

dimension, the model is called a between-item multidimensional model (Adams, Wilson, 

& Wang, 1997). The advantages of using the multidimensional model instead of 

analyzing the K scales separately with a Rasch model is that the test structure is explicitly 

taken into account, that estimates for the correlation between the latent dimensions are 

provided, and that more accurate parameter estimates are obtained by relying on the 

relationship between the dimensions (Adams et al., 1997).  The model presented in 

Equation 3 is a specific instance of the multidimensional random coefficients 

multinomial logit model (Adams et al., 1997).   

  In the second extension of the Rasch model, the mixture Rasch model (Mislevy & 

Verhelst, 1990; Rost, 1990), we relax the assumption of the Rasch model that the scale a 

test is measuring is the same for all persons. Instead, it is assumed that the total group of 

persons consists of  T qualitatively different subgroups.  Since group-membership is 

unobserved, the subgroups correspond to latent classes.  Within each subgroup, the 

unidimensional Rasch model is assumed to hold.  That is, within a latent class, one latent 

continuous variable explains all dependencies between responses of the same participant, 

and items are located on the same scale.  However, because the item parameters are class-

specific, the particular scale a test is measuring differs across classes.  According to the 

mixture Rasch model, the marginal probability of a response pattern y is: 
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where πt is the probability of belonging to latent class t, βt is the vector of item 

parameters for latent class t, and Ft the distribution function of θ for latent class t.  

Analogous to the Rasch model and the multidimensional model, we set E(θ) = 0 for each 

class to identify the model.  

In this paper, we explore a formal relation between both extensions of the Rasch 

model.  Specifically, we are interested in how a mixture Rasch model solution will look 

like if the true model is a multidimensional model.   

In investigating the relation between multidimensional IRT model and the mixture 

Rasch model of Rost (1990), we follow Reise and Gomel (1995), who compared the 

mixture Rasch model and the full information item factor model (Bock, Gibbons, & 

Muraki, 1988) with respect to their conceptual underpinnings and empirical fit.  The full 

information item factor model differs from the multidimensional model presented in 

Equation 3 in that also discrimination parameters are included (that is, the elements of the  

ri vectors are estimated and not specified in advance in the particular way we did), and 

that a probit instead of a logit link is used.  Reise and Gomel (1995) found that the item 

factor model was somewhat more parsimonious than the mixture Rasch model, but also 

pointed out several research contexts where the mixture Rasch model is more 

appropriate.  Our approach differs from Reise and Gomel (1995) in that we focus on the 

formal relation between a between-item multidimensional model and a mixture Rasch 
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model, rather than comparing the empirical fit to a particular dataset as they did.  

Nevertheless, we also discuss a real data example at the end of the paper. 

 

The Between-Item Multidimensional Model as a Continuous Mixture of Rasch Models 

 

We start by rewriting the between-item multidimensional model of Equation 3 as 
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where Tθξ = , with T  a nonsingular transformation matrix; S = T -1; and Q the 

distribution function of ξξξξ.  Conditioning the kth (linearly transformed) latent variable kξ  

on the vector ( )kξ of K - 1 other latent variables, we obtain 
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If we can choose T such that the inner integral corresponds with a Rasch model as 

formulated in Equation 2, the between-item multidimensional model of Equation 3 can be 

rewritten as a continuous mixture of Rasch models, where each set of values for ( )kξ  

corresponds to a class.  That there is always such a reformulation is shown in the 

following. 
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Conditioning on ( ) ( )kk aξ = , the probability of a response pattern y is: 
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where ( )k
ls  is row l, l = 1,…, K, of S, without element lks .  Since each item belongs to 

precisely one of the original scales in the between-item multidimensional model we are 

considering, Equation 7 can be simplified to 
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where the index il  refers to the original scale l item i belongs to (for the items belonging 

to the first original scale kkl
ss

i
1= and ( ) ( )kk

li
1ss = , for the items belonging to the second 

original scale kkl
ss

i
2= and ( ) ( )kk

li
2ss = , and so on).  Equation 8 corresponds to the 

marginal formulation of a Rasch model (see Equation 2) if the discrimination parameters 

for all items equal one, that is if lks  equals one for all l, l = 1,…, K.  Hence, in order for 

the inner integral of Equation 6 to correspond with the marginal formulation of a Rasch 

model, the kth column of S should consist of ones only.  The latter means that the kth basis 

vector of the natural basis of the ξξξξ space has coordinates (1, 1, …, 1) in the original θ 
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space.  By consequence, kξ  forms the superdiagonal in the θ space, and ( )kξ  spans the (K 

– 1)-dimensional subspace orthogonal to kξ  .  Hence, each latent class corresponds to a 

straight line parallel to the superdiagonal, through the point with coordinates 0=kξ , 

( )kξ = a(k), lying in the subspace orthogonal to the superdiagonal.  For a geometrical 

illustration for a two-dimensional model, see Figure 1.  The figure represents the case 

where one conditions 1ξ on ( ) 21 ξ=ξ .  1ξ  is the superdiagonal of the θ space, that is, the 

straight line trough the origin with slope one.  Each class is defined by a particular value 

a of 2ξ , which spans the subspace orthogonal to 1ξ , and hence is the straight line trough 

the origin with slope minus one. 

It follows from Equation 8 that an item parameter within a class is the sum of (a) 

the item parameter βi of the between-item multidimensional model (b) a term that is 

common for all the items belonging to the same original dimension l and that depends on 

the value of a(k) one is conditioning upon, ( )
( )k

k
l as , and (c) a term that is the same for all 

items, ( ) ( )( )k k kE ξ =ξ a .  The last term originates from our identification restriction that 

the mean of the latent variable within each class, ( ) ( )( )k k kE ξ =ξ a ,  is equal to zero.  This 

is accomplished by subtracting ( ) ( )( )k k kE ξ =ξ a  from kξ  and adding it to each item 

parameter.  Hence, within each class, the item parameters are equal to the item 

parameters of the multidimensional model up to a shift parameter that is specific for the 

dimension an item belongs to in the multidimensional model.  The shift parameter equals 

( )
( )k

k
l as + ( ) ( )( )k k kE ξ =ξ a . 
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INSERT FIGURE 1 ABOUT HERE 

 

It also follows from the equality that the item parameters for items belonging to 

the same dimension in the between-item multidimensional model are equal across classes 

in the continuous mixture of Rasch models up to a class-specific shift parameter: βit = βi1  

+ ηkt; t = 2,…, T.  In the literature, a mixture Rasch model with this property is described 

as a Saltus model (Mislevy & Wilson, 1996; Wilson, 1989).   

Finally, since T  (and S) is not completely specified, it may seem that there is a 

whole family of continuous mixtures of Rasch models that correspond to a particular 

two-dimensional model, each characterized by its own class-specific shift parameters that 

are a function of T.  However, as was outlined above, for all admissible T, the θ space is 

partitioned in the same way: Each class corresponds to a straight line parallel with the 

superdiagonal, and, by integrating over  ( )kξ  (see Equation 6), there is a class 

corresponding to each point in the subspace orthogonal to the superdiagonal.  Hence, 

regardless of the specific T that is chosen, the parameters of the continuous mixture of 

Rasch models should be a function of the two-dimensional item parameters and of the 

distribution function of θ only.  In the following section, we will also show algebraically 

that the resulting continuous mixture of Rasch models is independent of T for the special 

case of a two-dimensional model with a bivariate normal distribution for the latent 

variables.   
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Special Case: A Two-dimensional Model with a Bivariate Normal Distribution for the 

Latent Variables 

 

In the previous section, we showed that the between-item multidimensional model 

of Equation 3 can be reformulated as a continuous mixture of Rasch models without 

making any assumptions on the distribution of the latent variables.  The general result is 

now applied to the case of a multivariate normal distribution.  The latter offers the 

advantage that more precise expressions can be derived for the parameters of the 

continuous mixture of Rasch models.  The expressions are derived for a two-dimensional 

model.  For more than two dimensions, the derivations are analogous, although they 

become rather cumbersome.   

Applying the general results from the previous section to the present case, the 

between-item two-dimensional model can be presented as a mixture Rasch model with an 

infinite number of classes, where each class is formed by a straight line with slope one, 

see also Figure 1.  Specifically, S has the following form: 
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Each class is a line parallel with ξ1, and thus of the form θ1 - θ2  =  b.  

Conditioning on θ1- θ2  =  b corresponds to conditioning on  =
−

− = a
ss

b

1222
2ξ .  Since θ 

is bivariate normal, it follows that b=− 211 θθξ  is also normal, with the following mean 

and variance:  
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where 
21ξξρ  is the correlation between ξ1 and ξ2, and  

21θθσ  the covariance between θ1 and 

θ2.  From these expressions, it is clear that the variances are the same for all classes, and 

independent of the actual choice for any of the admissible T’s.  

For the item parameters within each class, applying the general result from the 

previous section, we can derive the following expressions for respectively the items 

belonging to the first and to the second dimension: 
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Again, the expressions are independent of the actual choice for any of the admissible T’s.  

 

Finite Number of Classes 

 

In the above, the equivalence between a between-item multidimensional model and a 

mixture Rasch model with a particular structure was derived for the case with an infinite  

number of classes.  We can expect the derivation also to hold approximately for a finite 

but sufficiently large number of classes, approximating the outer integral of Equation 6 

by a weighted sum over a discrete grid with nodes tϕ , t = 1,…,T,  defined on ( )kξ .   

The smaller the number of classes, the poorer the approximation of the outer 

integral in Equation 6 is expected to be.  In the next section, we describe a simulation 

study for assessing to what amount the relation between a multidimensional model and a 

mixture Rasch model described above holds when the number of classes is only two.  In 

the simulation, the data were generated under a two-dimensional model with a bivariate 

normal distribution for the latent variables.  The more precise expressions for the 

parameters of a continuous mixture of Rasch models that is equivalent with such a model 
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(given in Equation 9 and 10) can be used as a benchmark to assess an approximation with 

only two classes. 

 

Simulation Study. 

 

Data were generated according to a two-dimensional model with a bivariate 

normal distribution for the latent variables.  The first 10 items belonged to the first 

dimension, the next 10 items to the second dimension.  For both sets of items, the item 

parameters were –2, -1.5, -1, -.5, -.10, .10, .5, 1, 1.5, 2.   Two factors were manipulated: 

(1) the correlation between the two latent variables, which could be 0, .25, .50, or .75, and 

(2) whether the variances of the two latent variables were equal or not: 122
21

== θθ σσ , or 

2 and 1 22
21

== θθ σσ .  Hence, there were eight conditions in total.  For each condition, 100 

datasets where generated, each with 1000 persons. 

Assuming that the mixture Rasch model with two classes is a suitable 

approximation of a continuous mixture of Rasch models, the variances and item 

parameters were calculated with Equations 9 and 10. These expected parameter estimates 

are given in Table 1 and 2, respectively 

 

INSERT TABLE 1 ABOUT HERE 

 

INSERT TABLE 2 ABOUT HERE 
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The datasets were analysed with a mixture Rasch model with two classes.  An EM 

algorithm was programmed by the first author to estimate the model, based on the 

description of the algorithm by Mislevy and Verhelst (1990) for a model that consists of a 

mixture of linear logistic test models (of which the mixture Rasch model is a special case, 

since a Rasch model is a linear logistic test model with an identity matrix as design 

matrix).  A normal distribution was supposed for the latent variable within each class.  

The variances were allowed to differ across classes.   

To avoid local maximum solutions, each dataset was analysed 10 times, with 

different random starting values.  The solution with the highest loglikelihood was 

retained.  As a matter of fact, local maximum solutions did occur very rarely: only for 10 

datasets (all in the condition with equal variances for the latent variables and a correlation 

of .75), one or more parameter estimates differed more than .001 across the 10 runs of the 

EM-algorithm (we checked this after relabeling the classes as described next).  

Due to the fact that the class labels are arbitrary, one can always obtain a second 

solution that is also a (global) maximizer of the likelihood by switching the class labels.  

So, by having random starting values for all parameters, the EM-algorithm will randomly 

converge to either one of these equivalent solutions.   This problem can be solved by 

relabeling the classes such that a particular class always corresponds to a particular kind 

of solution.  For example, one can always take the smallest class to be Class 1.  A 

necessary condition for such a procedure is that the classes are well separated with 

respect to the parameters upon which the labeling is based.  Otherwise, averaging the 

estimated parameters across datasets, one artificially creates differences between classes 

that are not present in the data.  For example, suppose that datasets are generated 
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according to a model in which both of two classes have an equal class weight of .5.  If we 

then, for each analysis, take the first class to be the smallest one, we will conclude that, 

on average, the first class is the smallest one.  In this study, we expected that the two 

classes showed a different pattern of item parameters.  To check whether the two 

equivalent solutions were well separated in this respect, we visually inspected the plot of 

the item number versus the difference between the 100 estimated mixture Rasch model 

item parameters and the generating item parameters of the two-dimensional model, 

separately for each class and for each of the eight conditions.  In Figure 2, such a plot is 

displayed for the condition with unequal variances for the latent variables and a 

correlation of  .25.  The points originating from the same dataset are connected with a 

line, so that the results of the different dataset are distinguishable.  The two bands in the 

plot represent the two kinds of solutions, and we can conclude that the two kinds of 

solutions are well separated indeed with respect to the item parameters.  Also for the 

other conditions, the two kinds of solutions showed up in the form of two bands. 

 

INSERT FIGURE 2 ABOUT HERE 

 

Therefore, for each of the analyses, the classes were relabeled such that the sum of the 

mean of the item parameters of the first 10 items (belonging to the first dimension of the 

two-dimensional model) in the first class and the mean of the item parameters of the last 

10 items (belonging to the second dimension) in the second class was larger than the sum 

of the mean of the item parameters of the first 10 items in the second class and the mean 

of the item parameters of the last 10 items in the first class.   
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Figure 3 shows, for each of the eight conditions of the simulation study, the box 

plots of the estimated variances, the class weights, and the difference between the 

estimated mixture Rasch model item parameters and the generating item parameters of 

the two-dimensional model.  With regard to the variance parameters, the box plots 

matched the expected estimates given in Table 1. 

 

INSERT FIGURE 3 ABOUT HERE 

 

With respect to the item parameters, we expect that the item parameters equal the 

item parameters of the between-item two-dimensional model up to a shift parameter that 

is specific for the dimension the item belongs to in the model.  Consequently, we expect 

that, within a class, the differences between the item parameters estimated in the mixture 

Rasch model and the item parameters for the between-item two-dimensional model are 

constant over items belonging to the same dimension in the between-item two-

dimensional model.  Specifically, we expect the following differences for the items 

belonging to respectively the first and the second dimension in the between-item two-

dimensional model (using Equation 10): 
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The box plots of the difference between the estimated mixture Rasch model item 

parameters and the generating item parameters of the two-dimensional model fits in with 

these expectations.  First, within each class, the box plots were located at about the same 

height for the items belonging to the same dimension.  Second, for the conditions with 

equal variances for θ1 and θ2, the box plots for the items belonging to respectively the 

first and the second dimension are located at the same distance but at the opposite side of 

the X-axis.  Third, for the conditions with unequal variances for θ1 and θ2, the box plots 

of the items belonging to the second dimension are located at a larger distance from the 

X-axis than the box plots of the items belonging to the first dimension.  These three 

results are in line with our expectations with respect to the item parameters given in 

Table 2. 

In addition, the box plots are located closer to the X-axis with increasing 

correlation between θ1 and θ2, especially when the variances of θ1 and θ2 are equal. It 

indicates that the values b of θ1 - θ2 (see Table 2) the EM-algorithm “conditions upon” 

become smaller with increasing correlation between θ1 and θ2.  That is, the distances 

between the classes (the straight lines with slope one, see Figure 1) and the origin of the θ 

space become smaller with an increasing correlation between θ1 and θ2.  

The b values for the different classes can be estimated with a regression without 

intercept, with as dependent variable the difference between the mean estimated values of 

the class-specific item parameters and the generating item parameters of the two-

dimensional model, and as predictor the values of Table 2 (see Equation 11).  The 
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regression weight corresponds to b.  The classes can then be located as lines in the 

original two-dimensional θ space, following the equation: 

 

Class t: θ1 - θ2 = tb , t = 1, 2.          (12) 

 

The locations of the two classes in the two-dimensional space of the generating 

two-dimensional model is presented in Figure 4, in which also the .05 contour line is 

plotted for the respective bivariate normal distribution of θ.  The values for b become 

smaller indeed with increasing correlation between θ1 and θ2, both when the variances of 

θ1 and θ2 are equal and unequal.   Furthermore, for each condition of the simulation, b 

from Class 1 approximately equals minus b of Class 2.  Thus, the classes are located 

symmetrically around the straight line through the origin with slope one, and the 

distances between the classes and the origin of the θ space become smaller with an 

increasing correlation between θ1 and θ2. 

 

INSERT FIGURE 4 ABOUT HERE 

 

In sum, the relation between a multidimensional model and a continuous mixture 

of Rasch models seems to transfer to the case where the number of classes is only two, 

and the number of dimensions is two.  The fact that the outer integral of Equation 6 is 

approximated by a sum over only two grid points has little or no effect on the parameter 

estimates. 
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Example: Verbal Aggression 

 

The example is taken from a study of Vansteelandt (1999) on verbal aggression.  

The questions and response choices of a self-report study were designed with the 

expectation to indicate greater and lesser degree of verbal aggression, based on earlier 

theoretical and empirical work (Vansteelandt, 1999).   The respondents had to indicate 

how they would react in four situations that were described in written format.   Three 

types of verbally aggressive behavior were asked about (cursing, scolding, and shouting) 

for each situation.  For each of the aggressive behaviors, respondents had to indicate both 

whether they wanted and whether they would actually show the verbally aggressive 

behavior.  Hence, in total, there were 24 items.  Three possible response categories were 

provided: “yes, “perhaps”, and “no”.  We recoded “yes” and “perhaps” as “1”, and “no” 

as “0”.  316 first-year psychology students, 73 males and 243 females, participated in the 

study.  A more detailed description of the study can be found in Vansteelandt (1999). 

To determine whether all items belonged to the same scale or whether the “do” 

and “want” items formed separate subscales, both a Rasch model and a between-item 

two-dimensional model with separate dimensions for the “do” (θ1) and “want” (θ2) items 

were estimated.  The estimations were conducted with the SAS NLMIXED procedure, a 

procedure to estimate nonlinear mixed models (SAS/STAT User’s guide, SAS Institute 

Inc., 1999; see Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003, for a nonlinear mixed 

model framework for IRT models).  The loglikelihood was equal to -4036 and -3990, 

respectively for the Rasch model and the two-dimensional model.  The Bayesian 

information criterion (BIC; Schwartz, 1978) was respectively equal to 8216 and 8135.  
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Hence, we concluded that the “do” and “want” items formed separate subscales.  Table 4 

shows the estimates of the item parameters for the 12 “do” items and the 12 “want” items 

(in that order), as well as the estimates of the variances of θ1 (“do”) and θ2 (“want”) and 

their covariance.   

 

INSERT TABLE 3 ABOUT HERE 

 

Subsequently, two mixture Rasch models with two latent classes were estimated.  

In the first model, no constraints were put on the parameters of the model.  The 

loglikelihood and the BIC for this first model were equal to –3925 and 8143, 

respectively.  In the second model, the item parameters were constrained according to the 

expectations based on the true underlying model being a two-dimensional model, with 

separate dimensions for the “do” and “want” items.  As was explained before, these 

expectations result in the restrictions that the item parameters of the two classes are equal 

up to a shift parameter that is specific for the items belonging to the same subscale: βi2 = 

βi1  + ηd for the “do “ items, and βi2 = βi1  + ηw for the “want “ items.  Hence, the 

following parameters were free parameters in the restricted mixture Rasch model: 24 item 

parameters for the first class, two shift parameters, one class weight (as the class weights 

have to sum to 1), and two variances.  The loglikelihood and BIC for the restricted 

mixture Rasch model with two classes were equal to –3988 and 8143, respectively.  

According to the BIC, the restricted mixture Rasch model is as appropriate as the 

unrestricted.  We continue with the restricted model as we expect it to be estimated more 

precisely because of the smaller amount of parameters.  The item parameters of the 
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second class were reconstructed as the sum of the item parameters of the first class and 

the shift parameters.  The estimates for the latter amounted to ηd  = -1.09, and  ηw = .98, 

meaning that participants of the second class tended to answer “yes” more likely on the 

“do” items, and less likely on the “want” items in comparison with participants of the 

first class   The estimates for the restricted mixture Rasch model, and the difference 

between the estimated (reconstructed) item parameters for respectively the mixture Rasch 

and the two-dimensional model are also given in Table 3.  For the first class, the 

estimates of the “do” items are consistently smaller than the corresponding item 

parameters of the two-dimensional model, and the estimates of the “want” items are 

consistently larger.  The reverse is observed for the second class.  The order of the item 

locations within both the set of 12 “do” and the set of 12 “want” items is the same for 

both classes and for the two-dimensional model.      

 

Conclusion 

 

We compared two generalizations of the Rasch model.  In the multidimensional 

extension of the Rasch model, more than one latent variable is incorporated.  We focused 

on a between-item multidimensional model, in which each item belongs to precisely one 

dimension.  Such a model is appropriate if a test consists of several subtests or groups of 

items that each can be modeled with a Rasch model.  In the mixture Rasch model on the 

other hand, the existence of several subgroups of participants is assumed. Within each of 

the subgroups, the responses are modeled with the Rasch model.  The mixture Rasch 

model is appropriate if all items of a test are measuring a single construct within each 
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subgroup of participants, but the particular construct that is measured differs across 

subgroups.  Both extensions of the Rasch model are conceptually quite distinct, 

addressing subgroups of items versus subgroups of participants, or in other words, 

addressing heterogeneity in item content versus qualitative heterogeneity between 

participants (Reise & Gomel, 1995).  In spite of their different conceptual underpinning, a 

formal relation exists between both types of models.  Specifically, we showed that a 

multidimensional model can be expressed in terms of a continuous mixture of Rasch 

models, that is, a mixture Rasch model with an infinite number of classes.  In the mixture 

Rasch model, the item parameters within each class are equal to the item parameters of 

the multidimensional model up to a shift parameter that is specific for the dimension an 

item is belonging to in the multidimensional model.  Consequently, the item parameters 

for items belonging to the same dimension in the between-item multidimensional model 

are equal across classes in the continuous mixture of Rasch models up to a class-specific 

shift parameter.  A mixture Rasch model with this kind of structure on the item 

parameters is called a Saltus model (Mislevy & Wilson, 1996; Wilson, 1989).  The Saltus 

model was developed in a developmental context.  Our theoretical results indicate that a 

Saltus model (with an infinite number of classes) can also mimic a between-item 

multidimensional model.  Note that the reverse, that every Saltus model corresponds to a 

between-item multidimensional model, is not necessarily true.  

The formal relation between both types of models holds irrespective of the 

distribution of the latent variables.  However, when a multivariate normal distribution is 

assumed, more precise expressions can be derived for the parameters characterising the 

mixture Rasch model.   
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The simulation study suggests that the relation between the two kinds of models 

also holds approximately for a two-dimensional model with a bivariate normal 

distribution for the latent variables when the number of classes is as small as two.   

Our results indicate that it might be the case that, in a particular application, the 

resulting estimates from a mixture Rasch model do not represent the item parameters for 

qualitatively different subgroups, but that the solution is merely an approximation of a 

multidimensional model instead, in which all individual differences are quantitative 

differences.  Specifically, a mixture Rasch model solution in which the items can be 

divided into subgroups for which the item parameters are constant across classes up to a 

shift parameter common to all items within a subgroup, is a strong indication for a 

between-item multidimensional model, with as many dimensions as there are different 

subgroups of items.  However, such a mixture Rasch model, without restrictions on the 

item parameters, contains a lot of parameters, so that a pattern in the item parameters 

might be blurred because of imprecise estimates.  Alternatively, when a particular 

between-item multidimensional model is a plausible model a priori, the item parameters 

of the mixture Rasch model can be constrained accordingly, leading to a Saltus model 

(Mislevy & Wilson, 1996).  We followed the latter approach in the example study on 

verbal aggression.   
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Figure captions 
 
 
Figure 1.  Geometrical representation of a between-item  two-dimensional model as a 
continuous mixture of Rasch models.   
 
 
Figure 2. Difference between the estimated mixture Rasch model parameters and the 
generating item parameters of the between-item two-dimensional model for the condition 
with  2  ,1 , 25. 22

2121
=== θθθθ σσρ and  (100 datasets and 1000 subjects per dataset).  

Points resulting from the same dataset are connected with a line.  
 
 
Figure 3.  Box plots of the estimated variances, the class weights, and the difference 
between the estimated mixture Rasch model item parameters and the generating item 
parameters of the two-dimensional model(100 datasets and 1000 subjects per dataset for 
each condition).  
(a) 1;0 22

2121
=== θθθθ σσρ ; (b) 2,1;0 22

2121
=== θθθθ σσρ ; 

(c) 1;25. 22
2121

=== θθθθ σσρ ; (d) 2,1;25. 22
2121

=== θθθθ σσρ ; 

(e) 1;5. 22
2121

=== θθθθ σσρ ; (f) 2,1;5. 22
2121

=== θθθθ σσρ ; 

 (g) 1;75. 22
2121

=== θθθθ σσρ ; (h) 2,1;75. 22
2121

=== θθθθ σσρ .  
  
Figure 4.  Location of the two classes of the mixture Rasch model (based on the mean 
estimated values of the item parameters) as lines  in the two-dimensional space of the 
generating between-item two-dimensional model.  For the latter, the .05 density contour 
is drawn.  
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 Table 1 
Expected variances for the classes of the mixture Rasch model as a function of the 
covariance structure of the between-item two-dimensional model. 
 122

21
== θθ σσ  2;1 22

21
== θθ σσ  

0
21

=θθρ  .5 .67 

25.
21

=θθρ  .63 .82 

5.
21

=θθρ  .75 .95 

75.
21

=θθρ  .88 1.00 

 



 

Table 2 
Expected item parameters for the classes of the mixture Rasch model as a function of the 
covariance structure of the between-item two-dimensional model.  
 122

21
== θθ σσ  2;1 22

21
== θθ σσ  

 Items of first 

dimension 

Items of second 

dimension 

Items of first 

dimension 

Items of second 

dimension 

0
21

=θθρ  .5i bβ +  .5i bβ −  .33i bβ +  .67i bβ −  

25.
21

=θθρ  .5i bβ +  .5i bβ −  .28i bβ +  .72i bβ −  

5.
21

=θθρ  .5i bβ +  .5i bβ −  .18i bβ +  .82i bβ −  

75.
21

=θθρ  .5i bβ +  .5i bβ −  .07i bβ −  1.07i bβ −  



 

Table 3.  Results of the study on verbal aggression.  Dimension the item belongs to in the 
between-item two-dimensional model, parameter estimates for the between-item two-
dimensional model, (reconstructed) parameter estimates for the restricted two-class 
mixture Rasch model, and the difference between the estimates of the parameters of the 
two-dimensional and mixture Rasch model.   
 Dimension of 

item in 2-

dimensional 

model 

2-dimensional 

model 

Class 1 mixture 

Rasch model 

Difference   item 

parameters Class 

1 and 2-

dimensional 

model 

Class 2 mixture 

Rasch modelb 

Difference   item 

parameters Class 

2 and 2-

dimensional 

model 

πt   .57  .43  

Σa  2.85  1.91 

1.91  2.11 

.93  4.72  

β1 Do 1.33 1.81 .48 .72 -.61 

β2 Do .41 .87 .46 -.22 -.62 

β3 Do -.96 -.47 .50 -1.55 -.59 

β4 Do .94 1.41 .47 .32 -.62 

β5 Do -.08 .39 .47 -.70 -.62 

β6 Do -1.62 -1.09 .53 -2.18 -.56 

β7 Do -.25 .22 .47 -.86 .61 

β8 Do -1.64 -1.11 .53 -2.20 -.56 

β9 Do -3.21 -2.60 .61 -3.69 -.48 

β10 Do .76 1.22 .46 .14 -.62 

β11 Do -.44 .04 .48 -1.04 -.61 

β12 Do -2.17 -1.61 .56 -2.70 -.53 

β13 Want 1.25 .99 -.27 1.96 .71 

β14 Want .58 .33 -.25 1.31 .72 

Table continues 



 

β15 Want .09 -.16 -.25 .82 .73 

β16 Want 1.79 1.51 -.28 2.49 .70 

β17 Want .73 .47 -.26 1.45 .72 

β18 Want .02 -.23 -.25 .75 .73 

β19 Want .55 .29 -.25 1.27 .72 

β20 Want -.70 -.96 .26 .02 .72 

β21 Want -1.56 -1.87 -.31 -.89 .67 

β22 Want 1.11 .85 -.26 1.83 .71 

β23 Want -.35 -.60 -.25 .37 .73 

β24 Want -1.06 -1.34 -.28 -.36 .70 

a: Σ represents either the covariance matrix (between-item two-dimensional model) or the 
variance within a class (mixture Rasch model).  
b: The item parameters of the second class were reconstructed as the sum of the item 
parameters of the first class and the shift parameters.  

Table 3  (continued) 
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