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Abstract

We develop optimal rank-based procedures for testing affine-invariant linear hypotheses
on the parameters of a multivariate general linear model with elliptical VARMA errors. We
propose a class of optimal procedures that are based either on residual (pseudo-)Mahalanobis
signs and ranks, or on absolute interdirections and lift-interdirection ranks, i.e., on hyperplane-
based signs and ranks. The Mahalanobis versions of these procedures are strictly affine-
invariant, while the hyperplane-based ones are asymptotically affine-invariant. Both versions
generalize the univariate signed rank procedures proposed by Hallin and Puri (1994), and are
locally asymptotically most stringent under correctly specified radial densities. Their AREs
with respect to Gaussian procedures are shown to be convex linear combinations of the AREs
obtained in Hallin and Paindaveine (2002a, 2002b) for the pure location and purely serial
models, respectively. The resulting test statistics are provided under closed form for sev-
eral important particular cases, including generalized Durbin-Watson tests, VARMA order
identification tests, etc. The key technical result is a multivariate asymptotic linearity result
proved in Hallin and Paindaveine (2002f).

1 Introduction.

In this paper, we consider the multivariate general linear model with VARMA error terms

Y(n) = X(n) βββ + U(n), (1)

where

X(n) :=




x1,1 x1,2 . . . x1,m
...

...
...

xn,1 xn,2 . . . xn,m


 :=




x′1
...

x′n


 and βββ :=




β1,1 β1,2 . . . β1,k
...

...
...

βm,1 βm,2 . . . βm,k


 :=




βββ′1
...

βββ′m
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denote an n×m matrix of constants (the design matrix), and the m× k regression parameter,
respectively. Instead of the traditional assumption that the error term

U(n) :=




U1,1 U1,2 . . . U1,k
...

...
...

Un,1 Un,2 . . . Un,k


 :=




U′
1

...
U′

n




is white noise, we rather assume (Ut, t = 1, . . . , n) to be a finite realization (of length n) of a
solution of the multivariate linear stochastic difference equation (a VARMA(p1, q1) model)

A(L)Ut = B(L)εεεt, t ∈ Z, (2)

where, writing Ik for the k-dimensional identity matrix, A(L) := Ik −
∑p1

i=1 AiL
i and B(L) :=

Ik +
∑q1

i=1 BiL
i for some (p1 + q1)-tuple of k × k real matrices (A1, . . . ,Ap1 ,B1, . . . ,Bq1), L

stands for the lag operator, and {εεεt | t ∈ Z} is a k-dimensional white-noise process. Under this
model, the observation

Y(n) :=




Y1,1 Y1,2 . . . Y1,k
...

...
...

Yn,1 Yn,2 . . . Yn,k


 :=




Y′
1

...
Y′

n




is the realization of a k-variate VARMA process {Yt, t ∈ Z} with trend E[Yt] = βββ′xt.
Denote by

θθθ :=
(
(vecβββ′)′, (vec A1)

′, . . . , (vec Ap1)
′, (vec B1)

′, . . . , (vec Bq1)
′
)′
∈ R

K := R
km+k2(p1+q1),

the parameter of this model. We consider the problem of testing linear hypotheses about θθθ.
Writing M(ΥΥΥ) for the vector space spanned by the columns of some (full-rank) matrix ΥΥΥ, such
null hypotheses can be written as H0 : θθθ − θθθ0 ∈ M(ΥΥΥ), for some specified K-vector θθθ0 and
full-rank (K × r) matrix ΥΥΥ. Linear constraints that imply VARMA orders less than p1 and/or
q1 however require a special treatment. Therefore, we denote by p0 ≤ p1 and q0 ≤ q1 respectively
the orders, under H0, of the autoregressive and moving average operators (meaning that under
H0 all entries in rows km + k2p0 + 1, . . . , km + k2p1 and rows km + k2(p1 + q0) + 1, . . . ,K of ΥΥΥ
are zeros); p0 = p1 and q0 = q1 thus simply means that the orders of the model are not an issue.

In the sequel, we restrict to the class of linear hypotheses H0 that are invariant under
affine transformations in the following sense. For any k × k full-rank matrix M, the affine
transformation εεεt 7→ Mεεεt of the noise induces the transformation

(βββ,A1, . . . ,Ap1 ,B1, . . . ,Bq1) 7→ (βββ M′,MA1M
−1, . . . ,MAp1M

−1,MB1M
−1, . . . ,MBq1M

−1)

of the parameter. In terms of θθθ, this induced transformation is θθθ 7→ g
(m,p1+q1)
M

θθθ, where

g
(r1 ,r2)
M

:=

(
Ir1 ⊗M 0

0 Ir2 ⊗ (M′−1 ⊗M)

)
.

Letting Gr1
r2

(k) := {g(r1 ,r2)
M

,M of full-rank}, we say that the null hypothesis H0 : θθθ − θθθ0 ∈
M(ΥΥΥ) is invariant under affine transformations iff g

(m,p1+q1)
M

(θθθ0 +M(ΥΥΥ)) = θθθ0 +M(ΥΥΥ), for all

g
(m,p1+q1)
M

∈ Gm
p1+q1

(k).
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Let lk := vec Ik, Lk := lkl
′

k, and denote by Pk the k2×(k2−1) array obtained by deleting the
last column in Ik2 − Lk. Then Hallin and Paindaveine (2002c) showed that the null hypothesis
H0 : θθθ − θθθ0 ∈M(ΥΥΥ) is invariant under affine transformations iff

ΥΥΥ =

(
ΥΥΥI 0
0 ΥΥΥII

)
=

(
Z⊗ Ik 0 0

0 V ⊗Pk W ⊗ lk

)
G

and

θθθ0 =

(
0

w⊗ lk

)
+ ΥΥΥωωω,

where w and ωωω denote arbitrary vectors with dimensions p1+q1 and r, respectively, Z, V, and W
are (possibly void) full-rank matrices with dimensions m×rZ , (p1 +q1)×rV , and (p1 +q1)×rW ,
respectively, and (letting r = rI + rII , where rI := rZk and rII := rV (k2 − 1) + rW ) G is an
invertible r × r matrix. Since M(ΥΥΥ) = M(ΥΥΥG) for any such G, we may assume, without loss
of generality, that G = Ir in the sequel. In case p0 < p1 and/or q0 < q1, note that V and W
have only zeros in rows p0 + 1, . . . , p1 and rows p1 + q0 + 1, . . . , p1 + q1.

This class of affine-invariant null hypotheses covers a wide range of problems of practical
interest. In the sequel, the following particular cases will be treated in details in Section 6.

(a) The multivariate Durbin-Watson problem, which corresponds to θθθ0 = 0, ΥΥΥI = Ikm, and
ΥΥΥII = ∅, where ∅ denotes the void matrix. This allows for testing serial independence of
the error term in an unspecified linear model versus VARMA errors of orders less than or
equal to p1 and q1 (the linear model structure of the trend plays the role of the nuisance).

(b) Testing the orders of VARMA errors. In the second example, we consider the problem of
testing a VARMA(p0, q0) model versus a higher-order VARMA(p1, q1). This is obtained
by letting θθθ0 = 0, ΥΥΥI = ∅, and

ΥΥΥII =




Ip0 0p0×q0

0(p1−p0)×p0
0(p1−p0)×q0

0q0×p0 Iq0

0(q1−q0)×p0
0(q1−q0)×q0




(here again, the linear model structure of the trend plays the role of the nuisance). The
particular case where p1 − p0 = q1 − q0 = 1 plays an important role in several model
identification procedures (see, e.g., Pötscher 1983, 1985, or Garel and Hallin 1999 for the
univariate case). For the sake of notational simplicity, we restrict to p1−p0 = 1, q1 = q0 = 0
in the sequel.

(c) Testing against switching location regime. Let (t
(n)
i ), i = 1, . . . ,m− 1, be (m− 1)-tuple of

sequences such that t
(n)
0 := 0 < t

(n)
1 < . . . < t

(n)
m−1 < t

(n)
m := n for all n. Denoting by e

(m)
i

the ith vector of the canonical basis in R
m, consider the design matrix defined by

x
(n)
t = e

(m)
i , for t

(n)
i−1 < t ≤ t

(n)
i .

The resulting model is a VARMA(p1, q1) one, with time-dependent trend (more precisely,

with mean βββi between t = t
(n)
i−1 + 1 and t = t

(n)
i ). In this setup, the testing problem

associated with ΥΥΥI = (1, . . . , 1)′ ⊗ Ik, ΥΥΥII = Ik2(p1+q1) corresponds to the problem of
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testing the absence of different regimes, i.e., to the null hypothesis H0 : βββ1 = . . . = βββm.
The coefficients of the VARMA operators here are nuisance parameters. Note that if there
is no serial component in the model, then this reduces to the standard m-sample problem,
i.e., to the most standard testing problem in analysis of variance.

2 Main assumptions.

In this section we collect, for convenient reference, all assumptions we need in the sequel. These
assumptions are dealing with the design of the model, the innovation density, the score functions
to be used in test statistics, and the estimators of unspecified and nuisance parameters.

We begin with some structural conditions on the trend part of the model. The following
assumptions are standard in the context (see Garel and Hallin 1995).

Assumption (A1). Letting C
(n)
i := (n − i)−1∑n

t=i+1 x
(n)
t x

(n)′

t−i , i = 0, 1, . . . , n − 1, denote by

D(n) the diagonal matrix with elements (C
(n)
0 )11, . . . , (C

(n)
0 )mm.

(i) (C
(n)
0 )jj > 0 for all j.

(ii) Let R
(n)
i := (D(n))−1/2C

(n)
i (D(n))−1/2. The limits limn→∞R

(n)
i =: Ri exist for all i; R0

is positive definite, and therefore can be factorized into R0 = (KK
′

)−1 for some full-rank
m ×m matrix K. Letting K(n) := (D(n))−1/2K (defining K(n), note that K(n) also has
full rank).

(iii) The classical Noether conditions hold : the (x
(n)
t )j , t = 1, . . . , n, are not all equal, and,

letting x̄
(n)
j := n−1∑n

t=1(x
(n)
t )j ,

lim
n→∞

max1≤t≤n

(
(x

(n)
t )j − x̄

(n)
j

)2

∑n
t=1

(
(x

(n)
t )j − x̄

(n)
j

)2 = 0, j = 1, . . . ,m.

The description of the asymptotic behaviour of the proposed test statistics under local alterna-
tives will require the following reinforcement of (A1).

Assumption (A1′). Same as Assumption (A1), but we further assume that limn→∞[D(n)/
trD(n)] =: D2, where D is a finite, positive definite diagonal matrix.

For the serial part of the model, we essentially require the VARMA model (2) to be causal
and invertible. The assumptions on the difference operators are actually the same as in Hallin
and Paindaveine (2002d), where the problem of testing the adequacy of a specified VARMA
model is considered.

Assumption (A2). All solutions of det(Ik −
∑p0

i=1 Aiz
i) = 0 and det(Ik +

∑q0
i=1 Biz

i) = 0
(|Ap0 | 6= 0 6= |Bq0 |) lie outside the unit ball in C. Moreover, the greatest common left divisor of
Ik −

∑p0
i=1 Aiz

i and Ik +
∑q0

i=1 Biz
i is the identity matrix Ik.

In the sequel, we denote by Gu(θθθ), u ∈ N, the Green’s matrices associated with the autore-
gressive difference operator A(L) = Ik −

∑p0
i=1 AiL

i. These matrices can be defined recursively

by A(L)Gu = Gu −
∑min(p0,u)

i=1 AiGu−i = δu0 Ik, where δu0 = 1 if u = 0, and δu0 = 0 otherwise.
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Assumption (A2) also allows for defining Gu by means of

+∞∑

u=0

Guzu :=

(
Ik −

p0∑

i=1

Aiz
i

)−1

, z ∈ C, |z| < 1. (3)

Similarly, we denote by Hu(θθθ), u ∈ N, the Green’s matrices associated with the moving average
difference operator B(L). Clearly, all these Green’s matrices are continuous functions of θθθ.
When no confusion is possible, we will not stress their dependence on θθθ.

The residuals (Z
(n)
1 (θθθ), . . . ,Z

(n)
n (θθθ)) associated with a value θθθ of the parameter then can be

computed from a set of initial values εεε−q0+1 . . . , εεε0,Y
(n)
−p0+1, . . . ,Y

(n)
0 and the observed series

(Y
(n)
1 , . . . ,Y

(n)
n ) via the recursion

Z
(n)
t (θθθ) =

t−1∑

i=0

p0∑

j=0

HiAj(Y
(n)
t−i−j − βββ

′

x
(n)
t−i−j) (4)

+(Ht+q0−1 . . .Ht)




Ik 0 . . . 0
B1 Ik . . . 0
...

...
. . .

...
Bq0−1 Bq0−2 . . . Ik







εεε−q0+1
...

εεε0


 .

Assumption (A2) ensures that neither the (generally unobserved) values (εεε−q0+1, . . . , εεε0) of the

innovation, nor the initial values (Y
(n)
−p0+1, . . . , Y

(n)
0 ), have any influence on asymptotic results;

they all safely can be put to zero in the sequel.

Under (A2), {εεεt} is {Yt}’s innovation process. Denote by ΣΣΣ a symmetric positive definite
k × k matrix, and let f : R

+
0 → R

+ be such that f > 0 a.e. and
∫∞
0 rk−1f(r) dr < ∞ : we will

assume throughout that {εεε(n)
1 , . . . , εεε

(n)
n } is a finite realization of an elliptic white noise process

with shape matrix ΣΣΣ and radial density f :

Assumption (B1). The innovation density is of the form
∏n

t=1 f(z
(n)
t ;ΣΣΣ, f), where

f(z1;ΣΣΣ, f) := ck,f (detΣΣΣ)−1/2 f(‖z1‖ΣΣΣ), z1 ∈ R
k. (5)

As usual, ‖z‖ΣΣΣ := (z′ΣΣΣ−1z)1/2 denotes the norm of z in the metric associated with ΣΣΣ. The con-
stant ck,f is the normalization factor (ωk µk−1;f)−1, where ωk stands for the (k− 1)-dimensional
Lebesgue measure of the unit sphere Sk−1 ⊂ R

k, and µl;f :=
∫∞
0 rlf(r) dr.

Denote byH(n)
ΥΥΥ (θθθ0,ΣΣΣ, f) the hypothesis under which the observation Y(n) is generated by (1)

and (2), with a value θθθ of the parameter of interest that satisfies θθθ−θθθ0 ∈M(ΥΥΥ), and with values
ΣΣΣ and f for the parameters of the underlying elliptical white noise. Denote by H(n)(θθθ0,ΣΣΣ, f) the

hypothesis H(n)
ΥΥΥ (θθθ0,ΣΣΣ, f), where ΥΥΥ is the void matrix (so that M(ΥΥΥ) = {0}). The goal of this

paper is to develop testing procedures for the null hypothesis H(n)
ΥΥΥ (θθθ0) :=

⋃
ΣΣΣ

⋃
f H(n)

ΥΥΥ (θθθ0,ΣΣΣ, f)

against
⋃

θθθ 6=θθθ0+M(ΥΥΥ)

⋃
ΣΣΣ

⋃
f H(n)(θθθ,ΣΣΣ, f), that

• are non-parametric, i.e., valid under the whole of H(n)
ΥΥΥ (θθθ0) (under which the distribu-

tion of the noise is not specified beyond elliptical symmetry and possibly some moment
constraints);
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• are locally and asymptotically optimal (LAO) (locally asymptotically most stringent,
in this case) at some fixed radial density f?, that is, against alternatives of the form⋃

θθθ 6=θθθ0+M(ΥΥΥ)

⋃
ΣΣΣH(n)(θθθ,ΣΣΣ, f?); this of course requires local asymptotic normality (LAN) of

the parametric submodel associated with f?;

• comply with the invariance principle: we restricted to null hypotheses that are in-
variant with respect to the group of affine transformations. The hypotheses considered are
also invariant with respect to the group of continuous monotone radial transformations
(acting on residuals); see Section 4.1 for a precise definition of this group. The proposed
procedures should be (at least asymptotically) invariant with respect to these two groups.

Local asymptotic normality requires some further regularity assumptions on the innovation
density. The set of assumptions (B) collects these assumptions.

Assumption (B1′). Same as Assumption (B1), but with µk+1,f < ∞. Assumption (B2). The

square root f 1/2 of the radial density f is in W 1,2(R+
0 , µk−1), where W 1,2(R+

0 , µk−1) denotes the
subspace of L2(R+

0 , µk−1) containing all functions admitting a weak derivative that also belongs
to L2(R+

0 , µk−1).

Assumption (B2) is strictly equivalent to the assumption that f 1/2 is differentiable in quadratic

mean (see Hallin and Paindaveine 2002a). Denoting by (f 1/2)′ the weak derivative of f 1/2

in L2(R+
0 , µk−1), let ϕf := −2 (f1/2)′

f1/2 . Under (B2), the radial Fisher information Ik,f :=
∫∞
0 [ϕf (r)]2rk−1f(r) dr is finite. In the pure location or purely serial problems considered in

Hallin and Paindaveine (2002a, b, and d), this was sufficient for LAN. However, as pointed out
by Garel and Hallin (1995), LAN, in this model where serial and nonserial features are mixed,
requires the stronger assumption:

Assumption (B3).
∫∞
0 [ϕf (r)]4rk−1f(r) dr < ∞.

Assumptions (C) and (C′) impose some mild conditions on the score functions J`, ` = 0, 1, 2,
to be used when building rank-based statistics.

Assumption (C). The score functions J` : ]0, 1[→ R, ` = 0, 1, 2, are continuous differences of
two monotone increasing functions, and satisfy

∫ 1
0 [J`(u)]2 du < ∞ (` = 0, 1, 2).

The score functions yielding locally and asymptotically optimal procedures are of the form
J0 = J1 := ϕf?◦F̃

−1
?k and J2 := F̃−1

?k , for some radial density f? (here F̃?k stands for the cdf
associated with the radial pdf f̃?k(r) = (µk−1;f?)

−1 rk−1f?(r) I[r>0], r ∈ R). Assumption (C)
then takes the form of an assumption on f? :

Assumption (C′). The radial density f? is such that ϕf? is the continuous difference of two
monotone increasing functions, µk+1;f? < ∞, and

∫∞
0 [ϕf?(r)]

2rk−1f?(r) dr < ∞.

The shape matrix ΣΣΣ in Assumption (B1) is unknown and has to be estimated. We assume
the following.

Assumption (D1). A sequence Σ̂ΣΣ
(n)

= Σ̂ΣΣ
(n)

(Z1, . . . ,Zn) of estimators of ΣΣΣ exists, such that

(i)
√

n(Σ̂ΣΣ
(n)− aΣΣΣ) = OP(1) as n →∞ for some positive real a, and

(ii) Σ̂ΣΣ
(n)

is invariant under permutations and reflections (with respect to the origin in R
k) of

the residuals Zt.
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Assumption (D1) will be sufficient for the validity of the proposed procedures. However, their

affine-invariance requires the following equivariance assumption on Σ̂ΣΣ := Σ̂ΣΣ
(n)

.

Assumption (D2). The estimator Σ̂ΣΣ is quasi-affine-equivariant, in the sense that, for all k × k
full-rank matrix M, Σ̂ΣΣ(M) = dMΣ̂ΣΣM′, where Σ̂ΣΣ(M) stands for the statistic Σ̂ΣΣ computed from
the n-tuple (MZ1, . . . ,MZn), and d denotes some positive scalar that may depend on M and
(Z1, . . . ,Zn).

Since the parameter of interest θθθ remains partially unspecified under the null, we also need
some preliminary estimate of θθθ. More precisely, we will assume the existence of an estimator

θ̂θθ := θ̂θθ
(n)

for θθθ satisfying Assumptions (E1) and (E2) below.

Assumption (E1). The sequence of estimator (θ̂θθ
(n)

, n ∈ N) is

(i) constrained : θ̂θθ
(n) − θθθ0 ∈M(ΥΥΥ) for all n,

(ii) root-n consistent : ∀θθθ ∈ θθθ0 + M(ΥΥΥ), n1/2(θ̂θθ
(n) − θθθ) = OP(1), as n → ∞, under

⋃
ΣΣΣ

⋃
f

H(n)(θθθ,ΣΣΣ, f), and

(iii) locally asymptotically discrete : ∀θθθ ∈ θθθ0 +M(ΥΥΥ), ∀c > 0, there exists an M(c) > 0 such
that the number of possible values of θ̂θθ in balls of the form {t ∈ R

k2(p1+q1) : ‖n1/2(t−θθθ)‖ ≤
c} is bounded by M , uniformly as n →∞.

Assumptions (E1) (i), (ii) are satisfied by all classical estimators (Yule-Walker, least-squares,
maximum likelihood, . . . ). The technical assumption (E1) (iii), which goes back to Le Cam
(1960), is of little practical relevance, and it should be pointed out that, for fixed sample size,
any estimate can be considered part of a locally asymptotically discrete sequence. While As-
sumption (E1) is classical for the univariate version of the testing problem under study, As-
sumption (E2) below is specific to the multivariate case (it is essentially void for k = 1), and is
required if affine-invariance is to be achieved.

Assumption (E2). For any full-rank k × k matrix M, denote by θ̂θθ(M) the value of θ̂θθ com-
puted from the transformed sample MY1, . . . ,MYn. Then θ̂θθ is affine-equivariant, meaning that

θ̂θθ(M) = g
(m,p1+q1)
M

θ̂θθ, for all g
(m,p1+q1)
M

∈ Gm
p1+q1

(k).

Equivalently, (E2) means that the estimators we consider are assumed to satisfy β̂ββ(M) =
β̂ββM

′

, Âi(M) = MÂiM
−1 for all i = 1, . . . , p0, and B̂j(M) = MB̂jM

−1 for all j = 1, . . . , q0.

Note that the resulting Green’s matrices then also are affine-equivariant, i.e., Gu(θ̂θθ(M)) =
MGu(θ̂θθ)M−1 and Hu(θ̂θθ(M)) = MHu(θ̂θθ)M−1 for every integer u. In the sequel, we will write

Ĝ
(n)
u and Ĥ

(n)
u for Gu(θ̂θθ) and Hu(θ̂θθ), respectively. Note that, for any constrained estimator θ̂θθ

satisfying (E2), θ̂θθ(M) is also constrained, since θ̂θθ(M) = g
(m,p1+q1)
M

θ̂θθ ∈ g
(m,p1+q1)
M

(θθθ0 +M(ΥΥΥ)) =
θθθ0 +M(ΥΥΥ) for all M (we restricted to pairs (θθθ0,M(ΥΥΥ)) for which the null hypothesis is affine-
invariant). In other words, affine-equivariance in (E2) and part (i) of (E1) are compatible, thanks
to the affine-invariance of the null hypothesis.

3 Uniform local asymptotic normality (ULAN).

In this section, we briefly recall the ULAN (uniformly local asymptotic normality) result proved
in Hallin and Paindaveine (2002f) for the model under study. The sequences of local alternatives
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to be considered for this property are associated with sequences of models of the form

Y(n) = X(n) βββ(n) + U(n), A(n)(L)U
(n)
t = B(n)(L)εεε

(n)
t , t ∈ Z, (6)

where βββ(n) := βββ + n−1/2K(n)ηηη(n), A(n)(L) := Ik −
∑p1

i=1(Ai + n−1/2γγγ
(n)
i )Li, B(n)(L) := Ik

+
∑q1

i=1(Bi + n−1/2δδδ
(n)
i )Li, and the sequence

τττ (n) :=
(
(vecηηη(n)′)

′

, (vecγγγ
(n)
1 )

′

, . . . , (vecγγγ(n)
p1

)
′

, (vec δδδ
(n)
1 )

′

, . . . , (vec δδδ(n)
q1

)
′
)′
∈ R

K

is bounded as n →∞. The perturbed parameter is thus

θθθ(n) := θθθ + ννν(n)τττ (n) := θθθ + n−1/2

(
K(n) ⊗ Ik 0

0 Ik2(p1+q1)

)
τττ (n).

The corresponding sequence of local alternatives will be denoted by H(n)(θθθ + ννν(n)τττ (n),ΣΣΣ, f).

Decompose Zt(θθθ) := Z
(n)
t (θθθ) into Zt(θθθ) = dt(θθθ,ΣΣΣ)ΣΣΣ1/2Ut(θθθ,ΣΣΣ), where dt(θθθ,ΣΣΣ) = d

(n)
t (θθθ,ΣΣΣ)

:= ‖Zt(θθθ)‖ΣΣΣ and Ut(θθθ,ΣΣΣ) = U
(n)
t (θθθ,ΣΣΣ) := ΣΣΣ−1/2Zt(θθθ)/dt(θθθ,ΣΣΣ). As we will see, the central

sequences involved in the ULAN result are linear combinations of (the entries of) the generalized
cross-covariance matrices

ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ) := (n− i)−1 ΣΣΣ

′−1/2




n∑

t=i+1

ϕf (dt(θθθ,ΣΣΣ)) dt−i(θθθ,ΣΣΣ) Ut(θθθ,ΣΣΣ)U
′

t−i(θθθ,ΣΣΣ)


ΣΣΣ

′1/2, (7)

and the matrices of nonserial statistics

ΛΛΛ
(n)
i;ΣΣΣ,f (θθθ) := (n− i)−1 ΣΣΣ

′−1/2
n∑

t=i+1

ϕf (dt(θθθ,ΣΣΣ))Ut(θθθ,ΣΣΣ)x
(n)′

t−i K
(n), (8)

which therefore contain all the relevant information (in the local and asymptotic sense). The
coefficients of these linear combinations are rather complicated, though, and require some further
notation, mainly connected with the algebra of linear difference equations.

Associated with any k-dimensional linear difference operator of the form C(L) :=
∑∞

i=0 Ci L
i

(letting Ci = 0 for i > s, this includes, of course, the operators with finite order s), define, for
any integers m and p, the k2m× k2p matrices

C(l)
m,p :=




C0 ⊗ Ik 0 . . . 0
C1 ⊗ Ik C0 ⊗ Ik . . . 0

...
. . .

...
Cp−1 ⊗ Ik Cp−2 ⊗ Ik . . . C0 ⊗ Ik

...
...

Cm−1 ⊗ Ik Cm−2 ⊗ Ik . . . Cm−p ⊗ Ik




(9)

and

C(r)
m,p :=




Ik ⊗C0 0 . . . 0
Ik ⊗C1 Ik ⊗C0 . . . 0

...
. . .

...
Ik ⊗Cp−1 Ik ⊗Cp−2 . . . Ik ⊗C0

...
...

Ik ⊗Cm−1 Ik ⊗Cm−2 . . . Ik ⊗Cm−p




, (10)
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respectively; write C
(l)
m for C

(l)
m,m and C

(r)
m for C

(r)
m,m. With this notation, note that G

(l)
m , G

(r)
m ,

H
(l)
m , and H

(r)
m are the inverses of A

(l)
m , A

(r)
m , B

(l)
m , and B

(r)
m , respectively. Denoting by C

′(l)
m,p and

C
′(r)
m,p the matrices associated with the transposed operator C

′

(L) :=
∑∞

i=0 C
′

i L
i, we also have

G
′(l)
m = (A

′(l)
m )−1, H

′(l)
m = (B

′(l)
m )−1, etc. We will use the notation C̄

(l)
m,p, C̄

(r)
m,p, C̄

(l)
m , etc. when

the identity matrices involved in (9) and (10) are m-dimensional rather than k-dimensional.
Let π := max(p1−p0, q1− q0) and π0 := π +p0 + q0, and define the k2π0×k2(p1 + q1) matrix

Mθθθ :=

(
G

′(l)
π0,p1

...H
′(l)
π0,q1

)
; (11)

under Assumption (A2), Mθθθ is of full rank.
Consider the operator D(L) := Ik +

∑p0+q0
i=1 Di L

i (just as Mθθθ, D(L) and most quantities
defined below depend on θθθ, but, for simplicity, we are dropping this reference to θθθ), where,
putting G−1 = G−2 = ... = G−p0+1 = 0 = H−1 = H−2 = ... = H−q0+1,




D
′

1
...

D
′

p0+q0


 := −




Gq0 Gq0−1 . . . G−p0+1

Gq0+1 Gq0 . . . G−p0+2
...

. . .
...

Gp0+q0−1 Gp0+q0−2 . . . G0

Hp0 Hp0−1 . . . H−q0+1

Hp0+1 Hp0 . . . H−q0+2
...

. . .
...

Hp0+q0−1 Hp0+q0−2 . . . H0




−1




Gq0+1
...

Gp0+q0

Hp0+1
...

Hp0+q0




.

Note that D(L)G
′

t = 0 for t = q0 + 1, . . . , p0 + q0, and D(L)H
′

t = 0 for t = p0 + 1, . . . , p0 + q0.

Let {ΨΨΨ(1)
t , . . . ,ΨΨΨ

(p0+q0)
t } be a set of k×k matrices forming a fundamental system of solutions

of the homogeneous linear difference equation associated with D(L) (such a system can be
obtained, for instance, from the Green’s matrices of the operator D(L) : see Hallin 1986).
Define

Ψ̄ΨΨm(θθθ) :=




ΨΨΨ
(1)
π+1 . . . ΨΨΨ

(p0+q0)
π+1

ΨΨΨ
(1)
π+2 . . . ΨΨΨ

(p0+q0)
π+2

...
...

ΨΨΨ(1)
m . . . ΨΨΨ(p0+q0)

m



⊗ Ik (m > π),

Pθθθ :=

(
Ik2π 0

0 C−1
Ψ

)
, and Q

(n)
θθθ := H

(r)
n−1 B

′(l)
n−1

(
Ik2π 0
0 Ψ̄ΨΨn−1

)
, (12)

where CΨ is the Casorati matrix Ψ̄ΨΨπ0 .
Finally, put

S
(n)
I;ΣΣΣ,f (θθθ) :=

(
n1/2 (vecΛΛΛ

(n)
0;ΣΣΣ,f (θθθ))

′

, . . . , (n− i)1/2 (vecΛΛΛ
(n)
i;ΣΣΣ,f (θθθ))

′

, . . . , (vecΛΛΛ
(n)
n−1;ΣΣΣ,f (θθθ))

′
)′

,

n 1/2T
(n)
I;ΣΣΣ,f (θθθ) := L

(n)′

θθθ S
(n)
I;ΣΣΣ,f (θθθ), and JI;θθθ,ΣΣΣ := lim

n→+∞
L

(n)′

θθθ (KKKn ⊗ΣΣΣ−1)L
(n)
θθθ , (13)

where L
(n)
θθθ := H̄

(r)
n (θθθ)Ā

(r)
n,1(θθθ), and where KKK ll̃ denotes the lm× l̃m matrix with block K

′

R|i−j|K

in position (i, j) (i = 1, . . . , l, j = 1, . . . , l̃). We write KKKl instead of KKKll. Similarly, for the serial
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part, let

S
(n)
II;ΣΣΣ,f (θθθ) :=

(
(n− 1)1/2 (vecΓΓΓ

(n)
1;ΣΣΣ,f (θθθ))

′

, . . . , (n− i)1/2 (vecΓΓΓ
(n)
i;ΣΣΣ,f (θθθ))

′

, . . . , (vecΓΓΓ
(n)
n−1;ΣΣΣ,f (θθθ))

′
)′

,

n 1/2T
(n)
II;ΣΣΣ,f (θθθ) := Q

(n)′

θθθ S
(n)
II;ΣΣΣ,f (θθθ), and JII;θθθ,ΣΣΣ := lim

n→+∞
Q

(n)′

θθθ [In−1⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q
(n)
θθθ (14)

(convergence in (13) and (14) follows from the exponential decrease, as u →∞, under (A2), of
the Green’s matrices Gu and Hu).

Eventually, we can state the ULAN proved in Hallin and Paindaveine (2002f).

Proposition 1 (ULAN) Assume that Assumptions (A1), (A2), (B1′), (B2), and (B3) hold.

Let θθθn be such that θθθn − θθθ = O(n−1/2). Then, the logarithm L
(n)

θθθn+ννν(n)τττ (n)/θθθn;ΣΣΣ,f
of the likelihood

ratio associated with the sequence of local alternatives H(n)(θθθn + ννν(n)τττ (n),ΣΣΣ, f) with respect to
H(n)(θθθn,ΣΣΣ, f) is such that

L
(n)

θθθn+ννν(n)τττ (n)/θθθn;ΣΣΣ,f
(Y(n)) = (τττ (n))′∆∆∆(n)

ΣΣΣ,f (θθθn)− 1

2
(τττ (n))′ΓΓΓΣΣΣ,f (θθθ)τττ (n) + oP(1),

as n →∞, under H(n)(θθθn,ΣΣΣ, f), with the central sequence

∆∆∆
(n)
ΣΣΣ,f (θθθn) :=


 ∆∆∆

(n)
I;ΣΣΣ,f (θθθn)

∆∆∆
(n)
II;ΣΣΣ,f (θθθn)


 := n1/2

(
Ikm 0

0 M
′

θθθn
P

′

θθθn

) 
 T

(n)
I;ΣΣΣ,f (θθθn)

T
(n)
II;ΣΣΣ,f (θθθn)


 , (15)

and the information matrix

ΓΓΓΣΣΣ,f (θθθ) :=

(
ΓΓΓI;ΣΣΣ,f (θθθ) 0

0 ΓΓΓII;ΣΣΣ,f (θθθ)

)
,

where ΓΓΓI;ΣΣΣ,f (θθθ) := 1
k Ik,fJI;θθθ,ΣΣΣ and ΓΓΓII;ΣΣΣ,f (θθθ) :=

µk+1;f Ik,f

k2 µk−1;f
Nθθθ,ΣΣΣ, with Nθθθ,ΣΣΣ := M

′

θθθP
′

θθθJII;θθθ,ΣΣΣPθθθMθθθ.

Moreover, ∆∆∆
(n)
ΣΣΣ,f (θθθn), still under H(n)(θθθn,ΣΣΣ, f), is asymptotically NK(0,ΓΓΓΣΣΣ,f (θθθ)).

Note that the asymptotic information matrix ΓΓΓΣΣΣ,f (θθθ) may be singular (such a singularity
occurs as soon as p1 > p0 and q1 > q0). In such a case, a careful treatment, involving generalized
inverses, will be required in the derivation of the asymptotic distributions of test statistics.

4 Multivariate signs and ranks, serial and nonserial signed rank
statistics.

4.1 Multivariate signs and ranks.

The generalized cross-covariances (7) and nonserial statistics (8) are measurable with respect to
the Mahalanobis distances dt(θθθ,ΣΣΣ) = ‖ΣΣΣ−1/2Z(θθθ)‖ between the residuals Zt(θθθ) and the origin
in R

k, and the “multivariate signs” Ut(θθθ,ΣΣΣ) = ΣΣΣ−1/2Zt(θθθ)/‖ΣΣΣ−1/2Zt(θθθ)‖.
For each ΣΣΣ and n, the group of continuous monotone radial transformations

G(n)
ΣΣΣ = {G(n)

g }, acting on (Rk)n and characterized by

G(n)
g (Z1(θθθ), . . . ,Zn(θθθ)) :=

(
g(d1(θθθ,ΣΣΣ))ΣΣΣ1/2U1(θθθ,ΣΣΣ), . . . , g(dn(θθθ,ΣΣΣ))ΣΣΣ1/2Un(θθθ,ΣΣΣ)

)
, (16)
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where g : R
+→ R

+ is a continuous monotone increasing function such that g(0) = 0 and
limr→∞ g(r)= ∞, is a generating group for

⋃
f H(θθθ,ΣΣΣ, f). Along with the signs (U1(θθθ,ΣΣΣ), . . . ,

Un(θθθ,ΣΣΣ)), the ranks (R1(θθθ,ΣΣΣ), . . . , Rn(θθθ,ΣΣΣ)) of the distances dt(θθθ,ΣΣΣ) constitute a maximal

invariant for that group G(n)
ΣΣΣ of radial transformations.

Because the true value of the shape matrix is unkown, the genuine ranks Rt(θθθ,ΣΣΣ) and signs
Ut(θθθ,ΣΣΣ) cannot be computed from the residuals Z1(θθθ), . . . ,Zn(θθθ), but the following alternative
quantities can.

4.2 Pseudo-Mahalanobis signs and ranks.

The pseudo-Mahalanobis signs are defined as Wt(θθθ) = W
(n)
t (θθθ) := Σ̂ΣΣ

−1/2
Zt(θθθ)/‖Σ̂ΣΣ

−1/2
Zt(θθθ)‖,

where Σ̂ΣΣ is the estimator in Assumptions (D1)-(D2). Similarly, the pseudo-Mahalanobis ranks

R̂t(θθθ) := R̂
(n)
t (θθθ) are defined as the ranks of the pseudo-Mahalanobis distances dt(θθθ, Σ̂ΣΣ) =

‖Σ̂ΣΣ−1/2
Zt(θθθ)‖. The terminology Mahalanobis signs and ranks will be used when Σ̂ΣΣ is the empir-

ical covariance matrix.

4.3 Hyperplane-based signs and ranks.

Pseudo-Mahalanobis signs and ranks are based on an estimation of the underlying shape ma-
trix. A completely different approach can be based on counts of hyperplanes, and leads to a
modification of Randles’ s interdirections (namely, the absolute interdirections) for multivariate
signs, and to Oja and Paindaveine (2002)’s concept of lift interdirection ranks for multivariate
ranks.

Write Q := {i1, i2, . . . , ik−1} (1 ≤ i1 < i2 < . . . < ik−1 ≤ n) and P := {j1, j2, . . . , jk}
(1 ≤ j1 < j2 < . . . < jk ≤ n) for arbitrary ordered sets of indices with sizes (k − 1) and k,
respectively. Denote by eQ and (d0P ,d′P)′ the vectors whose components are the cofactors of
the last column in the arrays

(Zi1(θθθ), . . . ,Zik−1
(θθθ), z) and

(
1 1 . . . 1 1

Zj1(θθθ) Zj2(θθθ) . . . Zjk
(θθθ) z

)
,

respectively. The vector eQ (resp. dP) is orthogonal to the hyperplane Π(Q) spanned by
Zi1(θθθ), . . . ,Zik−1

(θθθ) (resp. the hyperplane Π(P) going through Zi1(θθθ), . . . ,Zik(θθθ)), and the sign
of e′Qz (resp. of d0P + d′Pz) indicates on which side of Π(Q) (resp. of Π(P)) the point z lies.

The absolute interdirection associated with residual Zi(θθθ) in the n-tuple (Z1(θθθ), . . . ,Zn(θθθ))
is defined as

Vi(θθθ) = V
(n)
i (θθθ) := (cos(πp

(n)
i;1 (θθθ)), . . . , cos(πp

(n)
i;k (θθθ)))

′

,

with p
(n)
i;l (θθθ) :=

( n
k−1

)−1
c(Σ̂ΣΣ

1/2
e

(k)
l ,Zi(θθθ)), where c(v,w) denotes the hyperplane-based empirical

angular distance

c(v,w) :=
1

2

∑

Q
{1− sign(e′Qv) sign(e′Qw)}.

Note that the statistics q
(n)
ij (θθθ) := c(Zi(θθθ),Zj(θθθ)) are the so-called Randles’ interdirections

(Randles 1989); q
(n)
ij is—up to a small-sample correction—the number of hyperplanes in R

k

passing through the origin and (k− 1) out of the (n− 2) points Z1(θθθ), . . . ,Zi−1(θθθ),Zi+1(θθθ), . . . ,
Zj−1(θθθ),Zj+1(θθθ), . . . ,Zn(θθθ) that separate Zi(θθθ) and Zj(θθθ).
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A hyperplane-based empirical distance between a vector v and the origin in R
k can be defined

as

l(n)(v) :=
∑

P

1− sign(d0P + d′Pv) sign(d0P − d′Pv)

2
,

i.e., as the number of hyperplanes in R
k passing through k out of the n points Z1(θθθ), . . . ,Zn(θθθ)

that are separating v and its reflection −v. For symmetry reasons, we rather consider the
symmetrized distances

l(n)(v) :=
∑

P

∑

s

1− sign(d0P (s) + dP(s)′v) sign(d0P (s)− dP(s)′v)

2
,

where, for P = (j1, . . . , jk) and s ∈ {−1, 1}k , (d0P (s),dP (s)′)′ stands for the vector of cofactors
associated with the last column in the array

(
1 1 . . . 1 1

s1Zj1(θθθ) s2Zj2(θθθ) . . . skZjk
(θθθ) z

)

(see Oja and Paindaveine 2002). The lift interdirection ranks are the ranks Ri := R
(n)
i of the

symmetrized lift-interdirections l
(n)
i := l(n)(Zi(θθθ)), i = 1, . . . , n.

4.4 Serial and nonserial signed rank statistics.

The nonparametric (signed rank) J -score versions of the serial and nonserial statistics (7) and
(8) are, in the serial case,

ΓΓΓ
˜

(n)
i;J (θθθ) := Σ̂ΣΣ

′−1/2


 1

n− i

n∑

t=i+1

J1

(R̂t(θθθ)

n + 1

)
J2

(R̂t−i(θθθ)

n + 1

)
Wt(θθθ)W

′

t−i(θθθ)


 Σ̂ΣΣ

′1/2
, (17)

and, in the nonserial case,

ΛΛΛ
˜

(n)
i;J (θθθ) := (n− i)−1 Σ̂ΣΣ

′−1/2
n∑

t=i+1

J0

(R̂t(θθθ)

n + 1

)
Wt(θθθ)x

(n)′

t−i K
(n), (18)

where the score functions J` (` = 0, 1, 2) are as in Assumption (C). Here we used pseudo-
Mahalanobis signs and ranks. But every combination of a concept of multivariate signs (either
Mahalanobis signs, pseudo-Mahalanobis signs, or absolute interdirections) with a concept of
multivariate ranks (Mahalanobis, pseudo-Mahalanobis, or lift-interdirection ranks) may be con-
sidered and actually yields the same asymptotic representation results, as shown by the following
proposition (see Hallin and Paindaveine (2002f) for a proof). Note however that their equivari-
ance properties may be different (see the next subsection).

Proposition 2 Assume that Assumptions (A1), (A2), (B1), (C), and (D1) hold. Then, letting

Γ̃ΓΓ
(n)

i;J ;ΣΣΣ,f (θθθ) := ΣΣΣ
′−1/2

(
1

n− i

n∑

t=i+1

J1(F̃k(dt(θθθ,ΣΣΣ)))J2(F̃k(dt−i(θθθ,ΣΣΣ))) Ut(θθθ,ΣΣΣ)U
′

t−i(θθθ,ΣΣΣ)

)
ΣΣΣ

′1/2

(19)
and

Λ̃ΛΛ
(n)

i;J ;ΣΣΣ,f (θθθ) := (n− i)−1 ΣΣΣ
′−1/2

n∑

t=i+1

J0(F̃k(dt(θθθ,ΣΣΣ))) Ut(θθθ,ΣΣΣ)x
(n)′

t−i K
(n), (20)
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(i) vec (ΛΛΛ
˜

(n)
i;J (θθθ)−Λ̃ΛΛ

(n)

i;J ;ΣΣΣ,f (θθθ)) and vec (ΓΓΓ
˜

(n)
i;J (θθθ)−Γ̃ΓΓ

(n)

i;J ;ΣΣΣ,f (θθθ)) are oP(n−1/2) for all i, as n →∞,

and

(ii) the same result still holds if in ΛΛΛ
˜

(n)
i;J (θθθ) and ΓΓΓ

˜
(n)
i;J (θθθ) the pseudo-Mahalanobis signs Wt(θθθ)

are replaced by the corresponding absolute interdirections, and/or the pseudo-Mahalanobis
ranks R̂t(θθθ) are replaced by the lift-interdirection ranks Rt(θθθ).

Let Dk(J ; f) :=
∫ 1
0 J(u) F̃−1

k (u) du and Ck(J ; f) :=
∫ 1
0 J(u)ϕf ◦F̃−1

k (u) du, where J denotes
some score function defined over ]0, 1[. When J is a density over R

+
0 rather than a score function,

we write Dk(f1, f2) and Ck(f1, f2) for Dk(F̃
−1
1k ; f2) and Ck(Jk,f1 ; f2) respectively; for simplicity,

we also write Ck(f) and Dk(f) instead of Ck(f, f) and Dk(f, f). The asymptotic behaviour of
the nonparametric statistics (17) and (18) trivially results from Proposition 2 and the following
lemma (see Hallin and Paindaveine 2002f).

Lemma 1 For all integers l, l̃, the vector

(
n1/2 (vec Λ̃ΛΛ

(n)

0;J ;ΣΣΣ,f (θθθ))
′

, . . . , (n− l + 1)1/2 (vec Λ̃ΛΛ
(n)

l−1;J ;ΣΣΣ,f (θθθ))
′

,

(n− 1)1/2 (vec Γ̃ΓΓ
(n)

1;J ;ΣΣΣ,f (θθθ))
′

, . . . , (n− l̃)1/2 (vec Γ̃ΓΓ
(n)

l̃;J ;ΣΣΣ,f (θθθ))
′

)′

is asymptotically normal under H(n)(θθθ,ΣΣΣ, f) and under H(n)(θθθ + ννν(n)τττ ,ΣΣΣ, f), with mean 0 and
mean




1
k Ck(J0; f)(Ilm ⊗ΣΣΣ−1)[limn→∞(KKK ln ⊗ Ik)L

(n)
θθθ ] (vecηηη

′

)

1
k2 Ck(J1; f)Dk(J2; f) [Il̃ ⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q

(l̃+1)
θθθ Pθθθ Mθθθ ((vecγγγ)

′

, (vec δδδ)
′

)
′


 ,

respectively, and covariance matrix
(

1
k E[J2

0 (U)] (KKK l ⊗ΣΣΣ−1) 0

0 1
k2 E[J2

1 (U)] E[J2
2 (U)] [Il̃ ⊗ (ΣΣΣ⊗ΣΣΣ−1)]

)
.

Letting hj = hj(θθθ) := Hj(θθθ)−∑min(p0,j)
i=1 Hj−i(θθθ)Ai(θθθ), j = 0, 1, 2, . . ., note that

lim
n→∞(KKK ln ⊗ Ik)L

(n)
θθθ =




∑∞
j=0 (K

′

R|j|K)⊗ hj
...∑∞

j=0 (K
′

R|i−j|K)⊗ hj
...∑∞

j=0 (K
′

R|l−j−1|K)⊗ hj




.

Also, defining

ai(τττ ;θθθ) :=

min(p1,i)∑

j=1

i−j∑

l=0

min(q0,i−j−l)∑

k=0

(Gi−j−l−k(θθθ)BJ(θθθ)⊗Hl(θθθ)
′

)
′

vecγγγj ,

and

bi(τττ ;θθθ) :=

min(q1,i)∑

j=1

(IJ ⊗Hi−j(θθθ)) vec δδδj ,
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one can easily check that




a1(τττ ;θθθ) + b1(τττ ;θθθ)
...

al̃(τττ ;θθθ) + bl̃(τττ ;θθθ)


 = Q

(l̃+1)
θθθ Pθθθ Mθθθ

(
vecγγγ
vec δδδ

)
.

This allows for a direct comparison between Lemma 1 and the corresponding univariate result
(Proposition 4.3 in Hallin and Puri 1994).

4.5 Equivariance/invariance properties.

In this section, we use hats to indicate that all parameters involved are estimated. Consider
the original sample (Y1, . . . ,Yn) and the transformed sample (MY1, . . . ,MYn), where M is a
full-rank k× k matrix, and denote by T (M) (resp. T ) the value of a statistic T computed from
the transformed (resp. original) sample. Assumption (E2) ensures that the residual sample of
the Ẑi(M) = Z(θ̂θθ(M))’s is affine-equivariant, meaning that

(Ẑ1(M), . . . , Ẑn(M)) = (MẐ1, . . . ,MẐn).

Under Assumption (D2), Σ̂ΣΣ
−1/2

enjoys the equivariance property

Σ̂ΣΣ
−1/2

(M) = d−1/2OΣ̂ΣΣ
−1/2

M−1, (21)

for some k×k orthogonal matrix O (recall that Σ̂ΣΣ(M) and Σ̂ΣΣ are computed from the residual sam-
ples (Ẑ1(M), . . . , Ẑn(M)) and (Ẑ1, . . . , Ẑn), respectively). The affine-invariance/equivariance
properties of pseudo-Mahalanobis signs and ranks easily follow. More precisely, denoting by
Ŵt(M) and R̂t(M) the pseudo-Mahalanobis signs and ranks computed from the transformed
residuals (Ẑ1(M), . . . , Ẑn(M)), we have

Ŵt(M) = OŴt, R̂t(M) = R̂t,

where O is the orthogonal matrix in (21).
As for hyperplane-based signs and ranks, absolute interdirections are only asymptotically

affine-equivariant, i.e., under H(n)(θθθ,ΣΣΣ, f),

V̂t(M) = OV̂t + oP(1), as n →∞, (22)

still with the orthogonal matrix O in (21). Lift-interdirection ranks R̂t := Rt(θ̂θθ) are strictly
affine-invariant (see Oja and Paindaveine 2002).

This entails, for the nonparametric statistics Λ̂ΛΛ
˜

(n)

i;J

and Γ̂ΓΓ
˜

(n)

i;J

, the following equivariance prop-

erties.

Lemma 2 Assume that Assumptions (D2) and (E2) hold. Denote by Λ̂ΛΛ
˜

(n)

i;J

(M) and Γ̂ΓΓ
˜

(n)

i;J

(M)

the statistics Λ̂ΛΛ
˜

(n)

i;J

and Γ̂ΓΓ
˜

(n)

i;J

computed from the n-tuple (MY1, . . . ,MYn), where M is a k × k

full-rank matrix. Then,

Λ̂ΛΛ
˜

(n)

i;J

(M) = d−1/2M−1′ Λ̂ΛΛ
˜

(n)

i;J

and Γ̂ΓΓ
˜

(n)

i;J

(M) = M−1′ Γ̂ΓΓ
˜

(n)

i;J

M′;
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the same result still holds if in Λ̂ΛΛ
˜

(n)

i;J

and Γ̂ΓΓ
˜

(n)

i;J

the pseudo-Mahalanobis ranks R̂t(θ̂θθ) are replaced

by the lift-interdirection ranks Rt(θ̂θθ).

Proof. The result directly follows from the equivariance properties of pseudo-Mahalanobis signs
and ranks. �

If the pseudo-Mahalanobis signs Wt(θ̂θθ) in Λ̂ΛΛ
˜

(n)

i;J

and Γ̂ΓΓ
˜

(n)

i;J

are replaced by the corresponding

absolute interdirections (in combination with any type of ranks), then it is clear from (22) that

Λ̂ΛΛ
˜

(n)

i;J

and Γ̂ΓΓ
˜

(n)

i;J

can only be asymptotically affine-equivariant. The resulting hyperplane-based

test statistics will accordingly be only asymptotically affine-invariant (see Section 5 and the
proof of Proposition 3).

5 Aligned rank tests.

5.1 The proposed rank-based procedures.

Let n1/2 T
˜

(n)
J (θθθ) be given by




n1/2 T
˜

(n)
I;J(θθθ)

n1/2 T
˜

(n)
II;J(θθθ)


 :=




L
(n)′

θθθ S
˜

(n)
I;J(θθθ)

Q
(n)′

θθθ S
˜

(n)
II;J(θθθ)


 :=




L
(n)′

θθθ (n1/2(vec ΛΛΛ
˜

(n)
0;J(θθθ))

′

, . . . , (vec ΛΛΛ
˜

(n)
n−1;J(θθθ))

′

)
′

Q
(n)′

θθθ ((n− 1)1/2 (vec ΓΓΓ
˜

(n)
1;J(θθθ))

′

, . . . , (vec ΓΓΓ
˜

(n)
n−1;J(θθθ))

′

)
′


,

and define

J
(n)
I;θθθ,ΣΣΣ := L

(n)′

θθθ (KKKn ⊗ΣΣΣ−1)L
(n)
θθθ and J

(n)
II;θθθ,ΣΣΣ := Q

(n)′

θθθ

[
In−1 ⊗ (ΣΣΣ⊗ΣΣΣ−1)

]
Q

(n)
θθθ .

Denote by Ṁθθθ the full-rank k2π0 × k2(p0 + q0) matrix resulting from Mθθθ by deleting columns
k2p0 +1, . . . , k2p1 and k2(p1 + q0)+1, . . . , k2(p1 + q1). Similarly, let Υ̇ΥΥII be the k2(p0 + q0)× rII

array resulting from ΥΥΥII by deleting lines k2p0 +1, . . . , k2p1 and k2(p1 + q0)+1, . . . , k2(p1 + q1).
Note that Mθθθ ΥΥΥII = Ṁθθθ Υ̇ΥΥII . Finally, let

Q̄
(n)
I;J ;ΣΣΣ(θθθ) :=

k

E[J2
0 (U)]

[
(J

(n)
I;θθθ,ΣΣΣ)−1 − (K(n) ⊗ Ik)

−1 ΥΥΥI

(
ΥΥΥ

′

I (K(n) ⊗ Ik)
′−1 J

(n)
I;θθθ,ΣΣΣ (K(n) ⊗ Ik)

−1 ΥΥΥI

)−1
ΥΥΥ

′

I (K(n) ⊗ Ik)
′−1

]
,

and, denoting by A− an arbitrary generalized inverse of A,

Q̄
(n)
II;J ;ΣΣΣ(θθθ) :=

k2

E[J2
1 (U)]E[J2

2 (U)]

[
(J

(n)
II;θθθ,ΣΣΣ)−1 −PθθθṀθθθ Υ̇ΥΥII

(
Υ̇ΥΥ

′

II Ṁ′
θθθ P

′

θθθJ
(n)
II;θθθ,ΣΣΣ PθθθṀθθθ Υ̇ΥΥII

)−
Υ̇ΥΥ

′

II Ṁ
′

θθθ P
′

θθθ

]
.
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Then the J -score version of the proposed test statistics is

W(n)
J := n

(
T
˜

(n)
J (θ̂θθ)

)′


 Q̄

I;J ;Σ̂ΣΣ
(θ̂θθ) 0

0 Q̄
II;J ;Σ̂ΣΣ

(θ̂θθ)


 T
˜

(n)
J (θ̂θθ) =: W(n)

I;J +W(n)
II;J

:= n

(
T
˜

(n)
I;J(θ̂θθ)

)′

Q̄
(n)

I;J ;Σ̂ΣΣ
(θ̂θθ) T

˜
(n)
I;J(θ̂θθ) + n

(
T
˜

(n)
II;J(θ̂θθ)

)′

Q̄
(n)

II;J ;Σ̂ΣΣ
(θ̂θθ) T

˜
(n)
II;J(θ̂θθ),

where Σ̂ΣΣ denotes the shape matrix estimator in Assumptions (D1)-(D2). The version allowing for
local asymptotic optimality at radial density f? is associated with the scores J0 = J1 := ϕf?◦F̃

−1
?k

and J2 := F̃−1
?k . The corresponding statistics will be denoted by W (n)

f?
.

Finally, in order to describe the asymptotic behaviour ofW (n)
J under local alternatives, define

rθθθ,ΣΣΣ(ηηη) :=
(
vecηηη

′
)′ [

JI;θθθ,ΣΣΣ − JI;θθθ,ΣΣΣ (K−1D⊗ Ik)ΥΥΥI

(
ΥΥΥ

′

I (K−1D⊗ Ik)
′

JI;θθθ,ΣΣΣ (K−1D⊗ Ik)ΥΥΥI

)−1
ΥΥΥ

′

I (K−1D⊗ Ik)
′

JI;θθθ,ΣΣΣ

] (
vecηηη

′

)

and

sθθθ,ΣΣΣ(γγγ,δδδ) :=

(
vecγγγ
vec δδδ

)′ [
Nθθθ,ΣΣΣ −Nθθθ,ΣΣΣ ΥΥΥII (ΥΥΥ

′

IINθθθ,ΣΣΣ ΥΥΥII)
−ΥΥΥ

′

IINθθθ,ΣΣΣ

] ( vecγγγ
vec δδδ

)
,

where D is the array involved in Assumption (A1′) and Nθθθ,ΣΣΣ is defined in Proposition 1. We
can now state the main result of this paper.

Proposition 3 Assume that Assumptions (A1), (A2), (B1′), (B2), (B3), (C), (D1), (D2),

(E1), and (E2) hold. Consider the sequence of aligned rank tests φ
(n)
J (resp. φ

(n)
f?

) that re-

ject the null hypothesis H(n)
ΥΥΥ (θθθ0) whenever W(n)

J (resp. W(n)
f?

) exceeds the α-upper quantile

χ2
km+k2π0−r,1−α of a chi-square distribution with km + k2π0 − r degrees of freedom. Then,

(i) W(n)
J is strictly affine-invariant (only asymptotically, if absolute interdirections are used as

multivariate signs), and asymptotically invariant with respect to the group of continuous
monotone radial transformations;

(ii) W(n)
J is asymptotically chi-square with km + k2π0 − r degrees of freedom under H(n)

ΥΥΥ (θθθ0)

(so that φ
(n)
J has asymptotic level α);

(iii) W(n)
J is asymptotically noncentral chi-square, still with km + k2π0 − r degrees of freedom

and noncentrality parameter

1

k

C2
k(J0; f)

E[J2
0 (U)]

rθθθ,ΣΣΣ(ηηη) +
1

k2

C2
k(J1; f)

E[J2
1 (U)]

D2
k(J2; f)

E[J2
2 (U)]

sθθθ,ΣΣΣ(γγγ,δδδ)

under H(n)(θθθ+ννν(n)τττ ,ΣΣΣ, f), θθθ−θθθ0 ∈M(ΥΥΥ) and τττ /∈M(ΥΥΥ), provided that (A1) is reinforced
into (A1′);
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(iv) for any f? satisfying Assumptions (B1′), (B2), (B3) and (C′), the sequence of tests φ
(n)
f?

is locally asymptotically most stringent for H(n)
ΥΥΥ (θθθ0) against

⋃
θθθ 6=θθθ0+M(ΥΥΥ)

⋃
ΣΣΣH(n)(θθθ,ΣΣΣ, f?),

at probability level α.

To prove this proposition, we will need the following asymptotic linearity result, which
straightforwardly follows from the asymptotic linearity result proved in Hallin and Paindav-
eine (2002f); see the Appendix for a proof.

Lemma 3 Assume that Assumptions (A1), (A2), (B1′), (B2), (B3), (C), (D1), and (E1) hold.
Then

n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) +

1

k
Ck(J0; f)JI;θθθ,ΣΣΣ (K(n) ⊗ Ik)

−1 n1/2(θ̂θθ
(n)

I − θθθI)

and

n1/2(T
˜

(n)
II;J(θ̂θθ)− T

˜
(n)
II;J(θθθ)) +

1

k2
Dk(J2; f)Ck(J1; f)JII;θθθ,ΣΣΣ Pθθθ Mθθθ n1/2(θ̂θθ

(n)

II − θθθII)

are oP(1) as n →∞, under H(n)(θθθ,ΣΣΣ, f).

Proof of Proposition 3. (i) We first prove that W (n)
J is affine-invariant. Note that it is clear

that the scalar factor d−1/2 in the equivariance relation (21) has no influence on the affine-

invariance of W (n)
J ; consequently, we will assume, without loss of generality, that d = 1. With

this notation of Section 4.5, Lemma 2 yields Ŝ
˜

(n)

I;J

(M) = g
(mn,0)

M
′
−1 Ŝ

˜
(n)

I;J

. From Assumption (E2),

L
(n)

θ̂θθ
(M) = g

(mn,0)
M

L
(n)

θ̂θθ
g
(m,0)
M−1 . Consequently, T̂

˜
(n)

I;J

(M) = g
(m,0)

M
′
−1 T̂
˜

(n)

I;J

. Analogously, Ŝ
˜

(n)

II;J

(M) =

g
(0,n−1)

M
′
−1 Ŝ

˜
(n)

II;J

, Q
(n)

θ̂θθ
(M) = g

(0,n−1)
M

Q
(n)

θ̂θθ
g
(0,π0)
M−1 , and therefore, T̂

˜
(n)

II;J

(M) = g
(0,π0)

M
′
−1 T̂
˜

(n)

II;J

. This

implies that T̂
˜

(n)

J

(M) = g
(m,π0)

M
′
−1 T̂

˜
(n)

J

.

For the variances, J
(n)

I;θ̂θθ,Σ̂ΣΣ
(M) = g

(m,0)

M
′
−1J

(n)

I;θ̂θθ,Σ̂ΣΣ
g
(m,0)
M−1 and J

(n)

II;θ̂θθ,Σ̂ΣΣ
(M) = g

(0,π0)

M
′
−1 J

(n)

II;θ̂θθ,Σ̂ΣΣ
g
(0,π0)
M−1 .

Since, moreover, P
θ̂θθ
(M) = g

(0,π0)
M

P
θ̂θθ
g
(0,π0)
M−1 and M

θ̂θθ
(M) = g

(0,π0)
M

M
θ̂θθ
g
(0,p1+q1)
M−1 , standard algebra

shows that W(n)
J (M) = n (T

˜
(n)
J (θ̂θθ))

′

ΨΨΨ
′

ΛΛΛΨΨΨT
˜

(n)
J (θ̂θθ), where

ΨΨΨ :=




1
k E[J2

0 (U)]
(
J

(n)

I;θ̂θθ,Σ̂ΣΣ

)−1
0

0 1
k2 E[J2

1 (U)] E[J2
2 (U)]

(
J

(n)

II;θ̂θθ,Σ̂ΣΣ

)−1




1/2

and

ΛΛΛ := Ikm+k2π0
−Π







J
(n)

I;θ̂θθ,Σ̂ΣΣ
0

0 J
(n)

II;θ̂θθ,Σ̂ΣΣ




1/2 (
(K(n) ⊗ Ik)

−1 0
0 P

θ̂θθ
M

θ̂θθ

)
g
(m,p1+q1)
M−1 ΥΥΥ


 .

Now, recall that we restricted ourselves to affine-invariant null hypotheses, i.e., to couples

(θθθ0,ΥΥΥ) for which g
(m,p1+q1)
M

(θθθ0 +M(ΥΥΥ)) = θθθ0 +M(ΥΥΥ) for any full-rank matrix M. This implies

that M(g
(m,p1+q1)
M

ΥΥΥ) = M(ΥΥΥ) for all such M (see the proof of Proposition 2 in Hallin and

Paindaveine 2002c). The affine-invariance of W (n)
J follows.
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The asymptotic representation result of Proposition 2 will be sufficient (see the proof of (ii),

(iii) below) to prove that all versions of W (n)
J (based on any type of signs and ranks) have the

same asymptotic representation, and thus are asymptotically equivalent; the asymptotic affine-

invariance of the absolute-interdirection-based version of W (n)
J follows since we showed above

that the pseudo-Mahalanobis version of W (n)
J is strictly affine-invariant.

Let us now prove that W (n)
J is asymptotically invariant with respect to the group of contin-

uous monotone radial transformations. Let n1/2T̃
(n)
J ;ΣΣΣ(θθθ) be given by


 n1/2T̃

(n)
I;J ;ΣΣΣ(θθθ)

n1/2T̃
(n)
II;J ;ΣΣΣ(θθθ)


 :=


 L

(n)′

θθθ (n1/2(vec Λ̃ΛΛ
(n)

0;J ;ΣΣΣ(θθθ))
′

, . . . , (vec Λ̃ΛΛ
(n)

n−1;J ;ΣΣΣ(θθθ))
′

)
′

Q
(n)′

θθθ ((n− 1)1/2 (vec Γ̃ΓΓ
(n)

1;J ;ΣΣΣ(θθθ))
′

, . . . , (vec Γ̃ΓΓ
(n)

n−1;J ;ΣΣΣ(θθθ))
′

)
′


 ,

where

Λ̃ΛΛ
(n)

i;J ;ΣΣΣ(θθθ) := (n− i)−1 ΣΣΣ
′−1/2

n∑

t=i+1

J0

(Rt(θθθ,ΣΣΣ)

n + 1

)
Ut(θθθ,ΣΣΣ)x

(n)′

t−i K
(n),

and

Γ̃ΓΓ
(n)

i;J ;ΣΣΣ(θθθ) := ΣΣΣ
′−1/2


 1

n− i

n∑

t=i+1

J1

(R
(n)
t (θθθ,ΣΣΣ)

n + 1

)
J2

(Rt−i(θθθ,ΣΣΣ)

n + 1

)
Ut(θθθ,ΣΣΣ)U

′

t−i(θθθ,ΣΣΣ)


ΣΣΣ

′1/2.

Proceeding as in the proof of Proposition 2, one can verify that T
˜

(n)
J (θθθ)− T̃

(n)
J ;ΣΣΣ(θθθ) is oP(n−1/2)

under ∪fH(n)(θθθ,ΣΣΣ, f). Using Lemma 3, this yields

n1/2 T
˜

(n)
J (θ̂θθ) = n1/2T̃

(n)
J ;ΣΣΣ(θθθ)−

Ck(J0; f)

k

(
JI;θθθ,ΣΣΣ (K(n) ⊗ Ik)

−1 0

0 Dk(J2;f)
k JII;θθθ,ΣΣΣ Pθθθ Mθθθ

)
n1/2(θ̂θθ − θθθ) + oP(1),

under H(n)(θθθ,ΣΣΣ, f). On the other hand, using the continuity of Q̄I;J ;ΣΣΣ(θθθ) and Q̄II;J ;ΣΣΣ(θθθ) with
respect to θθθ and ΣΣΣ, we obtain that, under ∪fH(n)(θθθ,ΣΣΣ, f),

W(n)
J =

(
n1/2 T

˜
(n)
J (θ̂θθ)

)′
(

Q̄I;J ;ΣΣΣ(θθθ) 0
0 Q̄II;J ;ΣΣΣ(θθθ)

)(
n1/2 T

˜
(n)
J (θ̂θθ)

)
+ oP(1)

(here, and in the sequel, Q̄I;J ;ΣΣΣ(θθθ) (resp. Q̄II;J ;ΣΣΣ(θθθ)) denotes the array obtained by replacing

J
(n)
I;θθθ,ΣΣΣ by JI;θθθ,ΣΣΣ (resp. J

(n)
II;θθθ,ΣΣΣ by JII;θθθ,ΣΣΣ) in Q̄

(n)
I;J ;ΣΣΣ(θθθ) (resp. in Q̄

(n)
II;J ;ΣΣΣ(θθθ))). Writing K̄ for

K(n) ⊗ Ik, and using Lemma 2.2.6 (c) in Rao and Mitra (1971),
(

Q̄I;J ;ΣΣΣ(θθθ) 0
0 Q̄II;J ;ΣΣΣ(θθθ)

)(
JI;θθθ,ΣΣΣ K̄−1 0

0 Dk(J2;f)
k JII;θθθ,ΣΣΣ Pθθθ Mθθθ

)
ΥΥΥ =

(
cI(K̄

−1ΥΥΥI − K̄−1 ΥΥΥI(ΥΥΥ
′

I K̄
′−1 JI;θθθ,ΣΣΣ K̄−1 ΥΥΥI)

−1ΥΥΥ
′

I K̄
′−1 JI;θθθ,ΣΣΣ K̄−1ΥΥΥI)

cII(PθθθMθθθ ΥΥΥII −PθθθMθθθ ΥΥΥII(ΥΥΥ
′

IIM
′

θθθP
′

θθθJII;θθθ,ΣΣΣ PθθθMθθθ ΥΥΥII)
−ΥΥΥ

′

IIM
′

θθθP
′

θθθ JII;θθθ,ΣΣΣ PθθθMθθθ ΥΥΥII)

)
= 0,

for some constants cI , cII . This and the constraints on θ̂θθ jointly entail that, under ∪fH(n)(θθθ,ΣΣΣ, f),
with θθθ − θθθ0 ∈M(ΥΥΥ),

W(n)
J =

(
n1/2T̃

(n)
J ;ΣΣΣ(θθθ)

)′ ( Q̄I;J ;ΣΣΣ(θθθ) 0
0 Q̄II;J ;ΣΣΣ(θθθ)

)(
n1/2T̃

(n)
J ;ΣΣΣ(θθθ)

)
+ oP(1),
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which proves that W (n)
J is indeed asymptotically invariant with respect to the group G (n)

ΣΣΣ , since

n1/2T̃
(n)
J ;ΣΣΣ(θθθ) is strictly invariant with respect to that group.

(ii), (iii) Part (i) of the Proposition, and the continuity of Q̄I;J ;ΣΣΣ(θθθ) and Q̄II;J ;ΣΣΣ(θθθ) with

respect to θθθ and ΣΣΣ again, imply that W (n)
J has the same asymptotic behaviour as

n (T
˜

(n)
I;J(θθθ))

′

Q̄I;J ;ΣΣΣ(θθθ) T
˜

(n)
I;J(θθθ) + n (T

˜
(n)
II;J(θθθ))

′

Q̄II;J ;ΣΣΣ(θθθ) T
˜

(n)
II;J(θθθ) (23)

(under H(n)(θθθ,ΣΣΣ, f), θθθ − θθθ0 ∈ M(ΥΥΥ) as under the sequence of local alternatives H(n)(θθθ +
ννν(n)τττ ,ΣΣΣ, f), with θθθ − θθθ0 ∈ M(ΥΥΥ), τττ /∈ M(ΥΥΥ)). On the other hand, Proposition 2 implies
that (23) behaves as

n
(
T̃

(n)
I;J ;ΣΣΣ,f (θθθ)

)′
Q̄I;J ;ΣΣΣ(θθθ) T̃

(n)
I;J ;ΣΣΣ,f (θθθ) + n

(
T̃

(n)
I;J ;ΣΣΣ,f (θθθ)

)′
Q̄II;J ;ΣΣΣ(θθθ) T̃

(n)
II;J ;ΣΣΣ,f (θθθ), (24)

where we let n1/2T̃
(n)
I;J ;ΣΣΣ,f (θθθ) := L

(n)′

θθθ (n1/2 (vec Λ̃ΛΛ
(n)

0;J ;ΣΣΣ,f (θθθ))
′

, . . . , (vec Λ̃ΛΛ
(n)

n−1;J ;ΣΣΣ,f (θθθ))
′

)
′

and

n1/2T̃
(n)
II;J ;ΣΣΣ,f (θθθ) := Q

(n)′

θθθ ((n− 1)1/2 (vec Γ̃ΓΓ
(n)

1;J ;ΣΣΣ,f (θθθ))
′

, . . . , (vec Γ̃ΓΓ
(n)

n−1;J ;ΣΣΣ,f (θθθ))
′

)
′

.

Now, n1/2T̃
(n)
I;J ;ΣΣΣ,f (θθθ) is asymptotically km-normal, with mean 0 under H(n)(θθθ,ΣΣΣ, f) (with

θθθ−θθθ0 ∈M(ΥΥΥ)), mean (Ck(J0; f)/k)JI;θθθ,ΣΣΣ (vecηηη
′

) under the sequence of local alternatives under

consideration, and variance (E[J 2
0 (U)]/k)JI;θθθ,ΣΣΣ under both. Since (E[J 2

0 (U)]/k)J
1/2
I;θθθ,ΣΣΣ Q̄I;J ;ΣΣΣ(θθθ)J

1/2
I;θθθ,ΣΣΣ

is a symmetric idempotent matrix with rank km− rI , this implies that the first term in (24) is

asymptotically chi-square with km− rI degrees of freedom under H(n)
ΥΥΥ (θθθ0), and asymptotically

noncentral chi-square, still with km − rI degrees of freedom but with noncentrality parameter
(C2

k(J0; f)/(k E[J2
0 (U)])) rθθθ,ΣΣΣ(ηηη) underH(n)(θθθ+ννν(n)τττ ,ΣΣΣ, f) with θθθ−θθθ0 ∈M(ΥΥΥ), and τττ /∈M(ΥΥΥ).

For the serial part in (24), n1/2T̃
(n)
II;J ;ΣΣΣ,f (θθθ) is asymptotically k2π0-normal, with mean 0 under

H(n)(θθθ,ΣΣΣ, f), θθθ − θθθ0 ∈M(ΥΥΥ), mean

1

k2
Dk(J2; f)Ck(J1; f)JII;θθθ,ΣΣΣ Pθθθ Mθθθ

(
vecγγγ
vec δδδ

)

under the sequence of alternatives under consideration, and variance (E[J 2
1 (U)]E[J2

2 (U)]/k2)JII;θθθ,ΣΣΣ

under both. The result follows from the fact that (E[J 2
1 (U)]E[J2

2 (U)]/k2)J
1/2
II;θθθ,ΣΣΣ Q̄II;J ;ΣΣΣ(θθθ)J

1/2
II;θθθ,ΣΣΣ

is a symmetric idempotent matrix with rank

tr (Ik2π0
− J

1/2
II;θθθ,ΣΣΣPθθθMθθθ ΥΥΥII(ΥΥΥ

′

IIM
′

θθθP
′

θθθJII;θθθ,ΣΣΣ PθθθMθθθ ΥΥΥII)
−ΥΥΥ

′

IIM
′

θθθP
′

θθθJ
1/2
II;θθθ,ΣΣΣ)

= k2π0 − tr ((ΥΥΥ
′

IIM
′

θθθP
′

θθθJII;θθθ,ΣΣΣPθθθMθθθ ΥΥΥII)(ΥΥΥ
′

IIM
′

θθθP
′

θθθJII;θθθ,ΣΣΣ PθθθMθθθ ΥΥΥII)
−)

= k2π0 − rank(ΥΥΥ
′

IIM
′

θθθP
′

θθθJII;θθθ,ΣΣΣPθθθMθθθ ΥΥΥII)

= k2π0 − rank(Ṁθθθ Υ̇ΥΥII) = k2π0 −min(k2(p0 + q0), rII) = k2π0 − rII ,

since Mθθθ ΥΥΥII = Ṁθθθ Υ̇ΥΥII is the product of two full rank matrices.

(iv) Applied to the current problem, Hallin and Puri (1994)’s general Lemma 5.12 shows

that the test φ
(n)
ΣΣΣ,f?

that rejects the null hypothesis whenever

∆∆∆
(n)′

ΣΣΣ,f?
(θθθ)(I−ΓΓΓΣΣΣ,f?(θθθ)ΥΥΥ(ΥΥΥ

′

ΓΓΓΣΣΣ,f?(θθθ)ΥΥΥ)−ΥΥΥ
′

ΓΓΓΣΣΣ,f?(θθθ)(ΓΓΓΣΣΣ,f?(θθθ))−)
′

(ΓΓΓΣΣΣ,f?(θθθ))−

(I−ΓΓΓΣΣΣ,f?(θθθ)ΥΥΥ(ΥΥΥ
′

ΓΓΓΣΣΣ,f?(θθθ)ΥΥΥ)−ΥΥΥ′ΓΓΓΣΣΣ,f?(θθθ)(ΓΓΓΣΣΣ,f?(θθθ))−)∆∆∆
(n)
ΣΣΣ,f?

(θθθ) > χ2
s,1−α,
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where s := rank(ΓΓΓΣΣΣ,f?(θθθ)) − rank(ΥΥΥ
′

ΓΓΓΣΣΣ,f?(θθθ)ΥΥΥ), is locally and asymptotically most stringent

for H(n)
ΥΥΥ (θθθ0,ΣΣΣ, f?) against

⋃
θθθ 6=θθθ0+M(ΥΥΥ)

⋃
ΣΣΣH(n)(θθθ,ΣΣΣ, f?), at asymptotic probability level α. Of

course, the same optimality property holds for the asymptotically equivalent (underH(n)
ΥΥΥ (θθθ0,ΣΣΣ, f?),

and under contiguous alternatives) test φ
(n)
f?

that rejects the null hypothesis whenever

W (n)
f?

:= ∆∆∆
˜

(n)′

f?
(θ̂θθ)(I− Γ̂ΓΓ

(n)

f?
(θ̂θθ)ΥΥΥ(ΥΥΥ

′

Γ̂ΓΓ
(n)

f?
(θ̂θθ)ΥΥΥ)−ΥΥΥ

′

Γ̂ΓΓ
(n)

f?
(θ̂θθ)(Γ̂ΓΓ

(n)

f?
(θ̂θθ))−)

′

(Γ̂ΓΓ
(n)

f?
(θ̂θθ))− (25)

(I− Γ̂ΓΓ
(n)

f?
(θ̂θθ)ΥΥΥ(ΥΥΥ

′

Γ̂ΓΓ
(n)

f?
(θ̂θθ)ΥΥΥ)−ΥΥΥ′Γ̂ΓΓ

(n)

f?
(θ̂θθ)(Γ̂ΓΓ

(n)

f?
(θ̂θθ))−) ∆∆∆

˜
(n)
f?

(θ̂θθ) > χ2
s,1−α,

where

∆∆∆
˜

(n)
f?

(θθθ) := n1/2

(
Ikm 0

0 M
′

θθθ P
′

θθθ

)
T
˜

(n)
J (θθθ),

with J0 = J1 := ϕf?◦F̃
−1
?k and J2 = F̃−1

?k , and

Γ̂ΓΓ
(n)

f?
(θθθ) :=




1
k Ik,f? J

(n)

I;θθθ,Σ̂ΣΣ
0

0
µk+1;f? Ik,f?
k2 µk−1;f?

M
′

θθθP
′

θθθJ
(n)

II;θθθ,Σ̂ΣΣ
PθθθMθθθ


 = ΓΓΓΣΣΣ,f?(θθθ) + oP(1)

under H(n)(θθθ,ΣΣΣ, f?).

If we can assume that W (n)
f?

= W(n)
f?

, then, by (ii), we have s = km+k2π0−r, so that φ
(n)
f?

and

φ
(n)
f?

actually coincide. The result then follows from the invariance properties of φ
(n)
f?

. In order to

complete the proof, it is thus sufficient to show that indeed W (n)
f?

= W(n)
f?

. The block-diagonal

structure of the quadratic form in the definition of W (n)
f?

allows for a decomposition of the form

W(n)
I;f?

+ W(n)
II;f?

, where W(n)
I;f?

(resp. W(n)
II;f?

) deals with the trend part (resp. the serial part).

While routine algebra yields W (n)
I;f?

= W(n)
I;f?

, the situation for the serial part is more intricate,

mainly due to the presence of generalized inverses. Write P̂, M̂, ĴII , and N̂ for P
θ̂θθ
, M

θ̂θθ
, J

(n)

II;θ̂θθ,Σ̂ΣΣ
,

and M
′

θ̂θθ
P

′

θ̂θθ
J

(n)

II;θ̂θθ,Σ̂ΣΣ
P

θ̂θθ
M

θ̂θθ
, respectively. Standard calculation yields

W(n)
II;f?

=
nk2 µk−1;f?

µk+1;f? Ik,f?

T
˜

(n)′

II;J(θ̂θθ) P̂ M̂

{
N̂−

[
I− N̂ΥΥΥII

(
ΥΥΥ

′

II N̂ΥΥΥII

)−
ΥΥΥ

′

II N̂ N̂−
]}

M̂
′

P̂
′

T
˜

(n)
II;J(θ̂θθ),

that is, in view of Lemma 2.2.6 (c) in Rao and Mitra (1971),

W(n)
II;f?

=
nk2 µk−1;f?

µk+1;f? Ik,f?

T
˜

(n)′

II;J(θ̂θθ)

[
P̂ M̂ N̂− M̂

′

P̂
′ − P̂ M̂ΥΥΥII

(
ΥΥΥ

′

II N̂ΥΥΥII

)−
ΥΥΥ

′

II M̂
′

P̂
′

]
T
˜

(n)
II;J(θ̂θθ).

This implies that W (n)
II;f?

= W(n)
II;f?

, since M̂ΥΥΥII =
˙̂

M Υ̇ΥΥII , and since, from Lemma 2.2.5 (c) in

Rao and Mitra (1971), P̂ M̂ (M̂
′

P̂
′

ĴII P̂ M̂)− M̂
′

P̂
′

= Ĵ−1
II . Consequently, W (n)

f?
= W(n)

f?
. �

Note that, for given values of p0 and q0, T
˜

(n)
J (θ̂θθ), Ṁ

θ̂θθ
, Υ̇ΥΥII , and π0 depend on p1 and q1 only

through π = max(p1−p0, q1−q0). Consequently, φ
(n)
J also depends on p1 and q1 through π only.

We conclude this section by stressing the fact that the value of the test statistic W (n)
J does not

depend on the particular choice of the fundamental system Ψ̂ΨΨ := {ΨΨΨ(1)
t (θ̂θθ), . . . ,ΨΨΨ

(p0+q0)
t (θ̂θθ)} in P

θ̂θθ
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and Q
(n)

θ̂θθ
. Of course, only the serial partW (n)

II;J possibly may depend on the fundamental system.

Now, for any fundamental system Φ̂ΦΦ := {ΦΦΦ(1)
t (θ̂θθ), . . . ,ΦΦΦ

(p0+q0)
t (θ̂θθ)}, there exists an invertible

matrix Λ̄ΛΛ such that Q
θ̂θθ;Φ̂ΦΦ

= Q
θ̂θθ;Ψ̂ΨΨ

Λ̄ΛΛ (see the proof of Proposition 4(i) in Hallin and Paindaveine

(2002d)). It easily follows that T
˜

(n)

II;J ;Φ̂ΦΦ
(θ̂θθ) := Λ̄ΛΛ

′

T
˜

(n)

II;J ;Ψ̂ΨΨ
(θ̂θθ), J

(n)

II;θ̂θθ,Σ̂ΣΣ;Φ̂ΦΦ
= Λ̄ΛΛ

′

J
(n)

II;θ̂θθ,Σ̂ΣΣ;Ψ̂ΨΨ
Λ̄ΛΛ and

P
θ̂θθ;Φ̂ΦΦ

= Λ̄ΛΛ
−1

P
θ̂θθ;Φ̂ΦΦ

. Consequently, we obtain that W (n)

K;Φ̂ΦΦ
= W(n)

K;Ψ̂ΨΨ
.

5.2 The Gaussian procedure.

Define

J
(n)
I;N ;θθθ := L

(n)′

θθθ

(
KKKn ⊗ (S

(n)
θθθ )−1

)
L

(n)
θθθ and J

(n)
II;N ;θθθ := Q

(n)′

θθθ

[
In−1 ⊗ Γ̂ΓΓ

(n)

θθθ

]
Q

(n)
θθθ ,

where S
(n)
θθθ := n−1∑n

t=1 Zt(θθθ)Z
′

t(θθθ) is a consistent estimator, under H(n)(θθθ,ΣΣΣ, f), of the innova-

tion covariance (E[(F̃−1
k (U))2]/k)ΣΣΣ, and

Γ̂ΓΓ
(n)

θθθ := (n− 1)−1
n∑

t=2

vec
(
Zt(θθθ)Z

′

t−1(θθθ)
) (

vec
(
Zt(θθθ)Z

′

t−1(θθθ)
))′

is consistent for (E[(F̃−1
k (U))2]/k)2 ΣΣΣ⊗ΣΣΣ−1 under the same sequence of hypotheses. Let

Q̄
(n)
I;N (θθθ) := (J

(n)
I;N ;θθθ)

−1 − (K(n) ⊗ Ik)
−1 ΥΥΥI

(
ΥΥΥ

′

I (K(n) ⊗ Ik)
′−1 J

(n)
I;N ;θθθ (K(n) ⊗ Ik)

−1 ΥΥΥI

)−1
ΥΥΥ

′

I (K(n) ⊗ Ik)
′−1,

and

Q̄
(n)
II;N (θθθ) := (J

(n)
II;N ;θθθ)

−1 −PθθθṀθθθ Υ̇ΥΥII

(
Υ̇ΥΥ

′

II Ṁ′
θθθ P

′

θθθJ
(n)
II;N ;θθθ PθθθṀθθθ Υ̇ΥΥII

)−
Υ̇ΥΥ

′

II Ṁ
′

θθθ P
′

θθθ.

Then the Gaussian parametric test statistic is

W(n)
N := n

(
T

(n)
I;S,φ(θ̂θθ)

)′
Q̄

(n)
I;N (θ̂θθ)T

(n)
I;S,φ(θ̂θθ) + n

(
T

(n)′

II;S,φ(θ̂θθ)
)′

Q̄
(n)
II;N (θ̂θθ)T

(n)
II;S,φ(θ̂θθ),

where T
(n)
I;S,φ(θθθ) and T

(n)
II;S,φ(θθθ) are defined in (13) and (14) respectively, S := S

(n)
θθθ , and φ(r) :=

exp(−r2/2) stands for the Gaussian radial density. Note that T
(n)
I;S,φ(θθθ) and T

(n)
II;S,φ(θθθ) are based

on Gaussian statistics of the form

ΛΛΛ
(n)
i;S,φ(θθθ)= (S

(n)
θθθ )−1


 1

n− i

n∑

t=i+1

Zt(θθθ)x
(n)′

t−i K
(n)


 and ΓΓΓ

(n)
i;S,φ(θθθ)= (S

(n)
θθθ )−1


 1

n− i

n∑

t=i+1

Zt(θθθ)Z
′

t−i(θθθ)


 ,

(26)
respectively.

Proposition 4 Assume that Assumptions (A1), (A2), (B1′), (B2), (B3), (E1) and (E2) hold.

Consider the sequence of parametric Gaussian tests φ
(n)
N that reject the null hypothesis H(n)

ΥΥΥ (θθθ0)

whenever W(n)
N exceeds the α-upper quantile χ2

km+k2π0−r,1−α of a chi-square distribution with

km + k2π0 − r degrees of freedom. Then,
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(i) W(n)
N is strictly affine-invariant;

(ii) W(n)
N is asymptotically chi-square with km + k2π0 − r degrees of freedom under H(n)

ΥΥΥ (θθθ0)

(so that φ
(n)
N has asymptotic level α);

(iii) W(n)
N is asymptotically noncentral chi-square, still with km + k2π0 − r degrees of freedom

but with noncentrality parameter

k

Dk(f)
rθθθ,ΣΣΣ(ηηη) + sθθθ,ΣΣΣ(γγγ,δδδ),

under H(n)(θθθ+ννν(n)τττ ,ΣΣΣ, f), θθθ−θθθ0 ∈M(ΥΥΥ) and τττ /∈M(ΥΥΥ), provided that (A1) is reinforced
into (A1′);

(iv) The sequence of tests φ
(n)
N is locally asymptotically most stringent for H(n)

ΥΥΥ (θθθ0) against⋃
θθθ 6=θθθ0+M(ΥΥΥ)

⋃
ΣΣΣH(n)(θθθ,ΣΣΣ, φ), at probability level α.

Again, the tests statistics W (n)
N do not depend on the particular choice of the fundamental

system {ΨΨΨ(1)
t (θ̂θθ), . . . ,ΨΨΨ

(p0+q0)
t (θ̂θθ)}, and, for given values of p0 and q0, depend on p1 and q1 through

π = max(p1 − p0, q1 − q0) only.
The proof of Proposition 4 follows along the same lines as for Proposition 3. The key

ingredient is again an asymptotic linearity result, which in this parametric Gaussian context
takes the following form (the proof of Lemma 3 readily extends to this situation).

Proposition 5 Assume that Assumptions (A1), (A2), (B1′), (B2), (B3) and (D1) hold. Then

n1/2(T
(n)
I;S,φ(θ̂θθ)−T

(n)
I;S,φ(θθθ)) +

k

Dk(f)
JI;θθθ,ΣΣΣ (K(n) ⊗ Ik)

−1 n1/2(θ̂θθ
(n)

I − θθθI)

and

n1/2(T
(n)
II;S,φ(θ̂θθ)−T

(n)
II;S,φ(θθθ)) + JII;θθθ,ΣΣΣ Pθθθ Mθθθ n1/2(θ̂θθ

(n)

II − θθθII)

are oP(1) as n →∞, under H(n)(θθθ,ΣΣΣ, f).

5.3 Asymptotic performances.

We finally turn to asymptotic relative efficiencies of the tests φ
(n)
J with respect to the Gaussian

test φ
(n)
N . The ARE values in the following proposition directly follow as the ratios of the

noncentrality parameters in the asymptotic distributions of the various test statistics under
local alternatives (see Propositions 3 and 4).

Proposition 6 Assume that Assumptions (A1′), (A2), (B1′), (B2), (B3), (C), (D1), (D2),

(E1) and (E2) hold. Then, the asymptotic relative efficiency of φ
(n)
J with respect to the Gaussian

test φ
(n)
N , under radial density f , is

AREk,f(φ
(n)
J /φ

(n)
N ) = (1− λθθθ,ΣΣΣ,f (τττ))

1

k2
Dk(f)

C2
k(J0; f)

E[J2
0 (U)]

+ λθθθ,ΣΣΣ,f (τττ)
1

k2

D2
k(J2; f)

E[J2
1 (U)]

C2
k(J1; f)

E[J2
2 (U)]

,

where λθθθ,ΣΣΣ,f (τττ) := (Dk(f)sθθθ,ΣΣΣ(γγγ,δδδ))/(k rθθθ,ΣΣΣ(ηηη) + Dk(f) sθθθ,ΣΣΣ(γγγ,δδδ)) ∈ [0, 1].
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Denoting by ARE
(loc)
k,f (φ

(n)
J /φ

(n)
N ) and ARE

(ser)
k,f (φ

(n)
J /φ

(n)
N ) the AREs achieved in the pure location

and purely serial problems, respectively, we have

AREk,f(φ
(n)
J /φ

(n)
N ) = (1− λθθθ,ΣΣΣ,f (τττ))ARE

(loc)
k,f (φ

(n)
J /φ

(n)
N ) + λθθθ,ΣΣΣ,f (τττ )ARE

(ser)
k,f (φ

(n)
J /φ

(n)
N ).

This shows that the asymptotic relative efficiencies of the proposed procedures with respect
to the parametric Gaussian procedure are convex linear combinations of the corresponding
asymptotic relative efficiencies in the pure location and purely serial models (see Hallin and
Paindaveine 2002a and 2002b, respectively).

6 Examples.

6.1 A multivariate Durbin-Watson test.

The generalized Durbin-Watson testing problem corresponds to θθθ0 = 0, ΥΥΥI = Ikm, and ΥΥΥII := ∅.
Letting π = max(p1, q1), one easily checks that W (n)

I;J = 0, n1/2 T
˜

(n)
II;J(θθθ) = S

˜
(n)
II;π+1(θθθ), and

J
(n)
II;θθθ,ΣΣΣ = Iπ ⊗ (ΣΣΣ⊗ΣΣΣ−1), so that

W(n)
J =W(n)

II;J =
k2

E[J2
1 (U)]E[J2

2 (U)]

π∑

i=1

(n− i)−1 (27)

×
n∑

s,t=i+1

J1

(R̂s(β̂ββ)

n + 1

)
J1

(R̂t(β̂ββ)

n + 1

)
J2

(R̂s−i(β̂ββ)

n + 1

)
J2

(R̂t−i(β̂ββ)

n + 1

)
W

′

s−i(β̂ββ)Wt−i(β̂ββ) W
′

s(β̂ββ)Wt(β̂ββ)

(If there is no trend part in the model, the test statistic (27) is the purely pseudo-Mahalanobis
version of the test statistic based on pseudo-Mahalanobis ranks and interdirections proposed in
Hallin and Paindaveine (2002b) in the problem of testing for serial randomness). The resulting
Durbin-Watson test consists (at level α) in rejecting the null hypothesis of independent noise

as soon as W(n)
J exceeds the α-upper quantile of a chi-square distribution with k2π degrees of

freedom. One could also obtain purely hyperplane-based Durbin-Watson tests (that are strictly
affine-invariant in this case) by replacing the pseudo-Mahalanobis ranks R̂t(β̂ββ) and the pseudo-
Mahalanobis angles W

′

s(β̂ββ)Wt(β̂ββ) by lift-interdirection ranks Rt(β̂ββ) and Randles’ interdirections
qst(β̂ββ), respectively.

6.2 Testing the order of a VAR model.

For the problem of testing AR(p0) dependence against AR(p0 + 1) dependence, the proposed
tests consist (at level α) in rejecting the null hypothesis as soon as

W(n)
J = W(n)

II;J = n

(
T
˜

(n)
II;J(θ̂θθ)

)′

Q̄
(n)

II;J ;Σ̂ΣΣ
(θ̂θθ) T

˜
(n)
II;J(θ̂θθ) (28)

exceeds the α-upper quantile of a chi-square distribution with k2 degrees of freedom, where, let-

ting v(n)(θθθ) := (v
(n)′

1 (θθθ), . . . ,v
(n)′
p0 (θθθ))′ and v

(n)
i (θθθ) :=

∑n−1
t=max(i,2)(n− t)1/2Gt−i(θθθ)(vec ΓΓΓ

˜
(n)
t;J (θθθ)),

n1/2 T
˜

(n)
II;J(θθθ) :=


 (n− 1)1/2 (vec ΓΓΓ

˜
(n)
1;J(θθθ))

v(n)(θθθ)


 ,
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and

Q̄
(n)
II;J ;ΣΣΣ(θθθ) :=

k2

E[J2
1 (U)]E[J2

2 (U)]

[(
ΣΣΣ⊗ΣΣΣ−1 0

0 w2

)−1

−
(

Ik2 0
Ik2p0

)
W−2

(
Ik2 0
Ik2p0

)′ ]
.

Above, w2 and W2 stand for the k2p0×k2p0 arrays with block
∑n−1

t=max(i,j,2) Gt−i(θθθ)ΣΣΣG′
t−j(θθθ)⊗

ΣΣΣ−1 and
∑n−1

t=max(i,j) Gt−i(θθθ)ΣΣΣG′
t−j(θθθ) ⊗ ΣΣΣ−1, respectively, in position (i, j) (i, j = 1, . . . , p0).

Note that W2 = w2 + e
(p0)
1 e

(p0)′

1 ⊗ (ΣΣΣ ⊗ ΣΣΣ−1) only differ from w2 through the block in posi-
tion (1, 1).

The test statistic (28) has the same algebraic structure than in the univariate case (see
Hallin and Puri (1994), or Garel and Hallin (1999)). However, it should be pointed out that
the test statistic associated with the problem of testing MA(q0) dependence versus MA(q0 + 1)
dependence is much more complex than in the univariate case. This is due to the presence of

the factors H
(r)
n−1 and B

′(l)
n−1 in Q

(n)
θθθ which cancel each other in the univariate case only. In the

multivariate case, they do not, yielding in n1/2 T
˜

(n)
II;J(θθθ) quite intricate linear combinations of

the cross-covariance matrices ΓΓΓ
˜

(n)
t;J (θθθ).

6.3 Detecting switching location regimes.

We finally consider the problem of detecting the presence of different “location regimes” in a

VAR(1) series with a time-dependent trend (with mean βββi in Ci := {t(n)
i−1 + 1, . . . , t

(n)
i }). More

precisely, the null hypothesis H0 : βββ1 = . . . = βββm we are considering here is associated with

ΥΥΥI = (1, . . . , 1)′ ⊗ Ik, ΥΥΥII = Ik2 . Letting λλλ(n) := ((λ
(n)
1 )−1/2, . . . , (λ

(n)
m )−1/2)′, with λ

(n)
j := nj/n,

the test statistic is

W(n)
J = W(n)

I;J = n

(
T
˜

(n)
I;J(θ̂θθ)

)′

Q̄
(n)

I;J ;Σ̂ΣΣ
(θ̂θθ) T

˜
(n)
I;J(θ̂θθ),

where

n1/2 T
˜

(n)
I;J(θθθ) =

[
Ikm +

√
n

n− 1
(Im ⊗A′)L−1

]




1√
n1

∑

t∈C1

J0

(R̂t(θθθ)

n + 1

)
Σ̂ΣΣ
−1/2′

Wt(θθθ)

1√
n2

∑

t∈C2

J0

(R̂t(θθθ)

n + 1

)
Σ̂ΣΣ
−1/2′

Wt(θθθ)

...

1√
nm

∑

t∈Cm

J0

(R̂t(θθθ)

n + 1

)
Σ̂ΣΣ
−1/2′

Wt(θθθ)




,

and

Q̄
(n)
I;J ;ΣΣΣ(θθθ) :=

k

E[J2
0 (U)]

[
(Im − λλλ(n)λλλ(n)′)⊗ [ΣΣΣ−1 + A′ΣΣΣ−1A]−1

]
.

If there is no serial part in the model (i.e., when the errors are independent white noise), the
problem reduces to the m-sample location problem (classical MANOVA), and the test statistic
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takes the form (just put A = 0)

W(n)
J =

k

E[J2
0 (U)]

[
m∑

j=1

1

nj

∑

i,̃ı∈Cj

J0

(R̂i(β̂ββ)

n + 1

)
J0

(R̂ı̃(β̂ββ)

n + 1

)
W

′

i(β̂ββ)Wı̃(β̂ββ)

−
m∑

j,̃=1

n
√

nj
√

ñ

∑

i,̃ı∈Cj

J0

(R̂i(β̂ββ)

n + 1

)
J0

(R̂ı̃(β̂ββ)

n + 1

)
W

′

i(β̂ββ)Wı̃(β̂ββ)

]
,

i.e., a purely pseudo-Mahalanobis version of Randles and Um (1998)’s test statistic. Again a

strictly affine-invariant purely hyperplane-based version of W (n)
J can be obtained in the same

way as for the Durbin-Watson tests, just by plugging in lift-interdirection ranks and Randles’
interdirections.

7 Appendix: proof of Lemma 3.

The proof of Lemma 3 is based on the following asymptotic linearity result for the individual

nonserial and serial statistics ΛΛΛ
˜

(n)
i;J and ΓΓΓ

˜
(n)
i;J (see Hallin and Paindaveine 2002f).

Proposition 7 Assume that Assumptions (A1), (A2), (B1′), (B2), (B3), (C), and (D1) hold.
Then

(n− i)1/2 vec (ΛΛΛ
˜

(n)
i;J (θθθ + ννν(n)τττ (n))− ΛΛΛ

˜
(n)
i;J (θθθ)) +

1

k
Ck(J0; f)

(Im ⊗ΣΣΣ−1)




∞∑

j=0

(K
′

R|i−j|K)⊗ hj



(
vecηηη(n)′

)
= oP(1), (29)

and

(n− i)1/2 vec (ΓΓΓ
˜

(n)
i;J (θθθ + ννν(n)τττ (n))− ΓΓΓ

˜
(n)
i;J (θθθ)) +

1

k2
Dk(J2; f)Ck(J1; f)

(ΣΣΣ⊗ΣΣΣ−1)
[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
= oP(1), (30)

as n →∞, under H(n)(θθθ,ΣΣΣ, f).

Proof of Lemma 3. Let us first prove the first statement in Lemma 3. Clearly,

n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) = L

(n)′

θ̂θθ
S
˜

(n)
I;J(θ̂θθ)− L

(n)′

θθθ S
˜

(n)
I;J(θθθ)

=
n−1∑

i=0

(n− i)1/2
[
(Im ⊗ ĥ

′

i) vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)− (Im ⊗ h

′

i) vec ΛΛΛ
˜

(n)
i;J (θθθ)

]
.

Now, for some fixed integer s (and n > s + 1),
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n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) =

s∑

i=0

(n− i)1/2
[(

Im ⊗ (ĥ
′

i − h
′

i)
)

vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)

]
(31)

+
s∑

i=0

[
(Im ⊗ h

′

i)

(
(n− i)1/2vec (ΛΛΛ

˜
(n)
i;J (θ̂θθ)− ΛΛΛ

˜
(n)
i;J (θθθ))

)]

+
n−1∑

i=s+1

(n− i)1/2
[
(Im ⊗ ĥ

′

i) vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)− (Im ⊗ h

′

i) vec ΛΛΛ
˜

(n)
i;J (θθθ)

]
.

Next, the local discreteness of θ̂θθ
(n)

(see Assumption (D1)(iii)) allows to replace θθθ(n) = θθθ+ννν(n)τττ (n)

with θ̂θθ
(n)

in (29) (see Kreiss 1987, Lemma 4.4). Since βββ(n) = βββ + n−1/2K(n)ηηη(n) can be written

under the form n1/2vec (βββ(n)′ − βββ
′

) = (K(n) ⊗ Ik)(vecηηη(n)′), this yields

(n− i)1/2 vec

(
ΛΛΛ
˜

(n)
i;J (θ̂θθ

(n)
)− ΛΛΛ

˜
(n)
i;J (θθθ)

)
= −1

k
Ck(J0; f) (32)

(Im ⊗ΣΣΣ−1)




∞∑

j=0

(K
′

R|i−j|K)⊗ hj


 (K(n) ⊗ Ik)

−1n1/2(θ̂θθ
(n)

I − θθθI) + R
(n)
i ,

where R
(n)
i is oP(1) as n →∞, under H(n)(θθθ,ΣΣΣ, f). Substituting in (31), we obtain

n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) =

s∑

i=0

(n− i)1/2
[(

Im ⊗ (ĥi − hi)
′
)

vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)

]

−1

k
Ck(J0; f)

s∑

i=0

[
(Im ⊗ h

′

iΣΣΣ
−1)




∞∑

j=0

(K
′

R|i−j|K)⊗ hj


 (K(n) ⊗ Ik)

−1n1/2(θ̂θθ
(n)

I − θθθI)
]

+
n−1∑

i=s+1

(n− i)1/2
[
(Im ⊗ ĥ

′

i) vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)− (Im ⊗ h

′

i) vec ΛΛΛ
˜

(n)
i;J (θθθ)

]
+

s∑

i=0

R
(n)
i .

Finally, this yields the decomposition

n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) +

1

k
Ck(J0; f)

×
[ ∞∑

i,j=0

(Im ⊗ h
′

i)
(
(K

′

R|i−j|K)⊗ΣΣΣ−1
)

(Im ⊗ hj)
]
(K(n) ⊗ Ik)

−1n1/2(θ̂θθ
(n)

I − θθθI)

= T
(n,s)
1 + T

(n,s)
2 ,

where

T
(n,s)
1 :=

s∑

i=0

(n− i)1/2
[(

Im ⊗ (ĥi − hi)
′
)

vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)

]
+

s∑

i=0

R
(n)
i ,

and

T
(n,s)
2 :=

n−1∑

i=s+1

(n− i)1/2
[
(Im ⊗ ĥ

′

i) vec ΛΛΛ
˜

(n)
i;J (θ̂θθ)− (Im ⊗ h

′

i) vec ΛΛΛ
˜

(n)
i;J (θθθ)

]
+

1

k
Ck(J0; f)

∞∑

i=s+1


(Im ⊗ h

′

iΣΣΣ
−1)




∞∑

j=0

(K
′

R|i−j|K)⊗ hj




 (K(n) ⊗ Ik)

−1n1/2(θ̂θθ
(n)

I − θθθI).
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Since
∑∞

i,j=0 (Im⊗h
′

i)
(
(K

′

R|i−j|K)⊗ΣΣΣ−1
)

(Im⊗hj) = JI;θθθ,ΣΣΣ, the first statement in Lemma 3

takes the form

n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) +

1

k
Ck(J0; f)

[ ∞∑

i,j=0

(Im ⊗ h
′

i)
(
(K

′

R|i−j|K)⊗ΣΣΣ−1
)

(Im ⊗ hj)
]
(K(n) ⊗ Ik)

−1n1/2(θ̂θθ
(n)

I − θθθI) = oP(1)

as n → ∞ under H(n)(θθθ,ΣΣΣ, f). Now, it follows, from the continuity of θθθ 7→ hi(θθθ) and the

boundedness (in probability, under H(n)(θθθ,ΣΣΣ, f); see (32)) of (n− i)1/2vec ΛΛΛ
˜

(n)
i;J (θ̂θθ), that T

(n,s)
1 is

oP(1) underH(n)(θθθ,ΣΣΣ, f), for any fixed s, as n →∞. On the other hand, the exponential decrease

in i of the hi’s and the root-n consistency of θ̂θθ imply that T
(n,s)
2 is oP(1) under H(n)(θθθ,ΣΣΣ, f), as

s →∞, uniformly in n.

Now, P
[
‖T(n,s)

1 + T
(n,s)
2 ‖ > δ

]
≤ P

[
‖T(n,s)

1 ‖ > δ/2
]

+ P
[
‖T(n,s)

2 ‖ > δ/2
]
, for all s and n.

For any ε > 0, one can always choose s = S sufficiently large so that P
[
‖T(n,S)

2 ‖ > δ/2
]

< ε

uniformly in n. Since T
(n,S)
1 is oP (1) as n →∞, it is possible to find a integer N = N(ε) such

that P
[
‖T(n,S)

1 ‖ > δ/2
]

< ε for all n ≥ N . Consequently, for all ε > 0, N = N(ε) is such that

P

[∥∥∥n1/2(T
˜

(n)
I;J(θ̂θθ)− T

˜
(n)
I;J(θθθ)) +

1

k
Ck(J0; f)

[ ∞∑

i,j=0

(Im ⊗ h
′

i)
(
(K

′

R|i−j|K)⊗ΣΣΣ−1
)

(Im ⊗ hj)
]
(K(n) ⊗ Ik)

−1n1/2(θ̂θθ
(n)

I − θθθI)
∥∥∥ > δ

]
< 2ε

for all n ≥ N . The result follows.

The proof of the serial part of Lemma 3 is quite similar. Denoting by Qi,j = Q
(n)
i,j (resp.

Q̂i,j = Q̂
(n)
i,j ) the k2 × k2 block in position (i, j) (i = 1, . . . , n− 1, j = 1, . . . , π0) in Q

(n)
θθθ (resp.

in Q
(n)

θ̂θθ
), we have

n1/2(T
˜

(n)
II;J(θ̂θθ)− T

˜
(n)
II;J(θθθ)) = Q

(n)′

θ̂θθ
S
˜

(n)
II;J(θ̂θθ)−Q

(n)′

θθθ S
˜

(n)
II;J(θθθ)

=
n−1∑

i=1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ)−




Q
′

i,1
...

Q
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θθθ)


 .
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The same decomposition as for the trend part then yields, for some fixed integer s (and still for
n > s + 1),

n1/2(T
˜

(n)
II;J(θ̂θθ)− T

˜
(n)
II;J(θθθ)) =

s∑

i=1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


−




Q
′

i,1
...

Q
′

i,π0





 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ) (33)

+
s∑

i=1







Q
′

i,1

...

Q
′

i,π0




(
(n− i)1/2vec (ΓΓΓ

˜
(n)
i;J (θ̂θθ)− ΓΓΓ

˜
(n)
i;J (θθθ))

)



+
n−1∑

i=s+1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ)−




Q
′

i,1
...

Q
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θθθ)


 .

Again, the local discreteness of θ̂θθ
(n)

and (30) yield

(n− i)1/2 vec

(
ΓΓΓ
˜

(n)
i;J (θ̂θθ

(n)
)− ΓΓΓ

˜
(n)
i;J (θθθ)

)
(34)

= − 1

k2
Dk(J2; f)Ck(J1; f) (ΣΣΣ⊗ΣΣΣ−1)

[
ai(n

1/2(θ̂θθ − θθθ);θθθ) + bi(n
1/2(θ̂θθ − θθθ);θθθ)

]
+ R

(n)
i ,

= − 1

k2
Dk(J2; f)Ck(J1; f) (ΣΣΣ⊗ΣΣΣ−1) (Qi,1 . . .Qi,π0) Pθθθ Mθθθ n1/2(θ̂θθII − θθθII) + R

(n)
i ,

where R
(n)
i is oP(1) (as n →∞, under H(n)(θθθ,ΣΣΣ, f)), so that (33) becomes

n1/2(T
˜

(n)
II;J(θ̂θθ)− T

˜
(n)
II;J(θθθ)) =

s∑

i=1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


−




Q
′

i,1
...

Q
′

i,π0





 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ)

− 1

k2
Dk(J2; f)Ck(J1; f)

s∑

i=1







Q
′

i,1
...

Q
′

i,π0


 (ΣΣΣ⊗ΣΣΣ−1) (Qi,1 . . .Qi,π0)


Pθθθ Mθθθ n1/2(θ̂θθ

(n)

II − θθθII)

+
n−1∑

i=s+1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ)−




Q
′

i,1
...

Q
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θθθ)


+

s∑

i=1

R
(n)
i .

Noting that

s∑

i=1







Q
′

i,1
...

Q
′

i,π0


 (ΣΣΣ⊗ΣΣΣ−1) (Qi,1 . . .Qi,π0)


 = Q

(s+1)′

θθθ

[
Is ⊗ (ΣΣΣ⊗ΣΣΣ−1)

]
Q

(s+1)
θθθ ,
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we finally decompose

n1/2(T
˜

(n)
II;J(θ̂θθ)− T

˜
(n)
II;J(θθθ)) +

1

k2
Dk(J2; f)Ck(J1; f)JII;θθθ,ΣΣΣ Pθθθ Mθθθ n1/2(θ̂θθ

(n)

II − θθθII)

into T
(n,s)
1 + T

(n,s)
2 , where

T
(n,s)
1 :=

s∑

i=1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


−




Q
′

i,1
...

Q
′

i,π0





 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ) +

s∑

i=1

R
(n)
i

and

T
(n,s)
2 :=

1

k2
Dk(J2; f)Ck(J1; f)

[
JII;θθθ,ΣΣΣ −Q

(s+1)′

θθθ [Is ⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q
(s+1)
θθθ

]
Pθθθ Mθθθ

n1/2(θ̂θθ
(n)

II − θθθII) +
n−1∑

i=s+1

(n− i)1/2







Q̂
′

i,1
...

Q̂
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θ̂θθ)−




Q
′

i,1
...

Q
′

i,π0


 vec ΓΓΓ

˜
(n)
i;J (θθθ)


 .

As for the trend part, the continuity in θθθ of the Green’s matrices, the fact that (n−i)1/2vec ΓΓΓ
˜

(n)
i;J (θ̂θθ)

is OP(1) (as n → ∞, under H(n)(θθθ,ΣΣΣ, f)), and the root-n consistency of θ̂θθ, allow to show that

T
(n,s)
1 vanishes in probability under H(n)(θθθ,ΣΣΣ, f), for fixed s, as n →∞, and that T

(n,s)
2 is oP(1)

under H(n)(θθθ,ΣΣΣ, f), as s →∞, uniformly in n. The result follows. �
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Département de Mathématique, Département de Mathématique,
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