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Abstract

This paper is concerned with the problem of determining the typical features of a curve

when it is observed with noise. It has been shown that one can characterize the Lipschitz

singularities of a signal by following the propagation across scales of the modulus maxima of

its continuous wavelet transform. A nonparametric approach, based on appropriate thresh-

olding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of

a signal observed with noise at various scales. In order to identify the singularities of the

unknown signal, we introduce a new tool, “the structural intensity”, that computes the “den-

sity” of the location of the modulus maxima of a wavelet representation along various scales.

This approach is shown to be an effective technique for detecting the significant singularities

of a signal corrupted by noise and for removing spurious estimates. The asymptotic proper-

ties of the resulting estimators are studied and illustrated by simulations. An application to

a real data set is also proposed.

Keywords : Lipschitz singularity, continuous wavelet transform, scale-space representation, zero-

crossings, wavelet maxima, feature extraction, non parametric estimation, bagging, landmark-based

matching.

1 Introduction

In many statistical applications where the underlying process is an unknown signal observed with

noise, it is often required to determine the location of typical features of the signal. For instance,

in many examples, one wants to detect the presence of extrema, inflection points or singularities.

In our case, this work is motivated by the problem of curve alignment. When studying some

biological or physical process in different subjects, we usually see that the observed curves have
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a common structural pattern. An important matter consists in determining the typical shape of

the observed process or in testing whether there is any statistically significant difference among

two subsets of subjects. The presence of noise makes difficult the identification of the typical

features of a set of curves. Moreover, because of variations in dynamics and intensity from

one curve to another, a cross sectional average is usually not a good estimator of the typical

shape of a curve. Hence, to determine the typical structure of a set of curves, it is better to

find a common referential to represent them (see e.g. Kneip and Gasser [25], Wang and Gasser

[45],[46], Ramsay and Li [40]). The purpose of curve alignment is to find, for each observed

curve, a warping function in order to synchronize all the curves before performing the average or

applying any other statistical inferential procedure. A possible approach to match two functions

consists in aligning individual locations of corresponding structural points (or landmarks) from

one curve to another. A survey of recent developments in the analysis of deformations and

warping can be found in a tutorial by Younes [48] while extensive references on curve alignment

for functional data analysis can be found in Ramsay and Silverman [41]. The characterization of

the features of a function is of fundamental importance for landmark-based matching, and this

paper therefore focuses on the analysis of the local structure of a signal observed with noise.

The alignment of curves has been studied from a statistical point of view by Kneip and

Gasser [25] using kernel estimators to retrieve the locations of the structural points of a smooth

function. In this paper, we propose to use the continuous wavelet transform of a signal to

determine its landmarks, and we will mainly focus on the problem of estimating the location

of the Lipschitz singularities of a signal corrupted by Gaussian noise. Looking at a signal at

different levels of smoothing for characterizing its local structure has been widely and successfully

used in the scale-space literature (see e.g. Lindeberg [27]). In particular, wavelet transforms

have successfully demonstrated their good localization properties of the structure of a signal

(see e.g. Mallat [29], Chapter 6). In the context of signal processing, the propagation across

scales of the zero-crossings or the modulus maxima of a scale-space transform is a powerful tool

to analyze the typical features a signal (see Mallat and Hwang [30], Hummel and Moniot [23],

Yuille and Poggio [49], Mallat [28], the monograph of Lindeberg [27] and the references therein).

However, although the scale-space properties of the wavelet maxima for singularities and edges

detection have been thoroughfully studied in a deterministic setting (Arneodo et al [3], [4], [5],

[6], Bacry et al [7], Muzy et al [37], Jaffard [24], Mallat and Hwang [30], Mallat and Zhong [31],

[32], [33]), there is not so much work in a statistical context on the estimation of the location of

the singularities of an unknown signal by wavelet techniques. The decomposition of a function

into wavelet bases has been widely used for the estimation (denoising) of a signal belonging

to various functional spaces (see Donoho et. al [20], Donoho and Johnstone [18], [19], and the
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review proposed in Antoniadis et. al [1]). Based on appropriate wavelet transforms of a signal

(using either the continuous wavelet transform or some decompositions into a wavelet base),

Antoniadis and Gijbels [2] have proposed a jump location procedure, while Raimondo [39] and

Wang [44] have considered the estimation of sharp cusp points. However, the definition of a

sharp cusp point given in Raimondo [39] and Wang [44] is not appropriate for certain types of

Lipschitz singularities.

In this paper, we consider the estimation of nonoscillating and isolated Lipschitz singular-

ities of a signal. A nonparametric approach is proposed to estimate the wavelet maxima of a

signal observed with noise at various scales. Our estimation procedure is based on appropriate

thresholding of the modulus of the empirical wavelet maxima. It can be viewed as an adaptation

to the continuous wavelet transform of the classical thresholding technique of Donoho and John-

stone [16], [17] in the context of signal denoising by decompositions into wavelet bases. When

the signal is assumed to be smooth with the exception of an unique singularity, we study the

convergence rate of an estimator based on the first exceedance over a threshold of the modulus

of the wavelet maxima at a sufficiently small scale. Our procedure also yields an estimation of

the wavelet maxima lines of a signal. However, there is generally no analytical expressions of

the wavelet maxima lines in the time-scale plane, and we usually only have a visual representa-

tion of these latter. A new tool, called structural intensity, is therefore introduced to identify

the limits of these lines when they propagate to fine scales. Roughly speaking, it computes

the “density” of the location of the modulus maxima of a wavelet representation along various

scales, and the significant modes of the resulting structural intensity are shown to be located at

the singularities of the corresponding signal. Moreover, when we estimate the wavelet maxima

of a function at various levels of resolution, the structural intensity is an effective method to

remove spurious modulus maxima that might have been erroneously detected. The main goal

of this paper is therefore to investigate the statistical properties of the modulus maxima of the

continuous wavelet transform to characterize the pointwise singularities of a signal. In a statis-

tical setting, a similar scale-space approach has been proposed by Chaudhuri and Marron [12],

[13] in the context of nonparametric curve estimation via kernel smoothing for determining the

significant features in a functional data set.

The paper is organized as follows: in section 2 we briefly review some properties of the con-

tinuous wavelet transform, and recall that the local regularity of a function can be characterized

by the decay of its wavelet coefficients across scales. Then, we introduce the notion of structural

intensity which is a new tool to represent the location of the singularities of a signal via a prob-

ability density function. In section 3, we formulate the problem of estimating the nonoscillating

and isolated singularity of a signal observed from the white noise model. A thresholding pro-
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cedure is described to estimate the wavelet maxima of the unknown signal, and the asymptotic

properties of the resulting estimator are studied. We also describe an algorithm which combines

wavelet maxima estimation and the structural intensity to identify the singularities of a noisy

signal. In section 4, a short simulation study and a real example illustrate the performances of

our approach. Finally, in section 5 we mention that the methodology can be adapted to the

estimation of the zero-crossings of a wavelet transform, and we briefly explain how structural

intensities can be used for curve alignment. The proofs of the main results are deferred to the

appendix.

2 Wavelets and local structure of a signal

2.1 Modulus maxima of the continuous wavelet transform

We assume that we are working with an admissible real-valued wavelet ψ with r vanishing

moments (r ∈ N∗). We will suppose that the wavelet ψ has a fast decay and has no more than

r vanishing moments which implies (see Theorem 6.2 of Mallat [29]) that there exists θ with a

fast decay such that:

ψ(u) = (−1)r
drθ(u)
dtr

, and
∫ +∞

−∞
θ(u)du 6= 0. (2.1)

Moreover, we will assume that the wavelet ψ is normalized to one i.e.
∫ +∞
−∞ (ψ(u))2du = 1. By

definition, the continuous wavelet transform of a function f ∈ L2(R) at a given scale s > 0 is:

Ws(f)(x) =
∫ +∞

−∞
f(u)ψs(u− x)du,

where ψs(u) = 1√
s
ψ(us ). The term wavelet maxima (or modulus maxima) is used to describe

any point (m0, s0) in the time-scale-space such that z 7→ |Ws0(f)(z)| is locally maximum at

z = m0. This local maximum should be a strict local maximum in either the right or the left

neighborhood of m0. Mallat and Hwang [30] have shown that the local regularity of a function

is related to the propagation across scales of its wavelet maxima and to the decay of the wavelet

transform amplitude in the time-scale plane. A function f : R → R is said to be pointwise

Lipschitz α ≥ 0 at x0 if there exists a constant Cx0 and a polynomial P of degree d = bαc (bαc
denotes the integer part of α) such that:

∀x ∈ R, |f(x)− P (x− x0)| ≤ Cx0 |x− x0|α. (2.2)

The Lipschitz regularity of f at x0 is the supremum of the α’s for which (2.2) holds. In what

follows, we will say that the function f has a singularity of order α at x0 if its Lipschitz regularity

at x0 is α. Mallat and Hwang [30] have proved that (under appropriate conditions on ψ) if
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f ∈ L1[a, b] has a singularity of order 0 ≤ α < r at x0 ∈ [a, b], then there exists a sequence of

wavelet maxima (mp, sp)p∈N such that limp→∞mp = x0 and limp→∞ sp = 0. Hence, this result

suggests that the singularities of a function can be detected by following the propagation of the

wavelet maxima at fine scales. However, we are not guaranteed that for a wavelet ψ, any sequence

of modulus maxima converges when the scale decreases. For instance, if Ws(f)(x) has a modulus

maxima located at (m1, s1), then |Ws(f)(x)| may have no more maxima in the neighborhood of

m1 when s goes to zero. Hummel and Moniot [23], Yuille and Poggio [49] have shown that this

is never the case if θ is a Gaussian, by application of the heat diffusion equation to the analysis

of multi-scale representations derived from Gaussian. We will call wavelet maxima line any

connected curve m(s) in the time-scale plane (x, s) along which all points are modulus maxima.

Hence, using wavelets that are derivatives of Gaussian guarantees that all the wavelet maxima

lines m(s) are never interrupted when s goes to zero. The properties of the functions m(s) (such

as continuity or derivability) are related to the propagation of structures across scales and to the

notion of causality of a scale-space representation (Yuille and Poggio [49], Lindeberg [27]). The

concept of causality conveys the idea that when constructing a scale-space representation, the

transition from a finer to a coarser level of smoothing can really be considered as a simplification.

When looking at wavelet maxima lines in the time-scale plane, causality means that these lines

form closed curves across scales which will be never closed when one moves from a coarser

scale to a finer scale. Scale-space representations computed with derivatives of Gaussian are

causal. If θ has a compact support, then the theoretical properties of the wavelet maxima lines

are much more difficult to derive since derivatives of Gaussian are probably the only wavelets

that yield causality of the scale-space representation (see Lindeberg [27]). However, if θ is a

B-Spline of order q i.e. θ̂(ω) = ( sin(ω/2)
ω/2 )q (where θ̂(ω) denotes the Fourier transform of θ ),

then ψ inherits the good properties from the Gaussian kernel (Unser et. al [43], Wang and Lee

[47]). In particular, Wang and Lee [47] have proposed a scale-space theory based on B-Spline

kernels, and have shown that the causality property still holds for discrete B-Spline filtering in

the discrete sense. The number of local extrema of the discrete filtered signal does not increase

when one moves from a finer to a coarser scale. Hence, in practice, for discrete B-Spline kernels

the wavelet maxima form sequences of points that propagate up to the finest scales as it can be

seen in Figure 1 in which the wavelet maxima of the signal:

f3(x) = 2 sin(6πx) + 15(|x− 0.2|4/5 + |x− 0.4|2/5 − |x− 0.7|3/5)− 15.07t, for x ∈ [0, 1], (2.3)

are computed for B-Spline wavelet of order q = 4 with r = 2 vanishing moments. Note that

the notion of causality is also used in Chaudhuri and Marron [13] to study the propagation

across scales of the significant features of kernel estimators when the bandwidth is progressively

reduced.
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Figure 1: (a) Signal f3 (see expression (2.3)). (b) Wavelet maxima of f3 computed with a B-

Spline of order 4 with r = 2 vanishing moments. (c) Non-weighted structural intensity of the

wavelet maxima (d) Weighted structural intensity of the wavelet maxima.

2.2 Structural intensity of the wavelet maxima

The signal plotted in Figure 1 has 3 singularities located at x = 0.2 , x = 0.4 and x = 0.7 of order

4/5, 2/5 and 3/5 respectively. Note that throughout this paper, in all the figures representing

wavelet maxima in the time-scale plane, the horizontal and vertical axes give respectively x

and − log2(s). One can see that there are several wavelet maxima lines which converge to the

singularities of f3. There are also some lines that converge to regular parts of the signal, which

is due to the presence of some zeros in the (r + 1)th derivative of f3 (since the zero-crossings

of W r
s (f)(x) = srf (r) ∗ θ̄s(x) correspond to the local extrema of W r−1

s (f)(x), where θ̄s(x) =
1√
s
θ
(−x
s

)
). Hence, the singularities of a signal can be detected by “following” some wavelet

maxima lines in the time-scale plane. However, there is generally no analytical expression of the

functions m(s) in a closed form. We only have a visual representation that indicates “where” the

landmarks are located. Note that in the context of kernel density estimation, Minotte and Scott

[34] introduced the Mode Tree which is a tool for visualization of nonparametric density features,

and proposed an empirical algorithm to link the zero-crossings of a scale-space representation

at neighboring levels. However, they did not show that their algorithm guarantees a correct
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matching of the zero-crossings lines. Let us remark that if x0 ∈ R is a landmark of some signal,

then all the curves mx0(s) and that may converge to it are included in a “small” neighborhood

of x0 at fine scales. Hence, if we could compute the “density” of the points mx0(s) along

various scales, it would be expected that the resulting intensity would possess exactly one mode

located at x0. This idea is similar to the method proposed by Gasser and Kneip [22] to identify

features that occur consistently in a set of curves. For instance, when one searches to identify

common local maxima in a set of curves, Gasser and Kneip [22] propose to retrieve all local

maxima in each individual curves, to sort them in one array and then to submit it to kernel

density estimation. Common maxima will then give rise to peaks in the resulting density. In

our setting, the functions x 7→ Ws(f)(x) can be viewed as a set of curves indexed by the scale

parameter s. Hence, we can try to adapt the methodology suggested by Kneip and Gasser [22]

to compute a density whose local maxima will be located at the landmarks of f .

Proposition 2.1 Let f ∈ L2(R) and ψ = (−1)rθ(r), r ≥ 1 such that θ(x) ≥ 0 for x ∈ R.

Suppose that there exists q wavelet maxima lines mi(s) that respectively converge to xi ∈ R, i =

1, . . . , q as s tends to zero. Assume that there exists two constants ε > 0 and K > 0 such that

θ(x) ≥ θ(K + ε) > 0 for all x ∈ [−K − ε,K + ε], and such that |mi(s)− xi| ≤ Ks, i = 1, . . . , q.

For x ∈ R, define the structural intensity of the wavelet maxima Gm(x) as:

Gm(x) =
q∑
i=1

∫ smi

0

1
s
θ(
x−mi(s)

s
)ds,

where [0, smi ] is the support of the lines mi(.) in the time-scale plane. Then, Gm is differentiable

on R \ {x1, . . . , xp} and such that Gm(x) → +∞ as x→ xi, i = 1, . . . , q.

If θ has a compact support equal to [−C,C], the assumptions of Proposition 2.1 mean that

the wavelet maxima lines converging to xi must be strictly included in the cone of influence of

xi defined as the set of points (x, s) such that |x−xi| ≤ Cs. The cone of influence of some point

x0 corresponds to the set points in the time-scale plane that are influenced by the presence of a

singularity at x0. In practice, the structural intensities of the wavelet maxima will be normalized

to be probability density functions.

Proposition 2.1 shows that, in practice, the landmarks of a function can be obtained by the

locations of the local maxima (or modes) of Gm(x). Figure 1c illustrates the detection of the

landmarks of f3 (see expression (2.3)) via the structural intensity of its wavelet maxima lines

for a B-Spline wavelet of order 4 with r = 2 vanishing moments. One can see that the height of

a mode of Gm(x) is proportional to the number and the length of the supports of the lines m(s)

that converge to it. However, from this plot, one cannot distinguish between the modes that

correspond to the singularities of the signal f3, from those that are due to the presence of a zero
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in the (r+1)th derivative of f3. Generally, if f has an isolated singularity of order 0 ≤ α < r at

x0 (see section 3 for a precise definition and further details), there exists m(s) → x0 such that

at small scales |Ws(f)(m(s))| ∼ sα+1/2. Else if m(s) converges to a point xi where f is locally

Cr, then there exists a constant A > 0 such that Ws(f)(m(s))

sr+1/2 → A. Now, define the following

structural intensity which is a weighted version of the one suggested in Proposition 2.1:

G∗
m(x) =

q∑
i=1

∫ smi

0

hi(s)
s

θ(
x−mi(s)

s
)ds,

where hi(s) = Ws(f)(mi(s))

sr+1/2 . From the above remarks, it follows that if mi(s) converges to a

singularity of order 0 ≤ α < r then, at fine scales, hi(s) behaves like sα−r. Else if mi(s)

converges to a zero of f (r+1) then hi(s) is bounded. In Figure 1d, we plotted the weighted

structural intensity G∗
m(x) of the wavelet maxima of f3. The modes corresponding to the

singularities of the signal dominate the other ones. As expected, the heights of these modes are

inversely proportional to the order of the singularities. In practice when f is unknown, we infer

on the functions hi(s) by replacing Ws(f)(mi(s)) by its noisy version (see section 4 for more

details).

3 Singularity estimation for a signal observed with noise

3.1 The nonparametric regression and white noise models

In this section, we will suppose that f is observed from the white noise model:

Y (dx) = f(x)dx+ τB(dx), x ∈ [0, 1], (3.1)

where τ is a noise level parameter, f an unknown function which may have singularities, and B

is a standard Brownian motion. The white noise model (3.1) is closely related to the following

nonparametric regression problem (see Brown and Low [11], Donoho and Johnstone [18], [19]):

yi = f(xi) + σεi, i = 1, . . . , n, (3.2)

where xi = i
n , f is an unknown function, σ is the level of noise and εi are i.i.d. normal variables

with zero mean and variance 1. When τ = σ√
n
, Brown and Low [11] have shown that under

appropriate conditions on f , these two models are asymptotically equivalent and that results in

the white noise model (3.1) furnish results in the nonparametric regression model (3.2) and vice

versa. For example, in the context of nonparametric function estimation, the problems (3.1) and

(3.2) have the same asymptotic minimax risks and an estimator good in one model is good in the

other. Donoho and Johnstone [18] established similar results for the unbounded risk E(‖f̂−f‖2
2).
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However, their approach is different from the methodology followed by Brown and Low [11]. It

is based on a careful definition of an empirical wavelet transform and precise bounds on the

discrepancy between empirical wavelet coefficients and the theoretical wavelet coefficients. We

believe that for the problem of landmark detection, one could compare asymptotic minimality

results between the white noise and the sampled-data models by following the ideas of Donoho

and Johnstone [18].

Let f ∈ L2([0, 1]) observed from the white noise model (3.1). If we modify a function that

belongs to L2(R) by multiplying it by the indicator function of [0, 1], we do not modify its

regularity and its landmarks on ]0, 1[. We shall thus suppose that f(x) = 0 for x /∈ [0, 1]. The

wavelet transform of f at a scale s > 0 is then equal to:

Ws(f)(x) =
∫ +∞

−∞
f(u)ψs(u− x)du =

∫ 1

0
f(u)ψs(u− x)du, for x ∈ [0, 1].

Note that by taking f(x) = 0 for x /∈ [0, 1], we will generally introduce two discontinuities

at x = 0 and x = 1, which will generate wavelet maxima lines that converge to 0 and 1.

However, this will not affect the estimation procedure, since we are only interested in detecting

the landmarks of f that are included in ]0, 1[. The wavelet transform of the white noise B(du)

is defined to be Ws(B)(x) =
∫ +∞
−∞ ψs(u− x)B(du) for x ∈ [0, 1]. In what follows, the noise level

parameter τ (see the white noise model (3.1)) will be replaced by σ√
n
. Asymptotic results will

be established for n→∞. Then, the wavelet transform of Y is:

Ws(Yn)(x) =
∫ +∞

−∞
ψs(u− x)Y (du) = Ws(f)(x) +

σ√
n
Ws(B)(x) (3.3)

3.2 Nonoscillating and isolated singularity

In the rest of this paper, we assume that the wavelet ψ and θ have a compact support equal to

[−C,C]. Let m∗ be a fixed non-negative integer such that r ≥ m∗ + 1 where r is the number

of vanishing moments of ψ. Let 0 ≤ α < r and x0 ∈]0, 1[. We will say that f ∈ L2([0, 1]) has a

nonoscillating and isolated singularity of order α at x0 if it satisfies the following assumptions:

Assumption 3.1 f has a singularity of order α at x0.

Let Vs = [x0 − Cs, x0 + Cs] be the cone of influence of x0:

Assumption 3.2 There exists a wavelet maxima line m(s) ∈ Vs converging to x0 as s→ 0 and

a scale s0, such that for all s ≤ s0

Ws(f)(m(s))
sα+1/2

≥ B1| log(s)|γ , (3.4)

for some constants B1 > 0 and γ ≤ 0.
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Assumption 3.3 f is r times continuously differentiable at all x ∈ [0, 1]\{x0}, and there exists

a constant B2 > 0 such that for all x 6= x0

|f (r)(x)| ≤ B2|x− x0|α−r. (3.5)

Assumption 3.3 essentially controls the oscillating behavior of f . It implies that f cannot

have fast oscillations that accelerate in the neighborhood of x0. In Mallat and Hwang [30], a

function is said to have a fast oscillation at x0 if there exists α > 0 such that f is not Lipschitz α

at x0 although its primitive is α+ 1 at x0. Recall that if a function is Lipschitz α at some point

then its derivative is not necessarily α − 1 at the same point. Hence, in a sense, Assumption

3.3 supposes that the Lipschitz regularity at x0 is “preserved by the derivation”. A classical

example of a function with fast oscillations is g(x) = sin(1/x) whose Lipschitz regularity at

x0 = 0 is 0. Since g′(x) = −x−2 cos(1/x) it does not satisfy Assumption 3.3 for r = 1.

To simplify the presentation of our results, we will also assume that:

Assumption 3.4 f (k)(0) = f (k)(1) = 0 for k = 0, . . . , r,

with the obvious notation f (0) = f . Recall that to define Ws(f)(x) for f ∈ L2([0, 1]) we

assumed that f(x) = 0 for x /∈ [0, 1]. Therefore, Assumption 3.4 avoids the creation of large

wavelet maxima in [0, 1] which converge to x = 0 and x = 1. We use this assumption to simplify

the presentation of the results on wavelet maxima thresholding in the next section. However,

this assumption is not restrictive since, if it is not satisfied, it does not affect the quality of our

estimation procedure as we shall see in the simulations carried out in section 4.

In Lemma 5.1 (see the appendix) we show that if f satisfies Assumption 3.3 and Assumption

3.4, then there exists a constant A1 > 0 such that for any α < ρ < r, |Ws(f)(x)| ≤ A1s
ρ+1/2 for

all s < 2
1

ε−1 and all x /∈ Ks, where ε = r−ρ
r−α and Ks = {x ∈ [0, 1]; |x−x0| ≤ C(sε−s)}. Hence, for

any β > 0, one cannot have maxx∈Ks{|Ws(f)(x)|}
sα+1/2 = O(sβ) else Theorem 6.3 on page 169 of Mallat

[29] would imply that f is uniformly Lipschitz α′ = min(ρ, α+β) in a neighborhood of x0 which

contradicts Assumption 3.1. Therefore, Assumption 3.2 essentially supposes that Ws(f)(m(s))

sα+1/2

cannot converge to zero faster than sβ for any β > 0. It is also assumed that m(s) ∈ Vs which

supposes that the regularity of f at x0 can be determined by the decay of the wavelet maxima

that are inside the cone of influence of x0. This property does not generally hold for functions

with fast oscillations (see Mallat and Hwang [30], Arneodo et al [3], [4], [5] for further details on

oscillating singularities) . Note that showing the existence of such a wavelet maxima line is a

problem related to the causality of a scale-space representation and to the decay of the wavelet

transform amplitude in the time-scale plane (see section 2). Since we wish to mainly focus on

the statistical properties of the wavelet maxima, we shall not study the existence of m(s) in this
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paper. Note also that the Assumptions 3.1, 3.2 and 3.3 can be compared to the assumptions

made in Picard and Tribouley [38] on adaptive confidence intervals.

3.3 Estimation of the wavelet maxima

We consider the wavelet maxima detection problem in the white noise model. We suppose

that the unknown function f has a nonoscillating and isolated singularity at x0 ∈]0, 1[, and we

want to estimate the location of the corresponding wavelet maxima at different scales. For this

purpose, we will show that there exists a coarse scale sρ and a finer scale sα∗ such that:

• for sρ ≥ s ≥ sα∗ , the wavelet maxima of |Ws(f)(x)| created by the singularity at x0

dominate the modulus maxima of σ√
n
|Ws(B)(x)|.

• for s ≤ sα∗ , |Ws(Yn)(x)| is dominated by σ√
n
|Ws(B)(x)|

• the coarse scale sρ is chosen such that the modulus maxima corresponding to the singularity

at x0 dominate the modulus maxima that might be located in “regular regions” of the signal

f .

Once the levels sρ and sα∗ have been defined, the wavelet maxima due to the singularities of

the signal can be detected by examining the maxima of {|Ws(Yn)(x)|;x ∈ [0, 1]} that are above

an appropriate chosen threshold for sρ ≥ s ≥ sα∗ .

Let α < ρ < r, ε = r−ρ
r−α and Ks = {x ∈ [0, 1]; |x − x0| ≤ C(sε − s)}. Since 0 < ε < 1, the

region Ks is slightly larger than the cone of influence Vs for s < 2
1

ε−1 . Our idea is to select a

coarse scale sρ where the orders of |Ws(f)(x)| and σ√
n
|Ws(B)(x)| are balanced if x /∈ Ks, and a

finer scale sα∗ such that for sρ ≥ s ≥ sα∗ , the modulus maxima of |Ws(f)(x)| that are located in

Ks dominate σ√
n
|Ws(B)(x)|. Since {Ws(B)(x);x ∈ [0, 1]} is a Gaussian process whose variance

is equal to 1, the order of the noise at a given scale s is, roughly speaking, equal to σ√
n
. In

Lemma 5.1 we show that if x /∈ Ks then |Ws(f)(x)| ≤ A1s
ρ+1/2. Hence, a natural idea is to

define sρ to solve the equation sρ+1/2
ρ = σn−

1
2 for a fixed n ∈ N∗. First, we will suppose that the

order of the singularity at x0 is known, so that we can define sα and sα∗ to solve the equations

s
α+1/2
α = σn−

1
2 and s

α+1/2
α∗ = σn−

1
2nβ

√
log(n) for a given n ∈ N∗ and β > 0. Since β can be

arbitrarily small, nβ can grow to ∞ with a very slow rate. Moreover, since we want to detect

the modulus maxima for sρ ≥ s ≥ sα∗ we must guarantee that sρ > sα∗ which will be supported

by the following assumption:

Assumption 3.5 n2β log(n) = o(n1− 2α+1
2ρ+1 ).

For a given δ > 1, define the threshold: λn = δ σ√
n

√
2 log(n log(n)). The following proposition

proves that this threshold can be used to control the amplitude of |Ws(Yn)(x)| outside and inside

of the region defined by Ks:
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Proposition 3.1 Assume that ψ is C2. Suppose that f is observed from the white noise model

and has a nonoscillating and isolated singularity of order 0 ≤ α < r at x0 ∈]0, 1[. Then, under

Assumption 3.4 and Assumption 3.5,

• for all sρ ≥ s ≥ 1
n :

P (max
x/∈Ks

{|Ws(Yn)(x)|} ≤ λn) → 1, as n→∞.

• for all sρ ≥ s ≥ sα∗:

P (|Ws,n(Y )(m(s))| ≥ λn) → 1, as n→∞.

3.4 Estimation of the wavelet maxima for the unknown α

Proposition 3.1 leads to a straightforward thresholding procedure for the detection of the

wavelet maxima due to the presence of a singularity at x0. For sρ ≥ s ≥ sα∗ , define m̂(s) =

arg maxx∈[0,1] {|Ws(Yn)(x)| ≥ λn} as the location of the greatest maxima of |Ws(Yn)(x)| that ex-

ceeds the threshold λn. Proposition 3.1 shows that P (m̂(s) ∈ Ks) = P (|m̂(s)− x0| ≤ C(sε − s)) →
1 as n→∞, and so at scale sα∗ , we obtain the following rate:

|m̂(sα∗)− x0| = Op
(

(
log(n)
n

)
ε

2α+1n
εβ

α+1/2

)
.

However in practice α is unknown, and so the level sα∗ must be estimated. Let ŝ ≥ 1
n be

the finest resolution level where maxx∈[0,1] |Ws(Yn)(x)| exceeds the threshold λn. The following

proposition shows that ŝ lies between sα∗ and sα:

Proposition 3.2 As n→∞,

P (sα∗ ≥ ŝ > sα) → 1,

i.e. P
(
| log(ŝ)− log(sα∗)| ≤ 1

α+1/2 log(nβ
√

log(n))
)
→ 1.

We cannot directly use ŝ instead of sα∗ , since if ŝ is strictly smaller than sα∗ then the results

of Proposition 3.1 do not necessarily hold. In order to increase the value of this estimate, we

propose to define ŝ∗ = min(ŝn2β log(n), sρ). Then, by Proposition 3.2, P (sρ ≥ ŝ∗ ≥ sα∗) → 1 as

n→∞. Finally, by Proposition 3.1, one has the following rate:

|m̂(ŝ∗)− x0| = Op
(

(
log(n)
n

)
ε

2α+1n
εβ

α+1/2n2εβ(log(n))ε
)
.

The extra factor n2εβ(log(n))ε can be interpreted as the price for adaptivity to the unknown

α (see Donoho and Johnstone [17], Picard and Tribouley [38] for similar results on spatial

adaptivity in the context of signal denoising with wavelets).
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3.5 Estimation of several singularities via the structural intensity

In the previous section, when the function f has an unique nonoscillating and isolated singularity,

we have defined an estimator based on the first exceedance over the threshold λn of the modulus

of {Ws(Yn)(x);x ∈ [0, 1]} at a sufficiently small scale. However, we shall not use this estimator

in practice. Indeed, the signal f may have more than one singularity, and we would like to be

able to detect all of them.

Suppose that the function f has q isolated and nonoscillating singularities of order 0 ≤ αi < r,

i = 1, . . . , q located at x1 < . . . < xq, and is smooth otherwise. Assume that the wavelet ψ has

a compact support equal to [−C,C] and define Vsi = [xi − Cs, xi + Cs], i = 1, . . . , q for a given

resolution level s > 0. Then, for all s sufficiently small and all (x, y) ∈ Vsi × Vsi+1 ; i = 1, . . . , q,

the supports of ψs(.−x) and ψs(.−y) are disjoints, which implies thatWs(Yn)(x) andWs,n(Y )(y)

are independent variables. Hence for all sufficiently small scales, the wavelet maxima located

in Vsi and the wavelet maxima located in Vsi′ (for i 6= i′) are independent. Therefore, we can

directly adapt Proposition 3.1 and the results of section 3.4 to estimate the location of the

wavelet maxima due to the q singularities. More precisely, the following procedure is suggested:

• choose ρ = r − 1 in order to detect all the points whose Lipschitz regularity is less than

r − 1. In practice, if sρ > 1, set sρ = 1 since in our simulations we compute the wavelet

transform up to scale s = 1.

• define ŝα∗min
to be the finest resolution level where maxx∈[0,1] |Ws(Yn)(x)| exceeds the thresh-

old λn

• for sρ ≥ s ≥ ŝα∗min
, we define the estimators of the wavelet maxima of f to be the locations

of the maxima of |Ws(Yn)(x)| that exceed the threshold λn at a given resolution level s.

This procedure yields an estimation of the wavelet maxima lines at the scales sρ ≥ s ≥ ŝα∗min
.

However, we only have a visual representation of the shape of these lines in the time-scale plane,

and we are not guaranteed to have continuous lines that propagate up to fine scales, since the

estimation at one scale is independent of the estimation at any other scale. To identify the limits

of these lines, we compute the structural intensity of the estimated wavelet maxima:

Ĝm(x) =
q̂∑
i=1

∫ sρ

sα∗
i

1
s
θ(
x− m̂i(s)

s
)ds, (3.6)

where [sα∗i , sρ] is the “support” of the estimated line m̂i(s) in the time-scale plane. Then, we

define the locations of the local maxima of Ĝm(x) as the estimators of the singularities of the

unknown function f . In practice, the structural intensities of the estimated wavelet maxima

lines will be normalized to be probability density functions.
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Remark 1 Let x̂1, . . . , x̂p̂ be the local maxima of Ĝm(x). Studying the statistical properties of

the local maxima of Ĝm(x) is not an obvious task. First remark that Ĝm(x) has been defined

with some abuse of notations. Indeed, the estimated wavelet maxima m̂i(s) are not necessarily

connected curves on [sα∗i , sρ], since our procedure does not guarantee that if a wavelet maxima is

detected at some scale s0, then it will be also detected in a small neighborhood of s0. The study

of the convergence properties of x̂1, . . . , x̂p̂ is further complicated by the fact that we do not know

a priori the number of wavelet maxima that have to be estimated at each scale.

4 Simulations and a real example

We now propose to run some simulations to check the above method. The simulated data sets

used in this section are drawn from the model:

yi = f(xi) + εi, i = 1, . . . , n (4.1)

where xi = i
n , f is an unknown signal which may have various singularities on ]0, 1[ and εi are

i.i.d normal variables with zero mean and variance σ2. The analyzing wavelet is the r-th deriva-

tive of a B-Spline of degree q = 10. The value of σ was taken to correspond to various values of

the root of the signal-to-noise ratio RSNR(f, σ) =

qR 1
0 (f(x)−f̄)2dx

σ , where f̄ =
∫ 1
0 f(x)dx. The

continuous wavelet transform of the discrete signal yi, i = 1, . . . , n is computed at dyadic scales

s = 2−j with 20 voices per octave for 1 ≤ j ≤ (log2(n)− 1).

Estimation of the variance: Up to now, we assumed that the level of noise σ was known,

which is not the case in practice. To estimate the noise level σ we propose to use the robust

estimate suggested by Donoho and Johnstone [18] based on the median absolute deviation of the

empirical wavelet coefficients associated with an orthonormal wavelet basis of L2([0, 1]). In our

simulations, we took the Symmlet 8 wavelet basis (as described on page 198 of Daubechies [15])

to estimate σ.

Recall that the estimation of the singularities of f will be performed via the computation of

the structural intensity of the estimated wavelet maxima. We first explore the performances of

this method on some simulated data sets, and then explain how some spurious estimates induced

by the presence of noise can be removed.

4.1 Estimation of the wavelet maxima lines

To illustrate the detection of the singularities of a signal, the first test function that we consider

is f3 (see expression (2.3)). This signal has 3 singularities located at x = 0.2 , x = 0.4 and
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x = 0.7 of order 4/5, 2/5 and 3/5 respectively. Outside of these 3 points, f3 has various extrema

and inflexion points where it is infinitely continuously differentiable (see Figure 1). We estimate

the wavelet maxima of f3 for r = 2 and δ = 1.1 (scaling coefficient for the threshold λn) via

the algorithm described in section 3.5. We propose to compare two types of estimators for the

singularities of a signal:

• the local maxima of the non-weighted structural intensity of the estimated wavelet maxima:

see expression (3.6)

• the local maxima of the weighted structural intensity of the estimated wavelet maxima:

ĜW,m(x) =
q̂∑
i=1

∫ sρ

sα∗
i

ĥi(s)
s

θ(
x− m̂i(s)

s
)ds,

where ĥi(s) = Ws,n(Y )(m̂i(s))

sr+1/2 . As explained in section 2.2, the height of the peaks of ĜW,m are

inversely proportional to the order of the singularities of the signal. Computing ĜW,m is also

a way to decide whether a wavelet maxima line converges to a singularity of f or to a zero of

f (r+1). Figure 2 shows an example of this method for f3 with RSNR = 5 and n = 512. One can

see that the procedure detects the lines converging to the three singularities of f3, and also some

wavelet maxima lines that converge to the zeros of f (3). The non-weighted structural intensity

plotted in Figure 2c has 6 modes (local maxima) located at the limits of these estimated lines.

However, from this plot, one cannot decide which modes effectively correspond to a singularity.

This issue can be solved by computing ĜW,m (see Figure 2d) whose “main modes” are exactly

located at the three singularities of f3. The local maxima of ĜW,m with “small amplitude”

correspond to the zeros of f3. Therefore, the nice result obtained with ĜW,m suggests the use

of the weighted structural intensity in practice.

In the above discussion, a distinction has been made between the main modes of ĜW,m
revealing significant evidence of a singularity, and other minor modes that contain no information

and can therefore be neglected. Since the structural intensity is normalized to be a density

function, a mass can be attributed to each local maxima of ĜW,m to determine its strength.

Such a measure of modality has been proposed by Fisher and Marron [21] for the problem

of identifying the number of modal groups manifested in a sample of data. Their measure of

modality is illustrated in Figure 3 where the mass assigned to each mode is denoted by each of

the shaded areas. Assigning a mass to each local maxima allows minor modes to be neglected

when their mass are below a pre-specified threshold m0. Details on the computation of the

values Ej and λj in Figure 3 can be found in Appendix 1 of Fisher and Marron [21].
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Figure 2: (a) Noisy signal f3 with RSNR = 5, n = 512. (b) Estimated wavelet maxima (thick

lines) and true wavelet maxima (thin lines) for r = 2. (c) Non-weighted structural intensity

of the estimated wavelet maxima (d) Weighted structural intensity of the estimated wavelet

maxima

argmax ĜW,m(x) 0.0605 0.2031 0.4023 0.5938 0.7012 0.9121

Excess mass Ej 0.0218 0.0811 0.2380 0.0028 0.1933 0.0312

Table 1: Locations of the modes of ĜW,m(x) for f3 with their associated mass Ej .

The locations of the modes of the structural intensity ĜW,m in Figure 2d with their associated

mass are given in Table 1. If we keep the modes whose mass excesses m0 = 0.05 (i.e. with up to

5% of the total probability mass), the spurious minor modes are discarded and we only keep the

modes that correspond to significant evidence of the existence of a singularity in f3 (i.e. those

at x = 0.2 , x = 0.4 and x = 0.7).

Signal denoising by decomposition into wavelet bases has been shown to be a powerful tech-

nique for the estimation of spatially inhomogeneous functions (see Donoho et. al [20]). Wavelet

smoothing is particularly well suited for the estimation of piecewise continuous signals and for

functions which may have singularities. Hence, one may argue that singularity detection could

be performed by first denoising the observed signal by standard wavelet techniques, and then

by computing the structural intensity of the wavelet maxima lines for the estimated signal. To
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Figure 3: Structural intensity G(x) with a variety of modes. The shaded areas show the amount

of mass Ej assigned to each mode. Each lower boundary λj is determined by the local minima

of G(x). The values v1, v2, . . . denote locations of successive maxima of G(x) and w1, w2, . . .

denote locations of successive minima.

evaluate the quality of our method, we propose to run a small simulation study to compare

the performances of this approach (denoising + computation of the structural intensity, ab-

breviated as DenSt) with the procedure that we have previously described (estimation of the

wavelet maxima lines + computation of the structural intensity, abbreviated as EstWMSt). To

estimate a function we chose to use the SureShrink rule of Donoho and Johnstone [17] since it is

more conservative and more convenient to detect small details of a function than other wavelet

estimators. Data are generated from the model (4.1) for the function (see Figure 4) :

fT (x) = 2 sin(6πx) + 15|x− 0.1|1/5 + 311x>0.5 − 15|x− 0.8|2/5)− 14.06t, for x ∈ [0, 1]. (4.2)

In Figure 4, we give an example of singularity detection by EstWMSt and by DenSt for

RSNR = 7 and n = 512. Both structural intensities have significant modes at the 3 singularities

of fT , but the one computed via DenSt is more oscillating and has various small extrema. These

fluctuations are due to the presence of “small wiggles” in f̂T that correspond to pseudo-Gibbs

phenomena in the vicinity of singularities. These artifacts can be suppressed by the translation-

invariant denoising procedure of Coifman and Donoho [14], but this method tends to oversmooth

the result, and in our simulations we found that it affects the quality of singularities estimation.

For the simulation study, the factor is the value of σ. In this paper, we report the results for

n = 512 and RSNR equal to 7 (a low noise level), 5 (a moderate noise level) and 3 (a high noise

level). For each level of RSNR, a simulation run was repeated 100 times by regenerating the

εi’s. The wavelet maxima are computed for r = 3 and we again set δ = 1.1. In Figure 5, for each

level of RSNR and for each sequence of simulated data Yj = {yj,1, . . . , yj,n}, j = 1, . . . , 100, we

give the locations of the modes of the structural intensities whose mass is larger than m0 = 0.05.
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Figure 4: (a) Signal fT (see expression (4.2)) (b) Noisy signal fT with RSNR = 7, n = 512. (b)

EstWMSt: structural intensity of the estimated wavelet maxima for r = 3 (d) DenSt: structural

intensity of the wavelet maxima of f̂T (obtained by SureShrink thresholding) for r = 3

In each of these figures, the horizontal and verticals axes give respectively the location of the

landmarks on [0, 1] and j (i.e. the number of simulation). The results obtained with EstWMSt

are much better than those obtained with DenSt. For RSNR = 7, DenSt correctly estimates

the singularities at x = 0.1 and x = 0.5, but does not detect the singularity at x = 0.8 for almost

all simulated sequences. For RSNR = 5 the accuracy of the estimation of x = 0.1 and x = 0.5

is worse that the one obtained with EstWMSt. For RSNR = 3 the method DenSt completely

breaks down. The quality of the estimation for x = 0.1 and x = 0.5 is very poor. There are also

many outliers due to small wiggles in f̂T which correspond to wavelet coefficients at fine scales

that have been erroneously estimated by SureShrink thresholding, and which give rise to large

peaks in the structural intensity.

4.2 Bagging for removing the spurious estimates

In Figure 5c, we can remark that some significant modes in the structural intensities (computed

with EstWMSt) do not correspond to the singularities of fT . They correspond to spurious

wavelet maxima that have been erroneously estimated at fine scales (see the simulated example
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Figure 5: Locations of the significant modes of the structural intensity (with m0 = 0.05) (a)

EstWMSt RSNR = 7, (b) EstWMSt RSNR = 5, (c) EstWMSt RSNR = 3, (d) DenSt

RSNR = 7, (e) DenSt RSNR = 5, (f) DenSt RSNR = 3

in Figure 6). To remove these outliers, one can increase the scaling coefficient δ for the threshold

λn to limit the estimation of the wavelet maxima at some coarser scales. But it is difficult to

design an empirical choice for δ based on the data (see the discussion in the next section).

Bagging is a method for generating multiple version of an estimator and using these to obtain

an aggregated estimator that leads to substantial gains in accuracy. Usually, the aggregation

averages over the versions when predicting a numerical outcome (for instance in regression). The

multiple versions are formed by making bootstrap replicates of the data and using them as new

data. For an application of bagging to classification trees and to linear regression, see the paper

by Breiman [10]. Usually, bagging reduces the variance without increasing substantially the bias.

In our problem, rather than making bootstrap replicates of the sequence Y = {yi, i = 1, . . . , n},
we propose to generate M new sequences of data Y (k) = {y(k)

i , i = 1, . . . , n} by adding i.i.d.

Gaussian noise to the observations {yi, i = 1, . . . , n}, i.e:

y
(k)
i = yi + ε

(k)
i , i = 1, . . . , n, k = 1, . . . ,M,

where ε(k)i are i.i.d. normal variable with zero mean and variance σ2
∗. For each sequence Y (k),
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Figure 6: An example of bagging for removing spurious estimates: (a) Noisy signal fT with

RSNR = 3, n = 512. (b) Estimated wavelet maxima (thick lines) and true wavelet maxima

(thin lines) for r = 3: note the presence of some spurious wavelet maxima at fine scales. (c)

Weighted structural intensity of the estimated wavelet maxima. (d) Weighted structural inten-

sity Ĝ(Bag)
m (x) of the estimated wavelet maxima after bagging

we compute the weighted structural intensity Ĝ(k)
m (x) of the estimated wavelet maxima. Then,

define our bagging predictor as:

Ĝ(Bag)
m (x) =

1
M

M∑
k=1

Ĝ(k)
m (x), x ∈ [0, 1],

When perturbing the data Y , we believe that the modes of the structural intensity that corre-

spond to the true wavelet maxima lines will stay at the same position while those due to the

noise will be unstable. Hence, averaging over the perturbing Ĝ
(k)
m (x), k = 1, . . . ,M will give

rise to sharp peaks in the neighborhood of the true singularities and to flat and small maxima

elsewhere. Noise injection in a learning set and ensemble averaging has successfully been applied

by Raviv and Intrator [42] with feed-forward neural networks for the two-spiral problem and

is also shown to be useful for generalized additive modeling. Their simulations show that this

approach can effectively reduce the variance of the estimators. Resampling methods, based on

some variation of the original data, have also been used by Minotte et. al [35] for the detection of
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the modes of an unknown density. Their approach is similar to our bagging method since their

look simultaneously at a large collection of Mode Trees which are scale-space representations of

the typical features of a density. In Figure 6, an example of this bagging procedure is shown

for M = 300 and σ2
∗ = 0.5σ̂2 where σ̂2 denotes the estimated variance. The result of bagging in

Figure 6d shows that it seems to be a very appealing method. The amplitude of the spurious

peaks at x = 0.23 and x = 0.7 observed in Figure 6c has been reduced by the bagging procedure,

while the main modes of Ĝ(Bag)
m (x) correspond to the singularities of fT at x = 0.1 and x = 0.5.

4.3 Choice of the hyperparameters

To conclude this discussion on the practical estimation of the singularities, we summarize on the

various hyperparameters that have been introduced and address for a future work how some of

them could be data-based chosen:

• The number of vanishing moments r: the choice of r depends on the order α of the sin-

gularity that we want to detect. According to the results of section 3, the quality of the

estimation is better if the difference r−α is large. However, when increasing the number of

vanishing moments, one also increases the number of wavelet maxima lines that converge

to a singularity. Hence if r is too large, some wavelet maxima lines may have a small

amplitude and will only be detected at some coarse scales where they are not located near

the singularity to which they converge. Therefore, we recommend to choose r between 1

and 4.

• The scaling coefficient δ for the threshold λn: the value of δ is related to the finest scale at

which the wavelet maxima are estimated. Increasing δ is a way to remove some spurious

wavelet maxima that have been erroneously estimated at fine scales. But the value of δ

should not be too large to avoid performing the estimation only at coarse scales. Hence,

we recommend to choose δ in the interval [1, 2].

• The minimum excess mass m0: the choice of m0 is directly related to the problem of

deciding which modes in the structural intensities correspond to significant structures in

the signal. A procedure to automatically select m0 can certainly be derived from the excess

mass approaches in the context of density estimation (see Fisher and Marron [21] for further

references on this subject).

• Choice of σ2
∗ for the bagging procedure: we believe it is not straightforward to find a method

to automatically select the level of noise that should be injected in the data. To carefully

study the properties of the bagging procedure, one should first define a measure of the error

of the estimation of the wavelet maxima of a signal. An example of a distance between two
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functions based on their zero-crossings can be found in Mallat [28]. It could certainly be

used to study the bagging procedure from a theoretical point of view.

4.4 An electrical consumption example

To conclude this section on singularity detection, we present an example involving a real-world

signal: electrical consumption measured over the course of three days. This signal is particularly

interesting because of noise introduced whenever a defect is present in the monitoring equipment.

The data consist of measurement of a complex, highly-aggregated plant: the electrical load

consumption, sampled minute by minute, over a 5-week period. The resulting time series of

50,400 points is partly plotted in Figure 7a. This signal has been thoroughfully analyzed in

Misiti et. al [36] and has been used in Antoniadis et. al [1] to illustrate various wavelet denoising

techniques. External information given by electrical engineers includes the following points:

• The load curve is the aggregation of hundreds of sensors measurements, thus generating

measurement errors.

• The consumption is accounted for 50% by industry and for the other half by individual con-

sumers. The component of the load curve produced by industry has a rather regular profile

and exhibits low-frequency changes. On the other hand, the consumption of individual

consumers may be highly irregular, leading to high-frequency components.

• There are more than 10 millions individual consumers.

• Daily consumption patterns also change according to rate changes at different times (e.g.

relay-switched water heaters to benefit from special night rates).

• For the 3-day observations, indexed from 1 to 4320, the measurement errors for the obser-

vations 2400 to 3500 are unusually high, due to sensors failures (see Figure 7a).

Some portions of the signal (e.g. the midday period) have a complicated structure because

the intensity of the electricity consumers activity is high and it presents very large changes. We

focus our analysis on the period 2400-3500 which exhibits an unusually high noise component,

and we want to detect the abrupt changes of this signal (e.g. due to automatic switches). This

signal, denoted by e(t) in what follows, is plotted in Figure 7b. Given that the values of this

signal at the extremities of the interval [2400, 3500] are very different, we chose to perform the

analysis on the rescaled signal ẽ(t) = e(t)+ e(2400)−e(3500)
3500−2400 t, to avoid the creation of large wavelet

maxima which propagate up to t = 2400 and t = 3500. By rescaling the signal e(t) we do not

modify its singularities, and the extra linear term can be removed by choosing a wavelet with

r ≥ 2 vanishing moments. We have computed the weighted structural intensity Gr(t) of the

estimated wavelet maxima for r = 2, r = 3 and r = 4 with δ = 1.1 and a B-Spline wavelet. The
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singularities of e(t) result in large modes in each of the densities Gr(t), r = 2, 3, 4. In Figure

7c, the average structural intensity G(t) = (G2(t) + G3(t) + G4(t))/3 is plotted. Averaging

reduces the amplitudes of the modes due to outliers and amplifies the modes which correspond

to significant singularities. One can see that the main modes of G(t) correspond to the abrupt

changes of e(t). The amplitude of these modes is related to the significance of the “jumps” in

e(t). These modes can be interpreted either as a brutal change in the consumption of individual

consumers (e.g. at t = 2967 and t = 3015) or as a sensor failure (e.g. at t = 3430).
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Figure 7: (a) An electrical consumption signal over the course of 3 days. (b) Signal e(t). (c)

Average structural intensity G(t)

5 Some extensions and related problems

The methodology developed for the wavelet maxima can be adapted to the estimation of the zero-

crossings of the continuous wavelet transform of a signal observed with noise. Zero-crossings

of the wavelet transform can be used to localize the extrema or the inflections points of a

function that is sufficiently smooth (Mallat [28]). It is also possible to define a procedure to

test the null hypothesis: Ws(f)(x) = 0 at given scale s against the alternative hypothesis:

Ws(f)(x) > 0 or Ws(f)(x) < 0. This test is based on appropriate thresholding of the Gaussian

process {Ws(Yn)(x)−Ws(f)(x), x ∈ [0, 1]} and has been successfully used in Bigot [8], [9]. The
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approach to detect the presence of a significant zero in Ws(Yn)(x) is based on the ideas of

Chaudhuri and Marron [13] who developed a simple tool called SiZer for exploring significant

structures in a signal.

The notion of structural intensity can also be used to identify the limits of the zero-crossing lines

in the time-scale plane. In particular, the structural intensity of the estimated zero-crossings

can be viewed as a kind of smoothing method which highlights the main landmarks of a curve.

The alignment of two curves can then be based on the alignment of their structural intensities.

This approach has been used in Bigot [8], [9] for landmark-based matching and for functional

analysis of variance.

In this paper a new tool, the structural intensity of the wavelet maxima, has been introduced

to represent the landmarks of a signal via a probability density function. The main modes of this

density are located at the singularities of the signal and their amplitude is related to the Lips-

chitz regularity of these singularities. A thresholding procedure has been proposed to estimate

the wavelet maxima of a function observed from the white noise model. The structural intensity

of the estimated wavelet maxima can then be used to characterize the significant singularities

of a noisy signal. A small simulation study and a real example have been proposed to illustrate

the performances of our method. The results are very satisfactory and confirm that scale-space

approaches are efficient tools for the analysis of the local structures of a signal. A bagging

procedure has also been proposed, although this approach has not been studied theoretically.

From our experience, bagging estimators seem to have very appealing properties and lead to

substantial gains in accuracy. Finally, it would be nice to study from a theoretical point of view

the convergence of the local maxima of the structural intensity of the estimated wavelet maxima.

This task could certainly be achieved if we could design a procedure which guarantees that the

estimated wavelet maxima belong to connected curves that propagate up to fine scales.

Software available:
Matlab codes to reproduce the figures plotted in this paper are available at:

http://www.lsp.ups-tlse.fr/Fp/Bigot/Soft/landalign.html.
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Appendix

Proof of Proposition 2.1. Define:

gmi(x) =
∫ smi

0

1
s
θ(
x−mi(s)

s
)ds for x ∈ R and 1 ≤ i ≤ q.

Recall that ψ(u) = (−1)r d
rθ(u)
dtr has a fast decay which implies that θ′ has also a fast decay.

Therefore, there exists a constant C such that for all x ∈ R and all s ∈]0, smi ], |θ′(
x−mi(s)

s )| ≤
C

1+
“

x−mi(s)

s

”2 . Let a < xi and x ∈] − ∞, a[. Given that mi(s) → xi as s → 0, there exists a

constant M and a scale s0 > 0 such that for all x ∈] −∞, a[ and all s ≤ s0, |x −mi(s)| ≥ M

which implies that:

|θ′(x−mi(s)
s

)| ≤ Cs2

M2
, (5.1)

for all x ∈] − ∞, a[ and all 0 < s ≤ s0. Now, note that for all s ∈]0, smi ], x 7→ 1
sθ(

x−mi(s)
s )

is differentiable on ] −∞, a[. From equation (5.1), we have that s 7→ 1
s2
θ′(x−mi(s)

s ) is bounded

on ]0, smi ] and Lebesgue’s differentiation theorem finally implies that gmi is differentiable on

]−∞, a[. We can similarly show that gmi is differentiable on ]a,+∞[ for a > xi.

Let x 6= xi and define sx = |x−xi|
ε . From our assumptions, |xi − mi(s)| ≤ Ks which implies

that |x −mi(s)| ≤ (K + ε)s for all s ≥ sx. Hence, given our assumptions on θ, we have that

for all s ≥ sx, θ(
x−mi(s)

s ) ≥ θ(K + ε) > 0 which implies that gmi(x) ≥ θ(K + ε)
∫ smi
sx

1
sds

(since θ(x) ≥ 0 for all x ∈ R). Hence, there exists two constants C1 > 0 and C2 such that

gmi(x) ≥ −C1 ln(|x − xi|) + C2 which finally shows that gmi(x) → +∞ as x → xi. Since

Gm(x) =
∑q

i=1 gmi(x), the result immediately follows. �

Proof of Proposition 3.1. To prove the first part of this proposition, we need to control

the decay of the amplitude of the wavelet transform outside of the region Ks:

Lemma 5.1 There exists a constant A1 > 0 such that for all s < 2
1

ε−1 and all x /∈ Ks:

|Ws(f)(x)| ≤ A1s
ρ+1/2.

Proof. Let s < 2
1

ε−1 and x /∈ Ks. Note that for all v ∈ [−C,C], |x+sv−x0| > C(sε−s) > 0.

Hence, Assumption 3.4 implies that Ws(f)(x) = sr+1/2
∫ C
−C f

(r)(x+ sv)θ(v)dv, where [−C,C] is

the support of ψ. Then, Assumption 3.3 yields

|Ws(f)(x)| ≤ B2s
r+1/2

∫ C

−C
|x− x0 + sv|α−r|θ(v)|dv
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If x < x0−C(sε−s), then on [−C,C] the function v 7→ |x−x0+sv| is minimum for v = −C. Since

α− r < 0, we obtain that for all v ∈ [−C,C], |x−x0 +sv|α−r ≤ |x−x0−Cs|α−r ≤ Cα−rsε(α−r),

and finally

|Ws(f)(x)| ≤ B2C
α−rsρ+1/2

∫ C

−C
|θ(v)|dv.

The same result holds if x > x0 + C(sε − s) which completes the proof. �

Then, we also need the following lemma which gives the asymptotic distribution of the

modulus maximum of the continuous wavelet transform of a Brownian motion when the scale s

tends to zero:

Lemma 5.2 Recall that Ws(B)(x) =
∫ +∞
−∞ ψs(u − x)B(du) where B is a standard Brownian

motion. Let M̃s = maxx∈[0,1] |Ws(B)(x)|. Then, as s→ 0:

P

√2| log(s)|M̃s − 2| log(s)| − log


[∫ C
−C{ψ

′(u)}2du
]1/2

2π

 ≤ t

→ exp(−2e−t). (5.2)

Proof. This lemma is based on Theorem 8.2.7. and Theorem 1.8.3 of the book by Leadbetter

et. al. The following lemma is an immediate consequence of these two Theorems:

Lemma 5.3 Let {ξ(t); t ≥ 0} be a standardized stationary normal process whose covariance

function r(τ) satisfies:

r(τ) = 1− λ2τ
2

2
+ o(τ2), as τ → 0,

where λ2 is a finite real. Let M̃(T ) = maxt∈[0,T ] |ξ(t)|, then as T →∞:

P

(√
2 log(T )M̃(T )− 2 log(T )− log

(
λ

1/2
2

2π

)
≤ t

)
→ exp(−2e−t).

By the self-similarity property of the Brownian motion:

Law

(
Ws(B)(x) =

∫ +∞

−∞
ψs(u− x)B(du)

)
= Law

(∫ +∞

−∞
ψ(u− s−1x)B(du)

)
. (5.3)

Let
{
Z(y) =

∫ +∞
−∞ ψ(u− y)B(du); y ≥ 0

}
. Equation (5.3) proves that:

Law(M̃s) = Law( max
y∈[0,s−1]

|Z(y)|).

Note that Z is a stationary normal process whose covariance function satisfies:

rZ(x, y) = E(Z(x)Z(y)) =
∫ C

−C
ψ(u− (x− y))ψ(u)du.
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By a Taylor expansion in the neighborhood of u and the regularity assumptions on ψ, we obtain

that if x and y are close enough:

rZ(x, y) =
∫ C

−C
{ψ(u)}2du− (x− y)

∫ C

−C
ψ′(u)ψ(u)du+

(x− y)2

2

∫ C

−C
ψ′′(u)ψ(u)du+ o((x− y)2).

Then, an integration by part shows that
∫ C
−C ψ

′(u)ψ(u)du = 0 and
∫ C
−C ψ

′′(u)ψ(u)du = −
∫ C
−C{ψ

′(u)}2du,

which finally yields:

rZ(x, y) = 1−
∫ C
−C{ψ

′(u)}2du

2
(x− y)2 + o((x− y)2).

Then, equation (5.2) is a direct consequence of Lemma 5.3 and the expression of rZ(x, y) given

above. �

By triangular inequality, we have |Ws(Yn)(x)| ≥ λn ⇒ σn−1/2|Ws(B)(x)| ≥ λn−|Ws(f)(x)|.
Given that sρ+1/2

ρ = σn−
1
2 , Lemma 5.1 implies that there exists n0 ∈ N and a constant A1 > 0

such that for all n ≥ n0 and all s ≤ sρ, maxx/∈Ks
|Ws(f)(x)| ≤ A1s

ρ+1/2 ≤ A1
σ√
n
. Hence, it

follows that for s ≤ sρ and n ≥ n0:

P (max
x/∈Ks

|Ws(Yn)(x)| ≥ λn) ≤ P (max
x/∈Ks

|Ws(B)(x)| ≥ δ
√

2 log(n log(n))−A1)

≤ P (M̃n ≥ Tn),

where M̃n =
√

2| log(s)|maxx/∈Ks
|Ws(B)(x)|−2| log(s)|−K, Tn = δ

√
2| log(s)|2 log(n log(n))−

A1

√
2| log(s)| − 2| log(s)| −K, and K = log

(
[
R C
−C{ψ

′(u)}2du]1/2

2π

)
.

Note that Tn = 2| log(s)|
(
δ
√

log(log(n))+log(n)
| log(s)| − 1− A1√

2| log(s)|
− K

2| log(s)|

)
, and that for 1

n ≤ s,√
log(log(n))

log(n) + 1 ≤
√

log(log(n))+log(n)
| log(s)| . Since δ > 1, we obtain that for 1

n ≤ s ≤ sρ, Tn → ∞.

Finally, Lemma 5.2 implies that for 1
n ≤ s ≤ sρ, P

(
M̃n ≥ Tn

)
→ 0 as n→∞ which proves the

first part of the proposition.

From Assumption 3.2, we have that there exists m(s) ∈ Vs such that for all s ≤ s0,
Ws(f)(m(s))

sα+1/2 ≥ B1| log(s)|γ . Hence for sufficiently large n and sρ ≥ s ≥ sα∗ one has that

|Ws(f)(m(s))| ≥ B1| log(s)|γsα+1/2
α∗ ≥ B1| log(sα∗)|γ σ√

n
nβ
√

log(n). By triangular inequalities,

we have |Ws,n(Y )(m(s))| ≤ λn ⇒ σn−1/2|Ws(B)(m(s))| ≥ |Ws(f)(m(s))| − λn. Hence, for

sρ ≥ s ≥ sα∗ :

P (|Ws,n(Y )(m(s))| ≤ λn) ≤ P
(
σn−1/2|Ws(B)(m(s))| ≥ |Ws(f)(m(s))| − λn

)
≤ P

(
|Ws(B)(m(s))| ≥ B1| log(sα∗)|γnβ

√
log(n)− δ

√
2 log(n log(n))

)
≤ 2− 2Φ (Tn) , where
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Tn = B1| log(sα∗)|γnβ
√

log(n) − δ
√

2 log(n log(n)) and Φ is the standard normal cumulative

distribution function. Given that sα+1/2
α∗ = σ√

n
nβ
√

log(n), we have that | log(sα∗)|γnβ → ∞ as

n→∞. Since Tn =
√

log(n)
(
B1| log(sα∗)|γnβ − δ

√
2
√

log(log(n))
log(n) + 1

)
, we obtain that Tn →∞

and finally that for sρ ≥ s ≥ sα∗ , 2 − 2φ (Tn) → 0 as n → ∞ which proves the second part of

the proposition. �

Proof of Proposition 3.2. From the definition of ŝ and Proposition 3.1, we immediately

have P (sα∗ ≥ ŝ) → 1. Since f has a singularity of order α at x0, Theorem 6.4 on page 171

of Mallat [29] implies that there exists a constant A1 > 0 such that for all |x − x0| ≤ 2Cs,

|Ws(f)(x)| ≤ A1s
α+1/2. As in the proof of Lemma 5.1 we can show that that for all |x− x0| >

2Cs, |Ws(f)(x)| ≤ B2s
r+1/2

∫ C
−C |x−x0+sv|α−r|θ(v)|dv ≤ B2s

r+1/2
∫ C
−C |Cs|

α−r|θ(v)|dv. Hence,

we finally have that there exists a constant A > 0 such that for all x ∈ [0, 1], |Ws(f)(x)| ≤
Asα+1/2. If we repeat the proof of Proposition 3.1 for sα instead of sρ, one has that for sα ≥ s ≥ 1

n

:

P ( max
x∈[0,1]

{|Ws(Yn)(x)|} > λn) → 0,

which implies that P (ŝ > sα) → 1 and completes the proof. �
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