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Abstract

We develop optimal rank-based procedures for testing affine-invariant linear hypotheses
on the parameters of a multivariate general linear model with elliptical VARMA errors. We
propose a class of optimal procedures that are based either on residual (pseudo-)Mahalanobis
signs and ranks, or on absolute interdirections and lift-interdirection ranks, i.e., on hyperplane-
based signs and ranks. The Mahalanobis versions of these procedures are strictly affine-
invariant, while the hyperplane-based ones are asymptotically affine-invariant. Both versions
generalize the univariate signed rank procedures proposed by Hallin and Puri (1994), and are
locally asymptotically most stringent under correctly specified radial densities. Their AREs
with respect to Gaussian procedures are shown to be convex linear combinations of the AREs
obtained in Hallin and Paindaveine (2002a, 2002b) for the pure location and purely serial
models, respectively. The resulting test statistics are provided under closed form for sev-
eral important particular cases, including generalized Durbin-Watson tests, VARMA order
identification tests, etc. The key technical result is a multivariate asymptotic linearity result
proved in Hallin and Paindaveine (2002f).

1 Introduction.
In this paper, we consider the multivariate general linear model with VARMA error terms
Y™ =xM g4+ u), (1)
where
1,1 1,2 .- Tlm X} Pri P2 - Bk B
XMW= 0 pol= | and Bi= 1 L=

Tpl Tp2 .- Tnm Xln ﬁm,l ﬁm,Q /Bm,k: ﬂ;n
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denote an n x m matrix of constants (the design matrix), and the m x k regression parameter,
respectively. Instead of the traditional assumption that the error term

U1,1 ULQ ... Ul,k Ull
U .= : : : = :
Ui Upa . Unp U,
is white noise, we rather assume (Uy, t =1,...,n) to be a finite realization (of length n) of a

solution of the multivariate linear stochastic difference equation (a VARMA(p1, ¢1) model)
A(L)U,=B(L)e;, tel, (2)

where, writing Ij, for the k-dimensional identity matrix, A(L) := I — >F A;L" and B(L) :=
I + X%, B; L for some (p1 + q1)-tuple of k x k real matrices (Aq,...,A,,B1,...,By), L
stands for the lag operator, and {€; |t € Z} is a k-dimensional white-noise process. Under this
model, the observation

Yin Yip ... Yig Y
Y(”) = : : : = :
le Yn72 . Yok Y;L

)

is the realization of a k-variate VARMA process {Y, t € Z} with trend E[Y,] = 8'x;.
Denote by

/
0= ((Vecﬂ')', (vec A1), ..., (vecA,,), (vecBy)', ..., (vec Bql)/) € RE .= RFmHF(@1tar)

the parameter of this model. We consider the problem of testing linear hypotheses about @.
Writing M(T) for the vector space spanned by the columns of some (full-rank) matrix T, such
null hypotheses can be written as Hy : 8 — 8y € M(Y), for some specified K-vector 8y and
full-rank (K x r) matrix Y. Linear constraints that imply VARMA orders less than p; and/or
¢q1 however require a special treatment. Therefore, we denote by pg < p1 and gy < ¢ respectively
the orders, under Hy, of the autoregressive and moving average operators (meaning that under
Ho all entries in rows km + k?pg + 1,..., km + k?p; and rows km + k%(py +qo) +1,..., K of T
are zeros); po = p1 and go = ¢; thus simply means that the orders of the model are not an issue.

In the sequel, we restrict to the class of linear hypotheses Ho that are invariant under
affine transformations in the following sense. For any k x k full-rank matrix M, the affine
transformation &; — Me; of the noise induces the transformation

(B,A1,...,A,,,By,....,By) — (BM MA M ... MA, M! MB/ M ... MB, M)

m,p1+
1(\/[ D1 (I1)0

of the parameter. In terms of 8, this induced transformation is 6 — g , where

(r1,r2) | _ L, ®M 0
gm . 0 Irg ® (lel ® M) .

Letting G/1(k) = gl(\zl’m),M of full-rank}, we say that the null hypothesis Hy : 6 — 6y €
M(T) is invariant under affine transformations iff gl(\ZL P1ta) (0o + M(T)) =0y + M(T), for all

P11+
gt egm. (k).



Let 1 := veclIy, Ly := lkl;g, and denote by P}, the k? x (k2 —1) array obtained by deleting the
last column in I2 — Lj. Then Hallin and Paindaveine (2002c) showed that the null hypothesis
Ho: 0 — 0y € M(T) is invariant under affine transformations iff

T — T; 0 . 71 0 0 G
- 0 Ty - 0 VP, W®I

0
00:<W®1k>+'rw,

where w and w denote arbitrary vectors with dimensions p1+¢; and r, respectively, Z, V, and W
are (possibly void) full-rank matrices with dimensions m xrz, (p1+¢1) Xy, and (p1 +¢1) X rw,
respectively, and (letting » = r; + r77, where r; := rzk and r7; := ry(k*> — 1) + ry) G is an
invertible r x r matrix. Since M(T) = M(YTG) for any such G, we may assume, without loss
of generality, that G = I,. in the sequel. In case py < p; and/or gy < qi1, note that V.and W
have only zeros in rows py + 1,...,p; and rows p1 +qo+ 1,...,p1 + q1.

This class of affine-invariant null hypotheses covers a wide range of problems of practical
interest. In the sequel, the following particular cases will be treated in details in Section 6.

and

(a) The multivariate Durbin-Watson problem, which corresponds to 8y = 0, Y; = Ij,,, and
T = 0, where () denotes the void matrix. This allows for testing serial independence of
the error term in an unspecified linear model versus VARMA errors of orders less than or
equal to p; and ¢; (the linear model structure of the trend plays the role of the nuisance).

(b) Testing the orders of VARMA errors. In the second example, we consider the problem of
testing a VARMA (po, o) model versus a higher-order VARMA(p1,¢q1). This is obtained
by letting 8y = 0, T; = ), and

IPO OPOXQO
O(p1 —Po) XPo 0(p1 —po) X qo

OQO XPpo IQO

’rII =

0(gi—go)xpo Oq1—q0)xq0

(here again, the linear model structure of the trend plays the role of the nuisance). The
particular case where p1 — pyp = ¢1 — ¢o = 1 plays an important role in several model
identification procedures (see, e.g., Potscher 1983, 1985, or Garel and Hallin 1999 for the
univariate case). For the sake of notational simplicity, we restrict top1—po =1, ¢1 = qo =0
in the sequel.

(c) Testing against switching location regime. Let (tin)), i=1,...,m—1, be (m—1)-tuple of
sequences such that t(()n) =0< tgn) <... < tg:ll <t = n for all n. Denoting by egm)
the ith vector of the canonical basis in R™, consider the design matrix defined by

F=el™, for t{™) <t <t

(n
X ) )

The resulting model is a VARMA (p1, ¢1) one, with time-dependent trend (more precisely,

with mean B, between t = tl(-ﬁ)l +1and ¢t = tz(n)). In this setup, the testing problem
associated with T; = (1,...,1) @ I, T; = L12(p,4q1) corresponds to the problem of



testing the absence of different regimes, i.e., to the null hypothesis Ho : 81 = ... = 8,,.
The coefficients of the VARMA operators here are nuisance parameters. Note that if there
is no serial component in the model, then this reduces to the standard m-sample problem,
i.e., to the most standard testing problem in analysis of variance.

2 Main assumptions.

In this section we collect, for convenient reference, all assumptions we need in the sequel. These
assumptions are dealing with the design of the model, the innovation density, the score functions
to be used in test statistics, and the estimators of unspecified and nuisance parameters.

We begin with some structural conditions on the trend part of the model. The following
assumptions are standard in the context (see Garel and Hallin 1995).

ASsSuMPTION (A1l). Letting an) = (n—4) 'Yk Xgn)xgﬁ)l-’, i=0,1,...,n — 1, denote by

D) the diagonal matrix with elements (C(()n))n, cee (C(()n))mm.
(i) (C§),; > 0 for all ;.

(ii) Let Rgn) = (D("))_l/QCZ(n)(D("))_1/2. The limits lim, o Rgn) =: R, exist for all i; Ry
is positive definite, and therefore can be factorized into Ry = (K K')*1 for some full-rank
m x m matrix K. Letting K™ := (D()~1/2K (defining K™, note that K also has
full rank).

(iii) The classical Noether conditions hold : the (Xgn))j, t =1,...,n, are not all equal, and,
letting jgn) =n! Z?Zl(xgn))j,
max; <p<n ((xf"); - f§"))2
lim =0, j=1,...,m.

e (), - 2)

The description of the asymptotic behaviour of the proposed test statistics under local alterna-
tives will require the following reinforcement of (A1l).

AssuMPTION (A1’). Same as Assumption (A1), but we further assume that lim, ., [D™)/
tr D(")] =: D2, where D is a finite, positive definite diagonal matrix.

For the serial part of the model, we essentially require the VARMA model (2) to be causal
and invertible. The assumptions on the difference operators are actually the same as in Hallin
and Paindaveine (2002d), where the problem of testing the adequacy of a specified VARMA
model is considered.

AssuMPTION (A2). All solutions of det(I; — Y%, A;2") = 0 and det(Ix + >0, B;z') = 0
(|Ap,| # 0 # |Bg,|) lie outside the unit ball in C. Moreover, the greatest common left divisor of
I, — >, A;2" and Ij, + >, B,2’ is the identity matrix Ij.

In the sequel, we denote by G,(@), u € N, the Green’s matrices associated with the autore-
gressive difference operator A(L) =1I) — >0, A, L. These matrices can be defined recursively

by A(L)G, = G, — Z?;irll(po’u) A;G,_; = 6uo I, where 6,9 = 1 if u = 0, and 0,9 = 0 otherwise.



Assumption (A2) also allows for defining G, by means of

+00 Po ) -1
Z G, 2" = <Ik — ZAZ‘ZZ> , z € C, |Z‘ < 1. (3)
u=0 i=1

Similarly, we denote by H, (@), u € N, the Green’s matrices associated with the moving average
difference operator B(L). Clearly, all these Green’s matrices are continuous functions of @.
When no confusion is possible, we will not stress their dependence on .

The residuals (Zgn) @),... L Z (0)) associated with a value @ of the parameter then can be

computed from a set of initial values €_g541 ... ,e‘;‘o,Y(_np)0 TR ,Yén) and the observed series
(an)’ e ,Yﬁln)) via the recursion
) (g) = S~ % ) )
n n ! (n
Z,°(0) = Z Z HiAj(Yt—z‘—j -B Xt—i—j) (4)
i=0 j=0
Iy 0 .
B, I ... 0 —qo+1
+(Hitgo—1--- He) . . o :
: : .o .
By 1 Bgo2 -.- I 0
Assumption (A2) ensures that neither the (generally unobserved) values (€_gy+1,...,€0) of the

innovation, nor the initial values (YS";O TR PRI Y((]n)), have any influence on asymptotic results;

they all safely can be put to zero in the sequel.
Under (A2), {e:} is {Y:}’s innovation process. Denote by ¥ a symmetric positive definite
k x k matrix, and let f : Rf — RT be such that f > 0 a.e. and [;°r* 1 f(r)dr < co : we will

assume throughout that {egn), . ,aﬁ{‘)} is a finite realization of an elliptic white noise process
with shape matrix ¥ and radial density f :

AssuMPTION (B1). The innovation density is of the form [];, i(zgn); X, f), where

F@iS, f) = ey (det£) 72 f(lzllg), 21 € RE. (5)

As usual, ||z||g := (z'£7'2)'/2 denotes the norm of z in the metric associated with . The con-
stant cg,y is the normalization factor (wy ftx—1;7) ", where wy, stands for the (k — 1)-dimensional
Lebesgue measure of the unit sphere S¥=1 C R¥, and p. ¢ :== [;° 7! f(r) dr.

Denote by 'HEI?? ) (80, %, f) the hypothesis under which the observation Y (™) is generated by (1)
and (2), with a value 8 of the parameter of interest that satisfies @ —0y € M(T), and with values
¥ and f for the parameters of the underlying elliptical white noise. Denote by 'H(")(Oo, X, f) the
hypothesis H'(;L) (00,%, f), where T is the void matrix (so that M(Y) = {0}). The goal of this
paper is to develop testing procedures for the null hypothesis H'(;L) (60) := Us Uy H'(;L)(BO,E, 1)

against Ug-g,+ (1) Us Uy H™ (0,5, f), that

e are non-parametric, i.e., valid under the whole of Hﬁrn ) (0p) (under which the distribu-
tion of the noise is not specified beyond elliptical symmetry and possibly some moment
constraints);



e are locally and asymptotically optimal (LAO) (locally asymptotically most stringent,
in this case) at some fixed radial density f,, that is, against alternatives of the form
Us 260+ r1(r) Us H™ (8,5, f,); this of course requires local asymptotic normality (LAN) of
the parametric submodel associated with f;

e comply with the invariance principle: we restricted to null hypotheses that are in-
variant with respect to the group of affine transformations. The hypotheses considered are
also invariant with respect to the group of continuous monotone radial transformations
(acting on residuals); see Section 4.1 for a precise definition of this group. The proposed
procedures should be (at least asymptotically) invariant with respect to these two groups.

Local asymptotic normality requires some further regularity assumptions on the innovation
density. The set of assumptions (B) collects these assumptions.

AssuMPTION (B1’). Same as Assumption (B1), but with ;11 < co. ASSUMPTION (B2). The

square root f1/2 of the radial density f is in W12 (R{, pg—1), where WH2(RJ, py—1) denotes the
subspace of L? (IR{(J{ , lk—1) containing all functions admitting a weak derivative that also belongs
to LQ(RO y Mk — 1)

Assumption (B2) is strictly equivalent to the assumption that f 1/2 is differentiable in quadratic
mean (see Hallin and Paindaveine 2002a). Denoting by (f!/2) the weak derivative of f1/2

in L3RS, g—1), let o = _2(f11//22) . Under (B2), the radial Fisher information Iy 5 :=

Il ler(r)]2rk=1f(r) dr is finite. In the pure location or purely serial problems considered in
Hallin and Paindaveine (2002a, b, and d), this was sufficient for LAN. However, as pointed out
by Garel and Hallin (1995), LAN, in this model where serial and nonserial features are mixed,
requires the stronger assumption:

AssUMPTION (B3). [l (r)]*rk=1f(r) dr < oo.

Assumptions (C) and (C’) impose some mild conditions on the score functions Jy, £ = 0,1, 2,
to be used when building rank-based statistics.

AssumMPTION (C). The score functions Jy :]0, 1[—> R, ¢ = 0,1,2, are continuous differences of
two monotone increasing functions, and satisfy [y [Jo(u)]? du < oo (£ = 0,1,2).

The score functions yielding locally and asymptotically optimal procedures are of the form
Jo = J1 = g0 ;k and Jo 1= F*k , for some radlal density f, (here F,;, stands for the cdf
associated with the radial pdf fux(r) = (ux_1.p,) " rF 1 fulr 7) Ipso, 7 € R). Assumption (C)
then takes the form of an assumption on f, :

AssuMPTION (C’). The radial density f, is such that ¢y, is the continuous difference of two
monotone increasing functions, pigi1.r, < 0o, and [3°[py, (r)]*rF =L fo(r) dr < co.

The shape matrix ¥ in Assumption (B1) is unknown and has to be estimated. We assume
the following.

n) (n)

AssumPTION (D1). A sequence s o5

(i) vaE"

(ii) E(n) is invariant under permutations and reflections (with respect to the origin in R¥) of
the residuals Z;.

(Z1,...,Z,) of estimators of ¥ exists, such that

—aX) = 0p(1l) as n — oo for some positive real a, and



Assumption (D1) will be sufficient for the validity of the proposed procedures. However, their
affine-invariance requires the following equivariance assumption on T = f)(n).

AssumpTION (D2). The estimatorAZA) is quasi—aﬂﬁne—equivariant, in the sense that, for all k x k
full-rank matrix M, £(M) = d MEXM’, where X(M) stands for the statistic ¥ computed from
the n-tuple (MZy,...,MZ,), and d denotes some positive scalar that may depend on M and
(Zy1,...,7Z,).

Since the parameter of interest @ remains partially unspecified under the null, we also need
some preliminary estimate of . More precisely, we will assume the existence of an estimator

6 := é(n) for @ satisfying Assumptions (E1) and (E2) below.

AssumPTION (E1). The sequence of estimator (é(n), n € N) is

(i) constrained : 6"

— 0y € M(Y) for all n,

(ii) root-n consistent : Y0 € 6y + M(Y), nl/Q(é(n) —0) = Op(1), as n — oo, under Us Uy
H™ (9,2, f), and

(iil) locally asymptotically discrete : ¥ € 8o + M(Y), Ve > 0, there exists an M(c) > 0 such
that the number of possible values of @ in balls of the form {t € R¥®1+a1) . |n1/2(t—@)|| <
¢} is bounded by M, uniformly as n — oc.

Assumptions (E1) (i), (ii) are satisfied by all classical estimators (Yule-Walker, least-squares,
maximum likelihood, ...). The technical assumption (E1) (iii), which goes back to Le Cam
(1960), is of little practical relevance, and it should be pointed out that, for fixed sample size,
any estimate can be considered part of a locally asymptotically discrete sequence. While As-
sumption (E1) is classical for the univariate version of the testing problem under study, As-
sumption (E2) below is specific to the multivariate case (it is essentially void for & = 1), and is
required if affine-invariance is to be achieved.

AssUuMPTION (E2). For any full-rank k x k matrix M, denote by 6(M) the value of 8 com-
puted from the transformed sample MY,...,MY,,. Then @ is affine-equivariant, meaning that

6(M) = gl(\cln,p1+q1) 6, for all gl(\zn’pﬁql) o +aqr ()

_ Equivalently, (E2) means that the estimators we consider are assumed to satisfy ﬁ(M) =
BM, A;(M) = MA,M™! for all i = 1,...,pp, and B;(M) = MB;M~! for all j = 1,...,qo.
Note that the resulting Green’s matrices then also are affine-equivariant, i.e., G,(@(M)) =

~

MG, (@)M™! and H,(§(M)) = MH,(§)M~! for every integer u. In the sequel, we will write
G and HY for G.(0) and H,(), respectively. Note that, for any constrained estimator 8
satisfying (E2), (M) is also constrained, since §(M) = gl(\cln’pﬁql)é € gl(\cln’pﬁql)(eo + M(T)) =
0o + M(Y) for all M (we restricted to pairs (@y, M(T)) for which the null hypothesis is affine-

invariant). In other words, affine-equivariance in (E2) and part (i) of (E1) are compatible, thanks
to the affine-invariance of the null hypothesis.

3 Uniform local asymptotic normality (ULAN).

In this section, we briefly recall the ULAN (uniformly local asymptotic normality) result proved
in Hallin and Paindaveine (2002f) for the model under study. The sequences of local alternatives



to be considered for this property are associated with sequences of models of the form
Y™ = x® gt g AM(L) U§”) — ]3(71)([1)51(5”)7 tez, (6)

where B := B+ n~12ZKMn  ACN(L) = I — S0 (A; + n 24 L BO(L) = I,
+ >, (B + n_l/Qégn)) L, and the sequence

70 = ((veen™)', (veer (™)', ., (veer ), (vec (M), (vecd())) € R

is bounded as n — oco. The perturbed parameter is thus

(n)
e(n) — 0 —|—1/(n)'r(”) ' n—1/2 < K & Ik: 0 )T(n)
0 IkQ(ler(h)

The corresponding sequence of local alternatives will be denoted by ’H(")(e + I/(n)T(”),E, f)-

Decompose Z;(6) = Z{"(8) into Z;(8) = d,(8, %) £Y/2U,(0, ), where d;(0,%) = d\"(8,%)
= |Z4(8)||ls and U,(0,%) = UM (B,%) := £727,(0)/d,(0,%). As we will see, the central
sequences involved in the ULAN result are linear combinations of (the entries of ) the generalized
cross-covariance matrices

T 1 (6) == (n— i)~ &1/ ( znj 07(d(0,5)) d_i(0,%) Ut(e,E)U;_i(0,2)> s12 (1)
t=i+1

and the matrices of nonserial statistics

n

AR 0) = (n— i) BT 3T op(d(60.2) Ur(0.8) %" K™, (®)
t=i+1
which therefore contain all the relevant information (in the local and asymptotic sense). The
coefficients of these linear combinations are rather complicated, though, and require some further
notation, mainly connected with the algebra of linear difference equations.

Associated with any k-dimensional linear difference operator of the form C(L) := >9°, C; L
(letting C; = 0 for ¢ > s, this includes, of course, the operators with finite order s), define, for

any integers m and p, the k?m x k?p matrices

Coe I 0 e 0
Cl & Ik CO & Ik N 0
ch .= : ) : 9
m.p Cp,1 ® I, Cp,Q QI ... Cox1; ( )
Cmfl ® Ik Cm72 ® Ik v Cmfp ® Ik
and
I, ® Cq 0 cee 0
I, ® Cy I, ® Cy e 0
o . : ' : : 10
mop I.® Cp_1 I.® Cp_g c.. I, ® Cy ( )
I,Chr1 It®C o ... I® Cm—p



respectively; write Cﬁf? for Cg&m and C%) for C%?m With this notation, note that Gﬁf?, G%),
HSQ, and HSZ) are the inverses of A,(Q, AT(J;), BT(Q, and BSZ), respectively. Denoting by C/n(ml,)p and
C;EZ:I), the matrices associated with the transposed operator C'(L) := 3.2, C; L?, we also have
G/n(f) = (A/n(@l))*l7 H;(ll) = (B/n(@l))*l7 etc. We will use the notation C%),p,ésg?p,(i%), etc. when
the identity matrices involved in (9) and (10) are m-dimensional rather than k-dimensional.
Let m := max(p1 — po, ¢1 — qo) and g := 7+ po + qo, and define the k?my x k%(p1 + q1) matrix

G )
under Assumption (A2), My is of full rank.

Consider the operator D(L) := Iy + Zf:{qo D; L (just as My, D(L) and most quantities
defined below depend on @, but, for simplicity, we are dropping this reference to @), where,

putting G_1 = G_2 =..= G_p0+1 =0= H_1 = H_2 =..= H_q0+1,
—1
Gy, Ggpo1 o G
GQO+1 qu s G*p0+2 GQOJrl
, . . .
D, :
: — _ Gpotao—1 Gpotgo-2 --- Go Gpo+ao
D Hy, Hpy,—1 o Hogoa Hpo+1
Po+qo Hp0+1 HPO e H_q0+2 :
: HP0+QO
Hpo+q0—1 Hpo+¢10—2 S H,

Note that D(L)G; =0fort=¢qo+1,...,p0+ qo, and D(L)H; =0fort=po+1,...,p0+ qo.
Let {\Ilgl), e ,‘If,gpoJrqO)} be a set of k£ x k matrices forming a fundamental system of solutions
of the homogeneous linear difference equation associated with D(L) (such a system can be

obtained, for instance, from the Green’s matrices of the operator D(L) : see Hallin 1986).
Define

1
qf%l \If%”j?;
_ v c o
T, (0):=| T 2oL (m>w),
\If,i}) \1:<mp5+q°>
Iz, O n " Lz, O
o (B ) me ompn (B g2 ) o

where Cy is the Casorati matrix \ifﬂo.
Finally, put

’
/

SU% 1(0) = (n'/? (vec AT 1(8))',..., (n— )2 (vec AL ,(6)),..., (vec Al 5 (8)))

n 2Ty (0) = LgV'STY 0), and Jpewmi= lim LYV (K, o= HL{,  (13)

3y

where Lén) = I_{%T)(O)Anf)l(a), and where K 7 denotes the Im x Im matrix with block K’ Rji_; K

in position (i,7) (i=1,...,1,7=1,...,1). We write K, instead of K. Similarly, for the serial



part, let

/

Sl 10) = ((n = 1)Y2 (vecTVY 1(0))',.., (n— )"/ (vec T ()., (vecT\, 5 1(6)))

!PT 0) = Qg S{s ;0), and  Jipez:= lim QY L@ EeT Qg (14)

(convergence in (13) and (14) follows from the exponential decrease, as u — oo, under (A2), of
the Green’s matrices G, and H,,).
Eventually, we can state the ULAN proved in Hallin and Paindaveine (2002f).

Proposition 1 (ULAN) Assume that Assumptions (A1), (A2), (BIl'), (B2), and (B3) hold.
Let 8, be such that 8,, — 0 = O(n~/?). Then, the logarithm Lén)Jru(n)T(n)/o Y of the likelihood
ratio associated with the sequence of local alternatives H™ (8, + v(n)T(™ B, f) with respect to
H™ (0,8, f) is such that

n n n n 1 n n
Lo sy o (Y ) = (FY AL 0) = 5 (1) T 1(0) 7" + 00 (1),

as n — oo, under H™ (0,8, f), with the central sequence

. NE( Ly 0 T3 ,(6n)
Aé},}(en) = (ITL’)EJ = n1/2 ( 0 M/ P/ ) ({;)E,f ) (15)
AH;E,f(en) 0n~ 0n Tll;z,f(on)
and the information matriz

Tsf(0) := ( IVERIC) 0 ) |

0 T 5(0)

. I . ! /
where P[;E7f(0) = % Z]“f.][;g,z and P[[;EJ(O) = WNG’E’ with N972 = MGPGJH;G,EPGMG .

Moreover, Ag}(ﬂn), still under H™ (8,8, f), is asymptotically Nk(0,Ts £(8)).

Note that the asymptotic information matrix I's, (@) may be singular (such a singularity
occurs as soon as p; > po and g1 > qo). In such a case, a careful treatment, involving generalized
inverses, will be required in the derivation of the asymptotic distributions of test statistics.

4 Multivariate signs and ranks, serial and nonserial signed rank
statistics.

4.1 Multivariate signs and ranks.

The generalized cross-covariances (7) and nonserial statistics (8) are measurable with respect to
the Mahalanobis distances dy(0,%) = ||£~Y/?Z(8)| between the residuals Z,(f) and the origin
in R¥, and the “multivariate signs” Uy(0,%) = £7/2Z,(8)/||=~/*Z, ()]

For each ¥ and n, the group of continuous monotone radial transformations
le) = {ggn)}, acting on (R*)" and characterized by

o\ (Z1(), -, Z(0)) := (9(dr (6, %)) ZV/2U1(6,3), ..., g(d,(6,2) BY/?U,(0,8)),  (16)
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where g : RT — R* is a continuous monotone increasing function such that g(0) = 0 and
lim, o g(1) = 00, is a generating group for J; H(6,X, f). Along with the signs (U(0,%),...,
U,(6,%)), the ranks (R1(0,X),...,R,(0,X)) of the distances d;(8,X) constitute a maximal
invariant for that group gE") of radial transformations.

Because the true value of the shape matrix is unkown, the genuine ranks R;(6,%) and signs
U;(6,%) cannot be computed from the residuals Z1(0), ..., Z,(0), but the following alternative
quantities can.

4.2 Pseudo-Mahalanobis signs and ranks.

The pseudo-Mahalanobis signs are defined as W(0) = W§") 0) = 271/2Zt(0)/HZA)71/2Zt(0)H,

where ¥ is the estimator in Assumptions (D1)-(D2). Similarly, the pseudo-Mahalanobis ranks
R/(6) := }?gn) (0) are defined as the ranks of the pseudo-Mahalanobis distances d;(8,%) =

~—1/2 ~
1= / Z:(0)||. The terminology Mahalanobis signs and ranks will be used when X is the empir-
ical covariance matrix.

4.3 Hyperplane-based signs and ranks.

Pseudo-Mahalanobis signs and ranks are based on an estimation of the underlying shape ma-
trix. A completely different approach can be based on counts of hyperplanes, and leads to a
modification of Randles’ s interdirections (namely, the absolute interdirections) for multivariate
signs, and to Oja and Paindaveine (2002)’s concept of lift interdirection ranks for multivariate
ranks.

Write Q := {iy,i9,...,ik-1} (1 < i3 < iy < ... < i1 < n)and P = {j1,72,---,Jk}
(1 <j1 < jo<...<jr<n)for arbitrary ordered sets of indices with sizes (k — 1) and k,
respectively. Denote by eg and (dop,d’)" the vectors whose components are the cofactors of
the last column in the arrays

1 1 1 1
(Zi, ), -, 2,1 (8),2) and (zﬁ(m Z;,0) ... Z;(6) )

respectively. The vector eg (resp. dp) is orthogonal to the hyperplane II(Q) spanned by
Z;,0),...,Z;, _,(0) (resp. the hyperplane II(P) going through Z; (@),...,Z;, (f)), and the sign
of ez (resp. of dop + dpz) indicates on which side of II(Q) (resp. of II(P)) the point z lies.
The absolute interdirection associated with residual Z;(0) in the n-tuple (Z1(9),...,Z,(0))
is defined as
Vi(6) = V" (8) := (cos(npi}} (8)). ... cos(mp[}6)))’
~1/2

with pgj? ) := (") (=

angular distance

el(k), Z;(0)), where c¢(v,w) denotes the hyperplane-based empirical

1
c(v,w) = 3 > {1 —sign(elyv) sign(egw)}.
Q
Note that the statistics qu) (6) := c(Z;(0),Z;(8)) are the so-called Randles’ interdirections
(Randles 1989); qu) is—up to a small-sample correction—the number of hyperplanes in R*
passing through the origin and (k — 1) out of the (n —2) points Z(0),...,Z;—1(0),Z;+1(0), ...,
Z; 10),Z;:1(0),...,Z,(0) that separate Z;(6) and Z;(0).

11



A hyperplane-based empirical distance between a vector v and the origin in R* can be defined
as
1 —sign(dgp 4+ dpv) sign(dop — dpv)
1) — P P
(V) Z 2 ’

P
i.e., as the number of hyperplanes in R¥ passing through k out of the n points Z1 (@), ..., Z,(8)
that are separating v and its reflection —v. For symmetry reasons, we rather consider the
symmetrized distances

1) (v) = Z Z 1 — sign(dop(s) + d'p(S)/;/) sign(dop(s) — d'p(S)/V)7
P s

where, for P = (j1,...,j%) and s € {—1,1}*, (dgp(s),dp(s)’)’ stands for the vector of cofactors
associated with the last column in the array

1 1 1 1
81Zj1(0) 52Zj2(0) SkZ]k(O) z

(see Oja and Paindaveine 2002). The lift interdirection ranks are the ranks R; := Ez(n) of the
symmetrized lift-interdirections Lgn) =1"(Z;0)),i=1,...,n.

4.4 Serial and nonserial signed rank statistics.

The nonparametric (signed rank) J-score versions of the serial and nonserial statistics (7) and
(8) are, in the serial case,

~ ~

@) =5 2 (S g (B0 (PO woeywl o) | £ )
i5J Z n

n—+1

and, in the nonserial case,

n 1 a’-1/2 n E 0 nY r(n
ADO) =(m-i)tE T Y Jo(#ﬂ) W, (6) x™ K™, (18)
t=i+1
where the score functions Jy, (¢ = 0,1,2) are as in Assumption (C). Here we used pseudo-

Mahalanobis signs and ranks. But every combination of a concept of multivariate signs (either
Mahalanobis signs, pseudo-Mahalanobis signs, or absolute interdirections) with a concept of
multivariate ranks (Mahalanobis, pseudo-Mahalanobis, or lift-interdirection ranks) may be con-
sidered and actually yields the same asymptotic representation results, as shown by the following
proposition (see Hallin and Paindaveine (2002f) for a proof). Note however that their equivari-
ance properties may be different (see the next subsection).

Proposition 2 Assume that Assumptions (A1), (A2), (B1), (C), and (D1) hold. Then, letting

n-—1

T\ )5 (6) = z’l/?(# S 1 (Fulda(0.E)) a(Felde-o(6, ) Utw,z)U;i(e,z)) 172
t=i+1

(19)

and

Az s(8) = (n— )7 SV ST o(Fldi(6.£))) U6, E)x K™, (20)
t=i+1

12



(i) vec (A")(8)— R\ 1(8)) and vec (L) (8)~T\) . ;(6)) are op(n~2) for alli, asn — oo,

and
(ii) the same result still holds if in IN\EZ) @) and EEZ) (0) the pseudo-Mahalanobis signs W ()

are replaced by the corresponding absolute interdirections, and/or the pseudo-Mahalanobis
ranks R(0) are replaced by the lift-interdirection ranks Rt(e).

Let Dp(J; f) := Jy J(u) F Y (u) du and Cy(J; f) == [3 J 90foF Y(u) du, where J denotes
some score function defined over ]O 1[. When J is a density over R{ rather than a score function,
we write D (f1, f2) and Cx(f1, f2) for Dy(F;;Y; f2) and Ck(Jle;fg) respectively; for simplicity,
we also write Ck(f) and Dy(f) instead of Ci(f, f) and Dy(f, f). The asymptotic behaviour of
the nonparametric statistics (17) and (18) trivially results from Proposition 2 and the following
lemma (see Hallin and Paindaveine 2002f).

Lemma 1 For all integers 1, the vector

(n2 (vee Ay 10)) . (n — L+ )Y2 (vec &)y 1 8))',

~(n) / s ~(n) /
(n—1)2 (vecT 5 ;(0))', .., (n = D)V/2 (vec T 15, 1(6))')

is asymptotically normal under H™ (0,%, f) and under H™ (0 + v(n)T, X, f), with mean 0 and
mean

!

( L C(Jo; £)(Tim © ) limy oo (K1 ® 1) LYY (veen) )
B Cu(1; ) Di(o; ) [ © (B @ 571 Q) Py My ((vec)', (vecd) )
respectively, and covariance matrix
( +EBU) (K o™ 0 )
0 = EJRU)EJZU)] e (Eor ™)
Letting h; = h;(0) := H;(0) — X" H,_;(0)A;(8), j = 0,1,2,..., note that
2o (K'R; K)®hy

lim (K @ 1) Ly = 20 (K'Ry;_; K) @ b

Y20 (K Ryy_;_1 K) ®hy
Also, defining

and



one can easily check that
ay(7;0) + by (7;0)

vec d

) (3
aj(1;0) + bj(7;0)

This allows for a direct comparison between Lemma 1 and the corresponding univariate result
(Proposition 4.3 in Hallin and Puri 1994).

4.5 Equivariance/invariance properties.

In this section, we use hats to indicate that all parameters involved are estimated. Consider
the original sample (Y71,...,Y,) and the transformed sample (MY1,...,MY,), where M is a
full-rank k& x k matrix, and denote by T'(M) (resp. T') the value of a statistic " computed from
the transformed (resp. original) sample. Assumption (E2) ensures that the residual sample of
the Z;(M) = Z(8(M))’s is affine-equivariant, meaning that

(Z1(M),...,Z,(M)) = (MZ1,...,MZ,).

o~

2
Under Assumption (D2), £ / enjoys the equivariance property

~—1/2 /

S ) = a 1208 M, (21)

for some k x k orthogonal matrix O (recall that XA)(M) and ¥ are computed from the residual sam-
ples (Z1(M),...,Z,(M)) and (Z1,...,Z,), respectively). The affine-invariance/equivariance
properties of pseudo-Mahalanobis signs and ranks easily follow. More precisely, denoting by
W, (M) and R,(M) the pseudo-Mahalanobis signs and ranks computed from the transformed
residuals (Z;(M), ..., Z,(M)), we have

Wt(M) — OWt, Et(M) — Et,

where O is the orthogonal matrix in (21).
As for hyperplane-based signs and ranks, absolute interdirections are only asymptotically
affine-equivariant, i.e., under H(™(6,%, f),

V(M) = OV, +o0p(1), asn — oo, (22)

still with the orthogonal matrix O in (21). Lift-interdirection ranks R, := Et(é) are strictly
affine-invariant (see Oja and Paindaveine 2002).

This entails, for the nonparametric statistics ./:\(n) and ]2 =)
i5J i5J

, the following equivariance prop-

erties.

Lemma 2 Assume that Assumptions (D2) and (E2) hold. Denote by A(n) (M) and I:‘(n)(M)

i5J i5J
the statistics ./:\(n) and I:‘(n) computed from the n-tuple (MY q,...,MY,,), where M is a k X k
i5J i5J
full-rank matriz. Then,
AV =a MR ana 2 = My
i;J i5J i J i J
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the same result still holds if in A(n) and I:‘(n) the pseudo-Mahalanobis ranks ﬁt(é) are replaced
i5J i5J
by the lift-interdirection ranks R,(6).

Proof. The result directly follows from the equivariance properties of pseudo-Mahalanobis signs
and ranks. ]

If the pseudo-Mahalanobis signs W(0) in A(n) and T e are replaced by the corresponding
i;J i5J
absolute interdirections (in combination with any type of ranks), then it is clear from (22) that
f\(n) & (n)
A" and T
i i
test statistics will accordingly be only asymptotically affine-invariant (see Section 5 and the

can only be asymptotically affine-equivariant. The resulting hyperplane-based

proof of Proposition 3).

5 Aligned rank tests.

5.1 The proposed rank-based procedures.

Let n!/? I‘Sn) (@) be given by

2T ) (9) Ly s\"0) Ly (n'2(vec AS)8)) ..., (vec AT 1(8))')
n2T00,0) |\ QY 81,0 )T\ QP (= 1)V2 (vee T)@)),. -, (vee T, (60)))
and define

Wy = L (K o5 and 30 = Q) 116 (Ben )| Qff
Denote by Mp the full-rank k27 x k2 (po + qo) matrix resulting from My by deleting columns
k*po+1,....k%*p1 and k%(p1+qo) +1,...,k%(p1 + q1) Similarly, let Y77 be the k?(po+qo) X 711

array resultlng from Y77 by deleting hnes k:2 po+1,...,k?py and k2(p1 +qo) +1,...,k%(p1 +q1).
Note that Mg Y ;s = Mp Y ;. Finally, let

o k ) o N _
Q(I;};E(e) = 2 U)] [(Jg7g,2) T— (K( ) ® Ik) ! ’rI
, , n . -1 _ ’_
() 0 1)~ (00 0107 1) 0 (0 ey,

and, denoting by A~ an arbitrary generalized inverse of A,

K 30

E[JF(U)EL3(0) [( trox)” ~ PoMoX1s

Qfl5(0) =

(40305 Py PN T ) T, P;] |
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Then the J-score version of the proposed test statistics is
n n)/n / Q . A(é) 0 n)/n n n
W (100) ( rs® 0 ) ey —owt) i,

6 )6 +n (T0,6) Q) 6 T,6)

11;J;%

where £ denotes the shape matrix estimator in Assumptions (D1)-(D2). The version allowing for
local asymptotic optimality at radial density f, is associated with the scores Jy = J1 1= @y, oF *_kl
and Jp := F *_k,l. The corresponding statistics will be denoted by WJ(CZL)

Finally, in order to describe the asymptotic behaviour of Wgn) under local alternatives, define

/

res(n) == (VeC ﬂl) [JI;O,E —Jox (KT'DRI,) Y,
’ ’ -1 _ ’ ’
(’I‘I (KilD & Ik) J[;gz (KﬁlD & Ik) T[) TI (KilD & Ik) J[#E] (VeC’I’] )

and

/

) [No,z —Noxs i1 (TIHNo,z: Trr)~ T}zNo,z} < vee ) ;

vecy

vecd vecd

80,2(’)’75) = (

where D is the array involved in Assumption (A1’) and Ny is defined in Proposition 1. We
can now state the main result of this paper.

Proposition 3 Assume that Assumptions (A1), (A2), (B!'), (B2), (B3), (C), (D1), (D2),
(E1), and (E2) hold. Consider the sequence of aligned rank tests ¢Sn) (resp. qbge?:)) that re-
ject the null hypothesis Hﬁr” ) (0p) whenever WL(]n) (resp. W}f) ) exceeds the a-upper quantile

szJrkgmirvlia of a chi-square distribution with km + kg — r degrees of freedom. Then,

(i) WL(]n) is strictly affine-invariant (only asymptotically, if absolute interdirections are used as
multivariate signs), and asymptotically invariant with respect to the group of continuous
monotone radial transformations;

(i1) W&n) is asymptotically chi-square with km + k?mg — r degrees of freedom under HEI’?) C))
so that qﬁ(n) has asymptotic level a);
J

(iii) Wgn) is asymptotically noncentral chi-square, still with km + k?mo — r degrees of freedom
and noncentrality parameter

1 Ci(Jo; f)
k E[JG(U)]

roz(M) + 75

1 Cl(Jy; f) D3 Jas f)
k2 E[J?(U) )

under H™ @+v(n)1,Z, f), 0—0¢ € M(Y) and T ¢ M(Y), provided that (A1) is reinforced
into (A1');
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(iv) for any f, satisfying Assumptions (B1'), (B2), (B3) and (C'), the sequence of tests by,

is locally asymptotically most stringent for H&T‘)(eo) against Ugg,+ m(r) Us H™(O,2, f.),
at probability level .

To prove this proposition, we will need the following asymptotic linearity result, which
straightforwardly follows from the asymptotic linearity result proved in Hallin and Paindav-
eine (2002f); see the Appendix for a proof.

Lemma 3 Assume that Assumptions (A1), (A2), (B!'), (B2), (B3), (C), (D1), and (E1) hold.
Then

W2(T)8) — T)6)) + = Cilos ) Iros (KW T nl/2@)" —6y)
and

+3 Dk(JQ, [ Cr(J1: f) I 1165 Po My nl/z(égrzl) —0rr)

are op(1) as n — oo, under H™ (9, %, f).

Proof of Proposition 3. (i) We first prove that Wgn) is affine-invariant. Note that it is clear
that the scalar factor d~/2 in the equivariance relation (21) has no influence on the affine-

invariance of Wgn); consequently, we will assume, without loss of generality, that d = 1. With

this notation of Section 4.5, Lemma 2 yields S(n)(M) = gl(\r/?,ﬁ’? ) S(n). From Assumption (E2),
I;J )
Lén) (M) = gl(\’;[fm’o)Lgn) g(mLOl). Consequently, T jnj(M) = 1(\7;0)1 (nj Analogously, SEI)J(M) =
g0 V8 " Q) = IR ™), and therefore, T (M) = g0 2™ . This
11,7 11 11
implies that T(n)(M) = gl(\T o) I‘(n).
J J
(n) _ (m 0) y(n) _(m,0) (n) _ (0,m0) 1(n) (0 70)
For the variances, JIGE(M) = Gy 1J1029M / and JHGE(M) = Iyr- 1JH¢92 M-1 -

Since, moreover, P,(M) = gl(\(/]IWO)Pé gl(\(/)[f?) and My(M) = gl(\(/)IWO)M‘9 gl(\(/]l’pllJrql), standard algebra
shows that W(n)( M) =n (Isn) (9))/\P/A\Ill‘f]n) (6), where

. ( FELB@)] @707 0 )1/2
0 BN EIRW)] (30, )7
and
J§"0)2 0 Y2 (K(") ® Ik)*1 0 (m,p1+q1)
A= Lipgr2n, — 11 ( 0 J(n)A ) ) ( 0 P@Mé ) IM-1 T
11,60,

Now, recall that we restricted ourselves to affine-invariant null hypotheses, i.e., to couples
(6o, T) for which g( ’p1+q1)(00 + M(Y)) =0y + M(Y) for any full-rank matrix M. This implies
that M(g ﬁ?’pﬁql) T) = M(T) for all such M (see the proof of Proposition 2 in Hallin and

(n)

Paindaveine 2002c). The affine-invariance of W;" follows.
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The asymptotic representation result of Proposition 2 will be sufficient (see the proof of (ii),
(iii) below) to prove that all versions of W‘(]n) (based on any type of signs and ranks) have the
same asymptotic representation, and thus are asymptotically equivalent; the asymptotic affine-

invariance of the absolute-interdirection-based version of Wgn) follows since we showed above

(n)

that the pseudo-Mahalanobis version of Wj " is strictly affine-invariant.

Let us now prove that Wgn) is asymptotically invariant with respect to the group of contin-

uous monotone radial transformations. Let n'/ QT‘ST% (@) be given by

n(n n)’ ~(n) / ~(n) N
( "1/2T(§;53;>:(0) ) _ ( Ly (n'/2(vec A 158)) ... (vec A,y 5(8))) )
nl/2im ) ’

() QY (n = 1)12 (vec T\ 5(8)) . ..., (vec T 5:(8))')
where ( )
~(n) a1l s12 b R.(0,X () 3¢(n)
Ays®) =(@n—-i)'s t:zzﬂ‘“( ) Ui0.2) % K,
and
n n)
~(n) s —1/2 1 Rt (0,2) Rt,i(H,E) r "1/2
Tiyx) =% (—n_it:zi;lJl(TH )5 (FE) Uie.2) Up6.8) | 5772

Proceeding as in the proof of Proposition 2, one can verify that T Sn) 0) — 'f[v‘sn%: (8) is op(n~1/?)
under UfH(")(H,E, f). Using Lemma 3, this yields
nt/2T () = nt/?Ty(8)~

Cr(Jo; f) ( Jrexs (KM @I;)~! 0

: 200 1
]C 0 Dk(g%f) JII;G,E P0 M0 ) n ( ) + OP( )7

under H(™ (9, L, f). On the other hand, using the continuity of Q;.s:x(0) and Qq7.7.x(0) with
respect to @ and ¥, we obtain that, under UfH(”) 0.%, 1),

Wi — <n1/2gf,">(é)) < QI;J(;)z(@) QH.L‘]);E(Q) ) <n1/21§”>(é)> +op(1)

(here, and in the sequel, Q.;.5(0) (resp. Qr.7x(#)) denotes the array obtained by replacing

Jgr;g’z by Jre5 (resp. J(IT;?G,E by Jirex) in Q(I”}E(e) (resp. in Q(IT})JE(O))) Writing K for
K™ @I, and using Lemma 2.2.6 (c) in Rao and Mitra (1971),

Qrsx0@) 0 Jres K™ 0 T —
0 Qrr,2(0) 0 W Jr105 Po My

< (K —K 1T (Y K I KAY) I K 1 I s K1) )
crr(

/ / / / / / - 07
PoMp Y1 —PoMg X1 (X;;MyPyJ 105 PoMg X 11) ™Y MpPyJ 105 PoMgYrr)

for some constants ¢y, ¢yy. This and the constraints on 6 jointly entail that, under U fH(") 0,.%, 1),
with 8 — 0y € M(T),

" ~ (n " Qr.1.5(0 A(n
WS .= (nl/QTf];g(e)) ( QLJ()E( ) Qll-gz(e) ) (nl/QTf];g(G)) +op(1),
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which proves that W&n) is indeed asymptotically invariant with respect to the group gé"), since
nt/ 21‘5;% (0) is strictly invariant with respect to that group.
(ii), (iii) Part (i) of the Proposition, and the continuity of Qr.;x(0) and Qys.;.x(8) with

respect to # and ¥ again, imply that Wgn) has the same asymptotic behaviour as

n(T)9) Qr.r50) @) +n(T;,0) Qrrsx®) T, 6) (23)

(under H™ (0, %, f), 8 — 0y € M(T) as under the sequence of local alternatives H (™ (@ +
v(n)T,%, f), with 8 — 8y € M(Y), 7 ¢ M(Y)). On the other hand, Proposition 2 implies
that (23) behaves as

n (T0).50)) Qrys@ T().5 0) +n (T))5 ;60) Qurys@) TV,5 6),  (24)

where we let n1/2'f‘§?};27f(0) = Lén)l(nl/2 (vecxé?};z’f(a))/,...,(Vecxi@hJ;g,f(e))/)/ and

~(n n) ~(n) / =(n) N/
nV2T) o 1 (0) = Qg (n—1)V2 (vee T 15 56)) ..., (vec T,y s £(6))).

Now, n!/ Q’fg?};& (0) is asymptotically km-normal, with mean 0 under H™(O,%, f) (with
0—0y € M(T)), mean (Ci(Jo; f)/k) I .65 (vec n') under the sequence of local alternatives under
consideration, and variance (E[JZ(U)]/k) J 1.9 5 under both. Since (E[J3(U)]/k) J};/BQ,E Q. x0) J};/GQ,E
is a symmetric idempotent matrix with rank km — ry, this implies that the first term in (24) is
asymptotically chi-square with km — r; degrees of freedom under H'(;L ) (6p), and asymptotically
noncentral chi-square, still with km — r; degrees of freedom but with noncentrality parameter
(C2(Jo; )/ (K B[JZ(U)])) 7o 5(n) under H™ (6 +v(n)T, %, f) with -0y € M(T), and T ¢ M(T).
For the serial part in (24), n'/ 2’1’%? IS, f(0) is asymptotically k2mp-normal, with mean 0 under
H™(@,%, f), 8 — 0y € M(T), mean
1

12 Di(J23 £) (13 £) Irro.5 Po Mo < e )

vecd

under the sequence of alternatives under consideration, and variance (E[JZ(U)|E[J3(U)]/k*) I 105

under both. The result follows from the fact that (E[JZ(U)|E[J2(U)]/k?) J%,Qo s Qrr.y5(0) J%,Zo 5

is a symmetric idempotent matrix with rank
tr (T2, — I 7179 5PoMo Y11 (X7 MgPI 1195 PoMy Y 11) Y1 MgPyJ 15 )
= Kk*mo — tr (Y7, MpPpJ1705PoMg Y 11) (X MpPJ 1105 PoMg Y1) ")
= k’mo — rank(Y}; MgPyJ 10 5PsMp T 17)
= k?mg — rank(My Y 17) = k*mg — min(k%(po + qo), r11) = k*mo — 711,
since Mg Y7 = My Y, is the product of two full rank matrices.

(iv) Applied to the current problem, Hallin and Puri (1994)’s general Lemma 5.12 shows
that the test le }* that rejects the null hypothesis whenever

AL (0)I T, (0)Y(X'Txy, (0)Y) YTx ;, (0)Tx,.(0)) Tr.r.(0)
(I-Ts;,(0)Y (YT, (0)Y) Y'Tx s, (0)Tx. s, (0) ) ALY () > X2, .
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Where s = rank(T's 4, (9)) — rank(T/I‘g, 7,(0)Y), is locally and asymptotically most stringent
for H (00,2 fi) against Uge,4 (1) Us H™(0,%, f,), at asymptotic probability level a.. Of
course, the same optimality property holds for the asymptotically equivalent (under ’H'(;L )(00, 2 f),

and under contiguous alternatives) test QEZI) that rejects the null hypothesis whenever

w® = AW G-t @t @)@ @ @) ) @V @) (2)

(1) r(n) (n)

a-t @t o) @)@ 9)) AP0 > 2.,

where

I,, O .
é&”)w) a2 (0 ) TY0),

with Jy = J1 := gpf*oF e and Jo = *k , and

1 (n)
T T £ IV 0
() kok S g s
r (0) = ( " =TIy (0) +0p(1)
f* Mk‘l’l;l*zk,l* \/l ( ) D/l ’f*
0 k2 pk—1.5, 9P9JH¢92P9 0

under H™(8,%, ).
If we can assume that wyj) = W(T), then, by (), we have s = km-+k?my—r, so that QSJZ) and
(bgff) actually coincide. The result then follows from the invariance properties of qﬁgfj). In order to

complete the proof, it is thus sufficient to show that indeed ﬁgﬁ:) = WJ(CZL) The block-diagonal
n)

structure of the quadratic form in the definition of W( allows for a decomposition of the form

Wgn}* + ng)f , where Wg} (resp. ng)f*) deals with the trend part (resp. the serial part).
(n)

While routine algebra yields Wj. fo = W}n} , the situation for the serial part is more intricate,

mainly due to the presence of generalized inverses. Write P, M, Jir, and N for Py M, J (IT;) b5

and M 6'P 0.] (17;) 7 z:PGM respectively. Standard calculation yields

n nk? . p o « N — o .
wiy, =L () gy p {N {I—NTH (T NYT) T NN ]}M P'T V0,
Pkt 15£. L £,

that is, in view of Lemma 2.2.6 (c) in Rao and Mitra (1971),

wi, = K g, T6) {PMN_M P - PMY (Y NYT,) Ty M P] T (6).
T kg T g

This implies that W%)f = W}T;,)f*, since MTH = MTII, and since, from Lemma 2.2.5 (c¢) in

Rao and Mitra (1971), PM (M'P'J;; PM)~ M'P’ = J;!. Consequently, wyj) = WJ(CZL) O
Note that, for given values of pg and ¢9, T f,n) (9), Mé, Y7, and 7 depend on p; and ¢; only

through 7 = max(p; —po, q1 — o). Consequently, ¢f,n) also depends on p; and ¢; through 7 only.

We conclude this section by stressing the fact that the value of the test statistic W‘(]n) does not

depend on the particular choice of the fundamental system ¥ := {\Ilgl) @),... ,\If§p°+q°) (6)} in P,
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and Q(n) Of course, only the serial part W}?) 7 possibly may depend on the fundamental system.

Now, for any fundamental system ® = = {®,; U(G),...,‘D? °+q°)(9)}, there exists an invertible

matrix A such that Q,. b = Qo 4 A (see the proof of Proposition 4(i) in Hallin and Paindaveine

(n) ™ g ™ (n)
(2002d)). It easily follows that T11J<I>(0) = A THJ\It(o)’ JH;é,i);cb = A JHGE\I/A and

Po,é =A"! Pé;é. Consequently, we obtain that Wﬁ:)@ = Wg)\y

5.2 The Gaussian procedure.

Define
Tike =Ty (Knw (S")7) Lg" and Iy = Qyf [n 1 @Ty ]Q

where Sg QSIS Y- ! Z:(8)Z,(0) is a consistent estimator, under H (™ (@,%, f), of the innova-
tion covariance (E[(F} *(U))?]/k)E, and

B 1) zn; vee (Z,(0)Z; ,(6)) (vec (2:0)Z; 1))
=
is consistent for (E[(F, 1(U))?]/k)?E @ ™! under the same sequence of hypotheses. Let
QY (0) = (Jgtl/)\/;o)fl — (K™ 1,7 T,
(17 (K™ @ 1) 1 3 (KW @ 1) ! T,)*l T (K™ o1;) 1,
and
Qi\(0) = (J%)N o) —PoMy T (T/H M P;J%N;o PyM, TH) : T,, M, Py

Then the Gaussian parametric test statistic is

W s (T04,0)) QIO TS0+ (Tfis,0)) QUL T ,6).

where T§"§¢(e) and Ty}?s@(e) are defined in (13) and (14) respectively, S := Sén), and ¢(r) :=

exp(—r2/2) stands for the Gaussian radial density. Note that Tgn% 5(0) and T?}?S 5(0) are based
on Gaussian statistics of the form

Z Z,(0 >) and Ty ,(8)= (Sy"”)" (

t=i+1

ALY ,0)= (5§") ( > 70 )

t=i+1
(26)

n—1 n—1

respectively.

Proposition 4 Assume that Assumptions (A1), (A2), (B!'), (B2), (B3), (E1) and (E2) hold.

Consider the sequence of parametric Gaussian tests ¢(Nn) that reject the null hypothesis HEI@ C))

(n)

whenever Wy, exceeds the a-upper quantile X2m+k2 of a chi-square distribution with

To—r,1l—a

km + k*>mg — r degrees of freedom. Then,
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(i) W/(\T/L) is strictly affine-invariant;

(i1) W/((;) is asymptotically chi-square with km + k?mg — r degrees of freedom under ngn) (6o)
so that gi)(n) has asymptotic level a);
N

(iii) W/(\?) is asymptotically noncentral chi-square, still with km + k?mo — r degrees of freedom
but with noncentrality parameter

k
m r9.x(M) + se.x(7v,0),

under H™ (0+v(n)1,%, f), -0y € M(Y) and T ¢ M(Y), provided that (A1) is reinforced
into (A1');

w) The sequence of tests ¢(n) 1s locally asymptotically most stringent for H 0o) against
(iv) q N y asymp y g Y 9
Us-60+m(1) Us H™(B,%,¢), at probability level c.

Again, the tests statistics W/(\?) do not depend on the particular choice of the fundamental
system {\Il,gl) @),... ,\Ilgp o+do) (6)}, and, for given values of pg and qo, depend on p; and ¢; through

m = max(p1 — Po,q1 — qo) only.

The proof of Proposition 4 follows along the same lines as for Proposition 3. The key
ingredient is again an asymptotic linearity result, which in this parametric Gaussian context
takes the following form (the proof of Lemma 3 readily extends to this situation).

Proposition 5 Assume that Assumptions (A1), (A2), (B1'), (B2), (B3) and (D1) hold. Then

(n

n n n n — ~(n)
n'2(TVY ,(0) — TS ,(0)) + Jrox (K™ @ 1)~ n2(0;" - 0))

k-
Dy (f)
and

n A n (1)
“1/2(T§13s,¢>(9) . T§I38,¢>(0)) +J1rex Po Ms “1/2(011 —011)
are op(1) as n — oo, under H™ (9, %, f).

5.3 Asymptotic performances.

We finally turn to asymptotic relative efficiencies of the tests ¢f]n) with respect to the Gaussian

test ¢§\7). The ARE values in the following proposition directly follow as the ratios of the
noncentrality parameters in the asymptotic distributions of the various test statistics under
local alternatives (see Propositions 3 and 4).

Proposition 6 Assume that Assumptions (A1'), (A2), (B!'), (B2), (B3), (C), (D1), (D2),
(E1) and (E2) hold. Then, the asymptotic relative efficiency of qSSn) with respect to the Gaussian
test ¢§\7), under radial density f, is

k

AREy (65" /657) = (1 — Mg (7))
where Mg ¢(T) == (Dg(f)so5(7,6))/(kres(0) + Di(f) so.2(7v,90)) € [0,1].
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Denoting by ARES:}C)( Sn) / qu(Nn ) and ARE Ser)( / gb ) the AREs achieved in the pure location

and purely serial problems, respectively, we have

AREy 1 (65" /63) = (1 = Mx 5(7)) ARELY (657 /637)) + Mg, s (1) ARELS (657 /650,

This shows that the asymptotic relative efficiencies of the proposed procedures with respect
to the parametric Gaussian procedure are convex linear combinations of the corresponding
asymptotic relative efficiencies in the pure location and purely serial models (see Hallin and
Paindaveine 2002a and 2002b, respectively).

6 Examples.

6.1 A multivariate Durbin-Watson test.

The generalized Durbin-Watson testing problem corresponds to @g = 0, T = Ij,,, and Y;; := (.
Letting m = max(p1,q1), one easily checks that W( n) =0, n1/21“§’}?J(0) = sﬁ’}?ﬂﬂ(e), and

J?IL?G,E =LeEe 2_1), so that

n k‘2 -
W= Wi v Z (27)
2:1

|
3 5 (2) ) (fﬁﬂf)h(R;ff))Jz(R;;’@)W;i<B>wH<B> W.(B)W. ()
st=it1

(If there is no trend part in the model, the test statistic (27) is the purely pseudo-Mahalanobis
version of the test statistic based on pseudo-Mahalanobis ranks and interdirections proposed in
Hallin and Paindaveine (2002b) in the problem of testing for serial randomness). The resulting
Durbin-Watson test consists (at level «) in rejecting the null hypothesis of independent noise
as soon as Wgn) exceeds the a-upper quantile of a chi-square distribution with k27 degrees of
freedom. One could also obtain purely hyperplane-based Durbin-Watson tests (that are strictly
affine-invariant in this Case) by replacing the pseudo-Mahalanobis ranks R, (ﬁ) and the pseudo-

Mahalanobis angles W (ﬂ)wt (,3) by lift-interdirection ranks Et(ﬂ) and Randles’ interdirections
qst(B), respectively.

6.2 Testing the order of a VAR model.

For the problem of testing AR(po) dependence against AR(po + 1) dependence, the proposed
tests consist (at level «) in rejecting the null hypothesis as soon as

W(n) W§I)J =n (T?} J(é)) Q(n ( )T ~H J(é) (28)

ILJE
exceeds the a-upper quantile of a chi-square distribution with k2 degrees of freedom, where, let-

ting v () := (v{"(0),....vi (8)) and v{"(6) := T ) (n — 1)V/2Gy(8) (vec T 1) (8)),

t=max(%,2)

ni2T ) (9) =

(n — 12 (vec T$")(8))
v(™) (0) ’
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and

o" 0 % el 0\ (L. 0 w (L oY

12020) = SO 0w Lizpy Ly ) |
Above, w? and W2 stand for the k?pg x k?pg arrays with block Zt max(i,j.2) G;i(0)2G;_;(0)®
! and Zt:max(”) Gt_Z(G)EG’_](O) ® 271 respectively, in position (4,7) (i,5 = 1,...,po)-
Note that W2 = w? + egpo)egpo)/ ® (2 ® X71) only differ from w? through the block in posi-
tion (1,1).

The test statistic (28) has the same algebraic structure than in the univariate case (see
Hallin and Puri (1994), or Garel and Hallin (1999)). However, it should be pointed out that

the test statistic associated with the problem of testing MA(go) dependence versus MA (g + 1)
dependence is much more complex than in the univariate case. This is due to the presence of

the factors H( )1 and B 1 in Q which cancel each other in the univariate case only. In the

multivariate case, they do not, yielding in n/ 2'1‘%) ;(@) quite intricate linear combinations of

the cross-covariance matrices Egnj) 9).

6.3 Detecting switching location regimes.

We finally consider the problem of detecting the presence of different “location regimes” in a
VAR(1) series with a time-dependent trend (with mean B; in C; := {t +1,. En)}) More
precisely, the null hypothesis Hyp : 8, = ... = B,, we are considering here is associated with

T, =(1,...,1) ®I;, T;r = L;2. Letting A0 = ()72, (A 12) with A =y /n,

the test statistic is

where

1
LY a (2O w0
W = o [ a2 | 2 M |

and

Q})6) == L, — A" @ 27!+ A’ElA]J] .

k [(
E[J5(U)]

If there is no serial part in the model (i.e., when the errors are independent white noise), the
problem reduces to the m-sample location problem (classical MANOVA), and the test statistic
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takes the form (just put A = 0)

Wy = E[JOQ%[Z ) Jo( )) (Riiﬂl))wé(ﬁ)wz(ﬁ)

j=1 jzzEC’

m

S ()0 (B w prwis)
7,7=1 1 i5eC;

i.e., a purely pseudo-Mahalanobis version of Randles and Um (1998)’s test statistic. Again a
(n)

strictly affine-invariant purely hyperplane-based version of W}~ can be obtained in the same
way as for the Durbin-Watson tests, just by plugging in lift-interdirection ranks and Randles’
interdirections.

7 Appendix: proof of Lemma 3.

The proof of Lemma 3 is based on the following asymptotic linearity result for the individual
nonserial and serial statistics AZ(Z) and EZ(Z) (see Hallin and Paindaveine 2002f).

Proposition 7 Assume that Assumptions (A1), (A2), (B1'), (B2), (B3), (C), and (D1) hold.
Then

n n 1
(n— i)'/ vee (A )0 +v(m)r™) = AL(0)) + + CilJo: f)

(i (K'R;_; K) ®h) (veen™) =op(1),  (29)
§=0
and

(n =)/ vee (L0 + v(n)r™) ~ TU)0)) + 25 Dul: f) il f)

(E2T™) [a(r™:0) + bi(r:0)] =op(1),  (30)
as n — oo, under H™ (0,2, f).
Proof of Lemma 3. Let us first prove the first statement in Lemma 3. Clearly,
n'2(T @)~ TV @) = LY's\@) -1V s6)
= S (n— )2 [(Im & b)) vee AT)(B) — (I, @ b)) vec A (9)]

Now, for some fixed integer s (and n > s+ 1),
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W) 0) ~ T0) = X (- 07| (Lo o (B~ ) vee AL @) (31)
3 [ n) (-0 a6 - A06))]
+ 5 (=) [(Im®fl)vecA D@) — (L, ®h)vecA§J)(0)}
i=s+1
Next, the local discreteness of 8" (see Assumption (D1)(iif)) allows to replace 8™ = 8+v(n)r®
with 8™ in (20) (see Kreiss 1987, Lemma 4.4). Since 8 = 8 + n~1/2K™y® can be written

’

under the form n'/2vec (3™ — ') = (K™ @ I,)(vecn™"), this yields
n)  p\n n 1
(0= )2 vec (A0)6") = AL6)) = 1 Culi ) (32
LD (Z (K Ry K)@ hj) (K" @ L) e 20" - 0,) + R(".
j=0
where RE") is op(1) as n — oo, under H(™ (8, L, f). Substituting in (31), we obtain

S

n2(T0) — T7)0) = (n—i)'/? [(Im ® (b —h;)") vec A(l) (é)]
——Ck(Jo;f)i (L, @bz (i (K Ry_; K) ®h) (K™ @ 1,) 1020 —01)]
=0 =0

£ Y (n— i) [(Im®fl Jvec AL)(@) — (I, @ ) vee AL") } +ZR(”
Finally, this yields the decomposition

n A n 1
n'2(T50) — T15(0) + 7 Culos f)

x[ S (I, ® b)) ((K’ R‘i,ﬂK)@)E_l) (1m®hj)](K<">®1) 1120\ g

i,j=0
= T+ T
where s
Tgn,s) — (n _ i)1/2 |:(Im ® (flz — hi)/) vec AZ( J } ZR(n
i=0
and
n—1 . ~
Tgn’s) — Z (n— i)1/2 {(Im ® h. ;) vec A (0) (L ® h; ;) vec AE (0)] +
1=s+1
1 > / 9,
F Ol f) 30 |Im@ b2 (Z (K Ry K) ®h> (K™ & 1) nl20)" - 0y).
1=s+1 =0
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Since 3>75—o (I @h,) ((KI R K)® 2_1) (I, ®h;) = Jrgx, the first statement in Lemma 3
takes the form

n!/2(T$0) — TV)0) + - - L (i f)

[ S (I, @ k) (K Ry K) ©57) (L, @ hy) | (K™ @ 1) 'n'/2(8;"
i,5=0

—0;) =o0p(1)

as n — oo under H(™(,%, f). Now, it follows, from the continuity of @ — h;(f) and the
boundedness (in probability, under H(™ (8, E, f); see (32)) of (n— i)/ ?vec AEZ) (), that Tgn’s) is

op(1) under H(™ (,%, f), for any fixed s, as n — o0o. On the other hand, the exponential decrease

in i of the h;’s and the root-n consistency of @ imply that Tg"’s) is op(1) under H™ (8, %, f), a

s — 00, uniformly in n.
Now, P [|T{"" + 1§ > 5| < P[|T{"|| > 6/2] + P |[|TL"| > §/2| , for all s and n.

For any € > 0, one can always choose s = S sufficiently large so that P [HT%”S)H > 5/2} <e€

uniformly in n. Since Tgn’s) is op(1) as n — oo, it is possible to find a integer N = N(e) such
that P [HT&"’S)H > 5/2} < ¢ for all n > N. Consequently, for all ¢ > 0, N = N(e) is such that

P ceizi@) - e + § s

k
[ i (L © ) (K Ry K) ©£7") (I, © b)) [ (K™ & 1) 020V - 6, > 51 < 2%
4,j=0

for all n > N. The result follows.

The proof of the serial part of Lemma 3 is quite similar. Denoting by Q;; = ng) (resp.

Qij = Q") the k? x k2 block in position (i,§) (i = 1,...,n— 1, j = 1,...,m0) in QY (vesp.
in Qén)), we have

n2(T ), 0) - TV,0) = QlV s\, 6) - Qi s\, 6)

Qs o Q
S -0 ¢ |ver®@-| i |veer®e
=1 oy ;

Qi,ﬂo Qi,wo
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The same decomposition as for the trend part then yields, for some fixed integer s (and still for
n>s+1),

) !

s Qiq Qs
nATEL0) - TR,0) =X (=) | 1 | || veeD[50)  (33)
= Q;,ﬂ'o Qi,ﬂ'o
Q:,
Y : ((n —i)V2vec (D) (@) - T (e)))
=1 ,
Qi,ﬂ'o
n—1 Q;,l . Q;,l
+ 3 (-2 : vec L") (8) — : vec L") (8)
e Qi ro Qi o
Again, the local discreteness of é(n) and (30) yield
(n— )1/ vec <~ @) -t (o)) (34)

_% Dy(o; f) Ci(J1; £) (B @ B7) [ai(n'/2(6 — 6);60) + bi(n'/2(0 — 6);:0)] + R{",

1 p n
2 Dy(Jo; f) Cr(J1; £) (E@ 27 (Qia - Qiimg) Po Mg /2811 — 011) +R§ ),

where RZ(-n) is op(1) (as n — oo, under H(™(6,%, f)), so that (33) becomes

] Q;. Q;,
ECORE SRS SR I N R | T
- Q;JTO Qi,T(()
1 s Q;,l .
_ﬁDk(JQaf) Cr(J1; f) : (E@E*l)(Qi’l...Qi,m) P9M9n1/2(0H —05)
i=1 /
Qi,ﬂ'o
n—1 Q;J A Q;,l .
+'Z (n—i)1/2 : vecl‘f}(é?)— : VecI‘iJ)(e) +ZR§n)'
i=s+1 Q;,Wo Q;,ﬂ'o =1
Noting that
s Q;,l
S | ®es) @ Q)| =t Le@en]qft,
=1 /
Qi,wo
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we finally decompose

n P n A n)
n2(TV,8) — TV, 0) + — L Do 1) 1 1) T 105 Po Man 20" — 017)

k

into Tgn’s) + Tgn’s), where

and

’ /

s Qi,l Qz 1

Tgn’s) — Z (n— i)1/2 — vec F )+ Z R )

N/ /

=1
Q’i,ﬂ'o Qi,ﬂ'O

T4 = 5 D ) Cu ) [Tires — Q5 I @ (S0 7)1 Q5] Po M

gy !

. n—1 Qi A Qi
n20)) —0m) + Y (n—i)l/? : vec L") () — : vec L") ()
i=s+1 A ’
Qi,ﬂ'() Qi,ﬂ'()

As for the trend part, the continuity in @ of the Green’s matrices, the fact that (n—i)/?vec T Z("J) @)

is Op(1) (as n — oo, under H(™ (0,2 f)), and the root-n consistency of 8, allow to show that

T(n’s) Vamshes in probability under 1™ (8, %, f), for fixed s, as n — oo, and that Tg’”) is op(1)
under H(™(6,%, ), as s — oo, uniformly in n. The result follows. O
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