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ABSTRACT

We extend Cox’s classical regression model to accomodate partially informative censored

data. In this type of data, each observation is the minimum of one lifetime and two

censoring times. The survival function of one of these censoring times is a power of the

survival function of the lifetime. We call this the informative censoring time. The distri-

bution of the other censoring time has no relation with the distribution of the lifetime. It

is called the non-informative censoring time. In this model we specify a semiparametric

relation between the lifetime and a covariate where we take into account that also infor-

matively censored observations contribute to this relation. We introduce an estimator for

the cumulative baseline hazard function and use maximum likelihood techniques for the

estimation of the parameters in the model. Our main results are strong consistency and

asymptotic normality of these estimators. The proof uses the general theory of Murphy

and van der Vaart (2000) on profile likelihoods. Finally the method is applied to a real

data example on survival with malignant melanoma.
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1 Introduction

In the original regression model of Cox (1972), the relationship between a lifetime Y and

a covariate X is modelled via the conditional hazard rate function of Y given X = x,

defined as

λ(t | x) = lim
h→
>
0

1

h
P (Y < t+ h | Y ≥ t;X = x)

Cox’s proportional hazards model specifies that λ(t | x) has the form

λ(t | x) = λ0(t)e
β0x

where λ0(t) is an unspecified baseline hazard rate function (the hazard for an individual

with x = 0) and β0 is an unknown regression parameter. For simplicity we assume here

that the covariate X is one-dimensional, but generalization to vector valued X and β0 is

possible.

In survival analysis applications it typically occurs that independent observations Y1, . . . , Yn

on Y are not fully observed. Here we consider the following right censorship pattern: each

Yi may be censored by the minimum of two non-negative variables Ci and Di and the

observed random variables are (Zi, δi) (i = 1, . . . , n), where Zi = Yi ∧ Ci ∧Di and δi = 1
if Yi ≤ Ci ∧ Di, δi = 0 of Ci ≤ Yi ∧ Di and δi = −1 if Di ≤ Yi ∧ Ci. In the absence
of regression, this model for censoring has been introduced by Gather and Pawlitschko

(1998). They assumed the Ci to be informative censoring times (in the sense defined

below), while the Di were arbitrary non-informative censoring times. A typical example

in a clinical study on survival of patients after a treatment could be that Ci describes

survival time of the patient till death from other causes while Di represents survival time

of the patient when alive at the end of the study. This partially informative censoring

pattern has also been studied nonparametrically in the fixed design regression case by

Braekers and Veraverbeke (2001).

We use the following notations for the conditional distribution functions F (t | x) =
P (Y ≤ t | X = x), G1(t | x) = P (C ≤ t | X = x), G2(t | x) = P (D ≤ t | X = x)
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and denote their corresponding conditional densities by f(t | x), g1(t | x), g2(t | x). We
assume that the covariate random variable X has density function f(x).

For our analysis we consider the observed data (Xi, Zi, δi) (i = 1, . . . , n) as an iid sample

from (X,Z, δ), where Z = Y ∧ C ∧ D and δ = 1, 0 or −1 according to Z = Y , C or D.
Throughout, we also assume that:

(a) Y , C and D are conditionally independent given X (independent censoring)

(b) The conditional distribution function of C given X = x satisfies

1−G1(t | x) = (1− F (t | x))βx

for some constant βx > 0, depending on the covariate value x (Koziol-Green as-

sumption)

(c) The conditional distribution function of D given X = x does not involve the para-

meters of interest (non-informative censoring)

(d) The conditional hazard function of Y given X = x has the form

λ(t | x) = λ0(t)e
β0x

(proportional hazards assumption)

(e) The parameter βx in (b) satisfies a model

βx = ϕ(x,β(0))

with ϕ some strictly positive function and β(0) = (β1, . . . ,βp) a vector of p unknown

parameters. We assume that ϕ has partial derivatives of first and second order in

a neighborhood of β(0). These will be denoted by ϕ̇j =
∂ϕ

∂βj
, ϕ̈ij =

∂2ϕ

∂βi∂βj
(i, j =

1, . . . , p).

(f) logϕ(x,β(0)) is concave and log(ϕ(x,β(0)) + 1) is convex in β(0).
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(g) The non-informative censoring time D is bounded by some T0 > 0 and

P (Z ≥ T0) > 0. The value of T0 is the prespecified time at which the study is

terminated.

Remarks

(1) The condition in (b) on the censoring time C reflects a simple model of informative

censoring. It is originally due to Koziol and Green (1976) in the case without

covariates. In the fixed design regression case it has been studied by Veraverbeke

and Cadarso Suárez (2000). This condition is often called ‘simple proportional

hazards model’, but because of confusion with Cox’s proportional hazards model,

we prefer to call it Koziol-Green assumption.

(2) By direct calculation it is easily seen that the parameter βx in (b) has the following

interpretation:

βx =
P (δ = 0 | X = x)

P (δ = 1 | X = x)
.

An important example in (e) is the loglinear model log βx = a + bx, but it is clear

that other modelling could be proposed.

In this paper we develop maximum likelihood techniques for joint estimation of the

p + 1 parameters in this model. There are the p parameters β1, . . . , βp for the modelling

of the exponent βx and the other one is the regression parameter β0. The likelihood

and likelihood equations are established in Sections 2 and 3. We prove consistency and

asymptotic normality in Sections 4 and 5 respectively. Finally, in Section 6, the method

is implemented in the analysis of a real data example.

2 The likelihood

We begin by calculating the likelihood contribution of an item i with X = xi, Z = zi and

δ = di. Under assumption (a) it is given by
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lim
ε→0

1

2ε
P (zi − ε ≤ Z ≤ zi + ε, δ = di | X = xi)

=


f(zi | xi)(1−G1(zi | xi))(1−G2(zi | xi)) . . . if di = 1
g1(zi | xi)(1− F (zi | xi))(1−G2(zi | xi)) . . . if di = 0
g2(zi | xi)(1− F (zi | xi))(1−G1(zi | xi)) . . . if di = −1.

Using assumptions (b) - (e), we obtain for the likelihood, after removing non-important

factors: �
δi=1

f(Zi | Xi)(1− F (Zi | Xi))βXi
�
δi=0

βXif(Zi | Xi)(1− F (Zi | Xi))βXi

· �
δi=−1

(1− F (Zi | Xi))βXi+1

=
�
δi=0

βXi
�

δi W=−1
λ0(Zi)e

β0Xi
n�
i=1

(1− F (Zi | Xi))βXi+1

and, by taking logarithms, we obtain the loglikelihood�
δi=0

logϕ(Xi,β
(0)) +

�
δi W=−1

[logλ0(Zi) + β0Xi]−
n�
i=1

p
ϕ(Xi,β

(0)) + 1
Q
eβ0XiΛ0(Zi)

where Λ0(t) =
t$
0

λ0(u)du is the cumulative baseline hazard function.

We want to obtain estimators �β0, �β1, . . . , �βp that maximize this expression. In the ordinary
Cox proportional hazards model, the standard inference for the regression parameter β0

can be based on the partial likelihood, an expression which does not depend on the infinite

dimensional nuisance parameter λ0(t) (Cox 1972, 1975). It is well known (see for example

the explanation in Fan and Gijbels (1996)) that this gives exactly the same estimator as

using the full likelihood in which Λ0(t) is replaced by a ‘least informative’ nonparametric

estimator. In our situation the partial likelihood analysis is not possible, due to the

presence of the unknown parameters β1, . . . , βp in the modelling of βx. Our approach

will be a profile likelihood technique in which Λ0(t) is replaced in the full likelihood by a

nonparametric maximum likelihood estimator, given β0, β1, . . . , βp.

The least informative nonparametric modelling for Λ0(t) is given by

�Λ0(t) = N�
j=1

λjI(Y
0
j ≤ t)
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where Y 01 < Y 02 < . . . < Y 0N are the N ordered times for which δi W= −1. This is a
step function with jumps at any observation which is uncensored or informatively cen-

sored. The motivation for this choice is that the nonparametric approach in Gather and

Pawlitschko (1998) turns out to be precisely of this type. We then have that

�Λ0(Zi) = N�
j=1

λjI(Y
0
j ≤ Zi) =

N�
j=1

λjI (i ∈ Rj)

where Rj = {i : Zi ≥ Y 0j } is the risk set at time Y 0j −.
With this the loglikelihood becomes�
δi=0

logϕ(Xi,β
(0)) +

N�
j=1

[log λj + β0X(j)]−
n�
i=1

(ϕ(Xi,β
(0)) + 1)eβ0Xi

N�
j=1

λjI(i ∈ Rj) (1)

where X(1), . . . , X(N) are the covariates associated with the ordered Y
0
1 < Y

0
2 < . . . < Y

0
N .

Maximization with respect to λj gives

�λj = 1�
i∈Rj

(ϕ(Xi,β
(0)) + 1)eβ0Xi

and substituting this into (1) leads to the profile loglikelihood�
δi=0

logϕ(Xi,β
(0)) +

N�
j=1

[− log �
i∈Rj

(ϕ(Xi,β
(0)) + 1)eβ0Xi + β0X(j)]−N

which has to be maximized with respect to β0, β1, . . . , βp. This is of course equivalent to

maximizing

�H(β)= 1
n

�
δi=0

logϕ(Xi,β
(0))− 1

n

�
δi W=−1

log

w
1

n

�
k∈Ri

(ϕ(Xk,β
(0)) + 1)eβ0Xk

W
+
β0
n

�
δi W=−1

Xi. (2)

where β = (β0,β
(0)) = (β0, β1, . . . , βp).

3 The likelihood equations

The estimators �β0, �β1, . . . , �βp are solutions to the equations ∂ �H
∂β0

= . . . =
∂ �H
∂βp

= 0, that is

�
δi W=−1

Xi −
�

δi W=−1

�
k∈Ri

Xk(ϕ(Xk,β
(0)) + 1)eβ0Xk�

k∈Ri

(ϕ(Xk,β
(0)) + 1)eβ0Xk

= 0 (3)
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�
δi=0

ϕ̇j(Xi,β
(0))

ϕ(Xi,β
(0))
− �

δi W=−1

�
k∈Ri

ϕ̇j(Xk,β
(0))eβ0Xk�

k∈Ri
(ϕ(Xk,β

(0)) + 1)eβ0Xk
= 0 (j = 1 . . . p). (4)

It will be convenient to introduce the following shorthand notations. For any continuous

function g, we put:

E(g(x), t) =

8
g(x)P (Z ≥ t | X = x)f(x)dx

E0(g(x), t) =

8
g(x)P (Z ≥ t, δ = 0 | X = x)f(x)dx

E1(g(x), t) =

8
g(x)P (Z ≥ t, δ = 1 | X = x)f(x)dx

E0,1(g(x), t) =

8
g(x)P (Z ≥ t, δ W= −1 | X = x)f(x)dx

where f(x) is the density function of the covariate X.

The empirical versions will be denoted by �E(g(x), t), �E0(g(x), t), etc. For example,
�E0,1(g(x), t) = 1

n

n�
i=1

g(Xi)I(Zi ≥ t, δi W= −1).

Further abbreviations will be

Q(t) = P (Z ≥ t, δ W= −1)�Q(t) =
1

n

n�
i=1

I(Zi ≥ t, δi W= −1).

With this, �H in (2) can be rewritten as

�H(β) = �E0(logϕ(x,β(0)), 0) + T08
0

log �E((ϕ(x,β(0)) + 1)eβ0x, t)d �Q(t) + �E0,1(β0x, 0). (5)
Consider the ‘population version’ of (5):

H(β) = E0(logϕ(x,β(0)), 0) +

T08
0

logE((ϕ(x,β(0)) + 1)eβ0x, t)dQ(t) + E0,1(β0x, 0). (6)

In the following Lemma 1, we show that this function H is concave.
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Lemma 1. Under assumption (f), we have that the functions �H and H are concave.

Furthermore, the first order partial derivatives of the function H are zero at β:

∂H

∂β0
= E0,1(x, 0) +

T08
0

E(x(ϕ(x,β(0)) + 1)eβ0x, t)

E((ϕ(x,β(0)) + 1)eβ0x, t)
dQ(t) = 0.

∂H

∂βj
= E0

X
ϕ̇j(x,β

(0))

ϕ(x,β(0))
, 0

~
+

T08
0

E(ϕ̇j(x,β
(0))eβ0x, t)

E((ϕ(x,β(0)) + 1)eβ0x, t)
dQ(t) = 0 (j = 1, . . . , p).

Proof. Take β = (β0,β
(0)), β∗ = (β∗0 ,β

∗(0)) and 0 < λ < 1. From (f) we have, by taking

expectations, that

λE0(log(ϕ(x,β(0))), 0) + (1− λ)E0(log(ϕ(x,β∗(0))), 0) ≤ E0(logϕ(x,λβ(0) + (1− λ)β∗(0)), 0)

Furthermore we find:�
ϕ(x,λβ(0) + (1− λ)β∗(0)) + 1

=
e[λβ0+(1−λ)β

∗
0 ]x

≤
�
(ϕ(x,β(0)) + 1)eβ0x

=λ �
(ϕ(x,β∗(0)) + 1)eβ

∗
0x
=1−λ

and hence

E((ϕ(x,λβ(0) + (1− λ)β∗(0)) + 1)e(λβ0+(1−λ)β
∗
0 )x, t)

≤
8 �

(ϕ(x,β(0)) + 1)eβ0x
=λ �

(ϕ(x,β∗(0)) + 1)eβ
∗
0x
=1−λ

P (Z ≥ t|X = x)f(x)dx

≤ E((ϕ(x,β(0)) + 1)eβ0x, t)λE((ϕ(x,β∗(0)) + 1)eβ∗0x, t)1−λ

where we used Hölder’s inequality. Taking logarithms and expectations with respect to

the (decreasing) function Q(t) gives:

λ
T0$
0

logE((ϕ(x,β(0)) + 1)eβ0x, t)dQ(t) + (1− λ)
T0$
0

logE((ϕ(x,β∗(0)) + 1)eβ
∗
0x, t)dQ(t)

≤
T0$
0

logE
�
(ϕ(x,λβ(0) + (1− λ)β∗(0)) + 1)e(λβ0+(1−λ)β

∗
0 )x, t
=
dQ(t).

So we get : λH(β) + (1− λ)H(β∗) ≤ H(λβ + (1− λ)β∗).

This means that H is concave. By changing integrals into sums, we get that �H is also

concave.
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That the partial derivatives of H vanish at β can be seen through the following two

relations. For any continuous function g we have that:

E(g(x)βxe
β0x, t)

E((βx + 1)eβ0x, t)
dQ(t) = dE0(g(x), t) (7)

and

E(g(x)(βx + 1)e
β0x, t)

E((βx + 1)eβ0x, t)
dQ(t) = dE0,1(g(x), t). (8)

We only show the derivation of (7). We have

P (Z ≥ t, δ W= −1 | X = x) = (1 + βx)

∞8
t

(1−G2(u | x))(1− F (u | x))βxdF (u | x)

= (1 + βx)

∞8
t

(1−G2(u | x))(1− F (u | x))βx+1λ(u | x)du

= (1 + βx)e
β0x

∞8
t

P (Z ≥ u | X = x)λ0(u)du

and hence

dQ(t) = −λ0(t)E((1 + βx)e
β0x, t)dt. (9)

Also, similarly,

P (Z ≥ t, δ = 0 | X = x) = βxe
β0x

∞8
t

P (Z ≥ u | X = x)λ0(u)du

and hence

dE0(g(x), t) = −λ0(t)E(g(x)βxeβ0x, t)dt. (10)

The relation (7) now follows from (9) and (10).

4 Strong consistency

In Theorem 1 of this section we establish the existence of a strongly consistent solution

to the likelihood equations. We also prove Lemma 2 which will be used in the proof of
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the next section. It concerns the consistency of an estimator for the cumulative hazard

function Λ0(t).

Theorem 1. Assume that E|X| <∞ and that E| logϕ(X,β(0))| and
E[((ϕ(X,β(0)) + 1)eβ0X)2] are bounded uniformly in a neighborhood of β. There exists a

sequence of solutions �β of the equations (3) - (4) such that
�β → β

a.s. as n→∞.

Proof. Lemma 1 implies that the function H has a local maximum at β. Hence for

β∗ in a δ-neighborhood of β (,β∗ − β, ≤ δ, with , , Euclidean distance) we have that

H(β)−H(β∗) ≥ 0 (11)

with strict inequality if ,β∗ − β, = δ. From the strong law of large numbers together

with Lemmas A1 and A2 in Tsiatis (1981), it follows that

�H(β)− �H(β∗)→ H(β)−H(β∗). (12)

Relations (11) and (12) entail that, on a set of probability one, there exists an n0 such

that for all n ≥ n0:

�H(β)− �H(β∗) > 0 for ,β∗ − β, = δ. (13)

In Lemma 1 we saw that �H is concave. So �H has a local maximum on ,β∗ − β, ≤ δ.

This maximum cannot be on the boundary (,β∗ − β, = δ) since (13). A consequence

of this is that the first derivatives vanish somewhere on ,β∗ − β, < δ. The value where

∂ �H
∂β0

= . . . =
∂ �H
∂βp

= 0 is the ML-estimate �β which was discussed in Section 3. We can
now repeat this argument for δ decreasing with n. In this way, we get a sequence �βn with�βn → β a.s. as n→∞.

10



In the next section we will need the estimator for Λ0(t) which is obtained by maximizing

the likelihood for a fixed value of β = (β0,β
(0)). It is given by

�Λβ(t) = n�
j=1

I(Zj ≤ t, δj W= −1)�
i∈Rj

(ϕ(Xi,β
(0)) + 1)eβ0Xi

. (14)

We have the following consistency result.

Lemma 2. Assume that E[((ϕ(X,β(0)) + 1)eβ0X)2] is bounded uniformly in a neigh-

borhood of β. If �β = (�β0, �β(0)) is any random sequence with �β P→ β as n→∞, then

sup
0≤t≤T0

|�Λ
β
(t)− Λ0(t)| P→ 0.

Proof. From (9) it follows that

Λ0(t) =

t8
0

−dQ(s)
E((ϕ(x,β(0)) + 1)eβ0x, s)

.

Also �Λ
β
(t) can be rewritten as

�Λ
β
(t) =

t8
0

−d �Q(s)�E((ϕ(x, �β(0)) + 1)eβ0x, s) .
We have that

sup
0≤t≤T0

eee �E((ϕ(x, �β(0)) + 1)eβ0x, t)− E((ϕ(x,β(0)) + 1)eβ0x, t)eee
≤ sup

0≤t≤T0

eee �E((ϕ(x, �β(0)) + 1)eβ0x, t)− E((ϕ(x, �β(0)) + 1)eβ0x, t)eee
+ sup
0≤t≤T0

eeeE((ϕ(x, �β(0)) + 1)eβ0x, t)−E((ϕ(x,β(0)) + 1)eβ0x, t)eee .
The first term tends to zero a.s. by Lemma A1 in Tsiatis(1981). The second term tends

to zero in probability since �β P→ β and since the function sup
0≤t≤T0

eeeE((ϕ(x, 4β(0)) + 1)eβ0x, t)
−E((ϕ(x,β(0)) + 1)eβ0x, t)

eee is continuous in 4β = (4β0, 4β(0)).
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This leads to

sup
0≤t≤T0

|�Λ
β
(t)− Λ0(t)|

≤ sup
0≤t≤T0

eeeeee
t8
0

−d �Q(s)�E((ϕ(x, �β(0)) + 1)eβ0x, s) −
t8
0

−dQ(s)�E((ϕ(x, �β(0)) + 1)eβ0x, s)
eeeeee

+ sup
0≤t≤T0

eeeeee
t8
0

−dQ(s)�E((ϕ(x, �β(0)) + 1)eβ0x, s) −
t8
0

−dQ(s)
E((ϕ(x,β(0)) + 1)eβ0x, s)

eeeeee
≤

sup
0≤t≤T0

| �Q(t)−Q(t)|
�E((ϕ(x, �β(0)) + 1)eβ0x, T0)

+

sup
0≤t≤T0

eee �E((ϕ(x, �β(0)) + 1)eβ0x, t)− E((ϕ(x,β(0)) + 1)eβ0x, t)eee
�E((ϕ(x, �β(0)) + 1)eβ0x, T0)E((ϕ(x,β(0)) + 1)eβ0x, T0)

which finishes the proof of the lemma.

5 Asymptotic normality

Theorem 2. Assume that E| logϕ(X,β(0))|, E(|X|5(ϕ(X,β(0)) + 1)2e2β0X),
E(X2|ϕ̇j(X,β(0))|eβ0X), E

X
ϕ̇j(X,β

(0))ϕ̇jI(X,β
(0))e2β0X

ϕ2(X,β(0))

~
andE

X
X2|ϕ̈jjI(X,β(0))|

ϕ(X,β(0))

~
for

all j, jI = 1, . . . , p are bounded uniformly in a neighborhood of β. Then the solution �β
given in Theorem 1 is asymptotically normal as n→∞:

n
1
2 (�β − β) d→ N

D
0 ; I−1

i
where 0 = (0, . . . , 0) and I is the information matrix of the function H

I = I(β) =

w
− ∂2H

∂βi∂βj

W
(i, j = 0, 1, . . . , p).

Proof. We follow the general approach of Murphy and van der Vaart (2000) for verifying

the validity of the profile likelihood method. More in particular we will check the condi-

tions of their Theorem 1, which guarantees that the profile likelihood allows an asymptotic
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expansion, which then leads to the asymptotic normality of the maximum likelihood es-

timator �β.
We had as loglikelihood in Section 2

�
δi=0

logϕ(Xi,β
(0)) +

�
δi W=−1

[logλ0(Zi) + β0Xi]−
n�
i=1

(ϕ(Xi,β
(0)) + 1)eβ0XiΛ0(Zi)

=
n�
i=1

logL(β,Λ0)(Xi, δi, Zi)

where logL(β,Λ0)(x, δ, z)

= I(δ = 0) logϕ(x,β(0)) + I(δ W= −1) [log λ0(z) + β0x]− (ϕ(x,β(0)) + 1)eβ0xΛ0(z)

is the contribution of the datapoint (x, δ, z).

We start by calculating the score functions for β and Λ0. The parameter β is finite

dimensional, so the score function is the vector S(β,Λ0)(x, δ, z) of partial derivatives of

logL(β,Λ0)(x, δ, z) with respect to βj (j = 0, 1, . . . , p):

S(β,Λ0)(x, δ, z) =


S0(β,Λ0)(x, δ, z)

S1(β,Λ0)(x, δ, z)

· · ·
Sp(β,Λ0)(x, δ, z)

 =



I(δ W= −1)x− (ϕ(x,β(0)) + 1)eβ0xΛ0(z)
I(δ = 0)

ϕ̇1(x,β
(0))

ϕ(x,β(0))
− ϕ̇1(x,β

(0))eβ0xΛ0(z)

· · ·
I(δ = 0)

ϕ̇p(x,β
(0))

ϕ(x,β(0))
− ϕ̇p(x,β

(0))eβ0xΛ0(z)


.

For the score function of the infinite dimensional nuisance parameter Λ0, we use
∂

∂t
logL(β,Λt)(x, δ, z)|t=0, where Λt(z) =

z$
0

(1 + th(s))dΛ0(s) with h : IR → IR some

bounded function. The boundedness of h entails that Λt is an absolutely continuous

cumulative hazard function for |t| small. This gives

∂

∂t
logL(β,Λt)(x, δ, z)|t=0 = I(δ W= −1)h(z)− (ϕ(x,β(0)) + 1)eβ0x

z8
0

h(s)dΛ0(s) := Ah(z)

where A : L2(Λ0) → L2(β,Λ0) is a bounded linear operator between the Hilbert spaces

L2(Λ0) and L2(β,Λ0) with in-products given by, respectively< f, g >Λ0=
T0$
0

f(s)g(s)dΛ0(s)

and < f, g >β,Λ0=
$
fgdP (x, δ, z).

13



The score function depends on the infinite dimensional nuisance parameter Λ0 and there-

fore we calculate the efficient score function for β, i.e. the original score function minus

its original projection onto the score function of the nuisance parameter Λ0. Since A is a

linear operator, this efficient score function is given by

4S(β,Λ0)(x, δ, z) = S(β,Λ0)(x, δ, z)−A(A∗A)−A∗S(β,Λ0)(x, δ, z) (15)

where A∗ is the adjoint operator and (A∗A)− is a generalized inverse.

The identity < Ah, g >=< h,A∗g >, for every h ∈ L2(Λ0) and g ∈ L2(β,Λ0) can be used
to find expressions for A∗A and A∗. Direct calculations give

(A∗A)−g(z) =
g(z)

E((ϕ(x,β(0)) + 1)eβ0x, z)

A∗S0(β,Λ0)(x, δ, z) = E(x(ϕ(x,β(0)) + 1)eβ0x, z)

A∗Sj(β,Λ0)(x, δ, z) = E(ϕ̇j(x,β
(0))eβ0x, z) (j = 1, . . . , p).

Hence the efficient score function for β has components

4S0(β,Λ0)(x, δ, z) = I(δ W= −1)[x− E(x(ϕ(x,β(0)) + 1)eβ0x, z)
E((ϕ(x,β(0)) + 1)eβ0x, z)

]

−(ϕ(x,β(0)) + 1)eβ0x
z8
0

[x− E(x(ϕ(x,β
(0)) + 1)eβ0x, s)

E((ϕ(x,β(0)) + 1)eβ0x, s)
dΛ0(s)]

and, for j = 1, . . . , p,

4Sj(β,Λ0)(x, δ, z) = I(δ = 0)ϕ̇j(x,β
(0))

ϕ(x,β(0))
− I(δ W= −1)E(ϕ̇j(x,β

(0))eβ0x, z)

E((ϕ(x,β(0)) + 1)eβ0x, z)

−
z8
0

[ϕ̇j(x,β
(0))eβ0x − (ϕ(x,β

(0)) + 1)eβ0xE(ϕ̇j(x,β
(0))eβ0x, s)

E((ϕ(x,β(0)) + 1)eβ0x, s)
]dΛ0(s).

For the covariance matrix I = (Iij) of this efficient score function we obtain, after long

but straightforward calculations, that for i, j = 0, 1, . . . , p,

Iij = E(4Si(β,Λ0)(X, δ, Z).4Sj(β,Λ0)(X, δ, Z)) = − ∂2H

∂βi∂βj
.

Since, by Lemma 1, H is a concave function, we have that I is a positive definite matrix.
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In the remaining part of the proof we have to define an approximately least favorable

submodel and verify the conditions of Theorem 1 in Murphy and van der Vaart (2000).

For any (4β,Λ) and t = (t0, t1, . . . , tp) = (t0, t
(0)), we define the approximately least

favorable submodel by

Λt(
4β,Λ)(z) = z8

0

[1 + (4β − t)h0(s)]dΛ(s)
where h0 is the least favorable direction given by

h0(z) =


h00(z)

h01(z)

· · ·
h0p(z)

 =
1

E((ϕ(x,β(0)) + 1)eβ0x, z)


E(x(ϕ(x,β(0)) + 1)eβ0x, z)

E(ϕ̇1(x,β
(0))eβ0x, z)

· · ·
E(ϕ̇p(x,β

(0))eβ0x, z)

 .

We see that at t = 4β, Λ
β
(4β,Λ)(z) = Λ(z), which is condition (8) in Murphy and van

der Vaart (2000). Next we define the function l(t, 4β,Λ) as
l(t, 4β,Λ)(x, δ, z) = logL(t,Λt(4β,Λ))(x, δ, z).

The remaining conditions in Murphy and van der Vaart (2000) are on the vector l̇ of

first order partial derivatives and the matrix l̈ of second order partial derivatives of the

function l. By way of example we only calculate
∂l

∂t0
and

∂2l

∂t20
:

∂l

∂t0
(t, 4β,Λ)(x, δ, z) = I(δ W= −1)[x− h00(z)]

− (ϕ(x, t(0)) + 1)et0x
z8
0

[x− h00(s)]dΛt(4β,Λ)(s)
∂2l

∂t20
(t, 4β,Λ)(x, δ, z) = (ϕ(x, t(0)) + 1)et0x

z8
0

[h200(s)− x2]dΛt(4β,Λ)(s).
We have that the functions l̇(t, 4β,Λ) and l̈(t, 4β,Λ) are continuous at (β,β,Λ0). If we
evaluate the vector l̇ at the true parameter, we find

l̇(β,β,Λ0) = 4S(β,Λ0)
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where 4S(β,Λ0) is the vector of efficient scores given in (15).
The next conditions (10) and (11) in Murphy and van der Vaart (2000) require that for

any random sequence �β P→ β, we should have that

�Λ
β
(t)

P→ Λ0(t) (16)

and

E(l̇(β, �β,Λ
β
)) = oP (||�β − β||+ n−1/2) (17)

where �Λ
β
(t) is the cumulative hazard estimator in (14). Condition (16) follows from our

Lemma 2 above, while (17) is according to Murphy and van der Vaart (2000) equivalent

to

E(l̇(β,β,Λ
β
)) = oP (||�β − β||+ n−1/2). (18)

But this is trivially true in our situation, since some easy calculations show that the left

hand side in (18) is equal to zero, independent of the function Λ
β
. For any cumulative

hazard function Λ, we have that

E(l̇(β,β,Λ)) = 0.

The last condition requires that the class of functions {l̇(t, 4β,Λ)|(t, 4β,Λ) ∈ V } is Donsker
and that the class {l̈(t, 4β,Λ)|(t, 4β,Λ) ∈ V } is Glivenko-Cantelli in a neighborhood V
of the true parameter (β,β,Λ0). From page 270 in van der Vaart (1998) it suffices to

verify these properties componentwise. We use the bound on the bracketing number

in Corollary 2.7.4. of van der Vaart and Wellner (1996). In this corollary, we divide

IR × [0, T0] into a partition of bounded, convex sets. By assumption (g), the functions
l̇(t, 4β,Λ) and l̈(t, 4β,Λ) are uniformly bounded as a function of z. This is not the case
when we look at these as functions of the covariate x. Therefore we take a partition

IR × [0, T0] =
	
j∈ZZ
]j − 1/2, j + 1/2] × [0, T0]. As explained in van der Vaart and Wellner

(1996, page 159), checking the Donsker (or Glivenko-Cantelli) property can be done by

establishing the convergence of the series
�
j

MjP
1/2(Ij) (or

�
j

�MjP (Ij)) where Mj (or
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�Mj) is the maximum of a component of l̇ (or l̈) in each set Ij of the partition and P (Ij) is

the probability of this set. The moment conditions allow to use a Markov bound for P (Ij),

which makes the above series convergent and hence the Donsker and Glivenko-Cantelli

properties are proved.

All the conditions of Theorem 1 of Murphy and van der Vaart (2000) are satisfied. This,

together with Corollary 1 of the same paper, proves the asymptotic normality of �β and
finishes our proof.

6 Example: survival with malignant melanoma

In this section we illustrate our estimation method with the analysis of clinical trial data

on malignant melanoma (skin cancer) of the Department of Plastic Surgery, University

Hospital of Odense, Denmark. See example I.3.1 in Anderson et al (1993). This study

took place in the period 1962-77 and looked at the survival of 225 patients after their

tumor was completely removed. Along with the survival time, several covariates, like sex,

age, ... were recorded. Twenty patients were left out of the study due to missing values

in their covariates. For each of the remaining 205 patients, they recorded the cause of

death or whether the patient was alive at the end of the study.

As an example, we study survival time till death from malignant melanoma versus sex

of the patient as a covariate. (It is obvious that our results above also cover the discrete

covariate case). As informative censoring variable we take the survival time till death from

other causes. There are several reasons for this. A first reason is that we actually observe

the death of an individual within the time interval under study. A second reason is that

this cause of death is presumably an indirect consequence of malignant melanoma. In

this way we also have an explanation for the difference we make between informative and

non-informative censoring in this model. As non-informative censoring variable, we use

the survival time of the patient when alive at the end of the study. For such individuals

we do not know whether they will ever experience a death caused by malignant melanoma

or a death which is an indirect consequence of malignant melanoma.
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To study whether survival time till death from malignant melanoma is different for the

sexes, we recall the two basic equations of our model:

λF (t | x) = λ0(t)e
β0x (19)

βx =
P (δ = 0 | X = x)

P (δ = 1 | X = x)
= ϕ(x; β1, . . . , βp). (20)

The equation (19) expresses the hazard function of the uncensored observations as a func-

tion of the covariate. Equation (20) models the ratio of the uncensored and informatively

censored observations as a function of the covariate. In this example we take this function

as ϕ(x;β1, β2) = e
β1+β2x. There are several reasons for this choice. A first reason is that

this ratio of probabilities reminds of the generalized logit model. In this case, our model

contains an important submodel. If we take β1 = β2 = 0 then this model reduces to

the ordinary Cox-model where we compare the group of uncensored and informatively

censored observations with the group of non-informatively censored observation. A sec-

ond reason for this choice of the function ϕ is that it simplifies the calculations in such a

way that we can use existing statistical software to compute the estimate for the different

parameters. This is not possible for other choices of ϕ like for example: ϕ(x, b) =
e−bx

1 + ebx
.

Table 1 shows the number of the different type of observations for each value of the

covariate sex.

Table 1

Sex uncens.(δ = 1) infor.cens.(δ = 0) non-infor.cens(δ = −1) Total

Female (0) 28 7 91 126

Male (1) 29 7 43 79

Total 57 14 134 205

Note that the percentage of censored observations in this dataset is high (75%) and that

the major part of this censoring is non-informative.

To estimate jointly the parameters in (19) and (20), we were able to use two different

methods. For arbitrary choices of ϕ, we can use a multivariate Newton-Raphson method
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to solve the maximum likelihood equations (3) - (4). The second method, which is only

valid for this specific choice of ϕ is the so called data duplication method as described in

Lunn and McNeil (1995). The numerical values of the estimators are given in Table 2,

together with asymptotic standard errors obtained by inverting the information matrix.

The complete asymptotic variance-covariance matrix is given in Table 3 and clearly shows

the interaction between the two parts of the model given in (19) and (20). The last two

columns in Table 2 are the Wald chisquare statistic and its asymptotic P -value, based on

a chisquare distribution with 1 degree of freedom.

Table 2

Coef Estimate ASE Wald chisq P -value

β0 0.6630029 0.265151 6.252365 0.01240276

β1 -1.3862944 0.422577 10.762148 0.00103597

β2 -0.0350913 0.596583 0.003460 0.95309507

Table 3

β0 β1 β2

β0 0.070305052 0.035714286 -0.070197044

β1 0.035714286 0.17857143 -0.17857143

β2 -0.070197044 -0.17857143 0.35591133

It is seen that the parameters β0 and β1 are significantly different from zero and that this

is not the case for the parameter β2. From (20) it follows that for these data, βx does

not depend on x. Hence the ratio of the conditional probabilities of being informatively

censored and being uncensored does not change with the covariate. By integrating out it

is also seen that the ratio of marginal probabilities has the same value.

The estimate for β0 shows a significant effect of the covariate on the survival time till

death from melanoma. From Table 2 it follows that the hazard rate for males is 1.94

times the hazard rate for females. The estimates for the cumulative hazard functions for

males and females are shown in Figure 1.
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The cumulative hazard function for females is also the baseline cumulative hazard. Note

that both curves reflect an increase in hazard for larger survival times (which are mostly

non-informatively censored).

[Place Figure 1 about here]

We conclude with some further comments on the model. As already said above, if β1

and β2 are equal to zero, then the model reduces to a Cox regression model where we

treat the uncensored and informatively censored observations as one group versus the

non-informatively censored observations. For the present example, the Wald test for the

null hypothesis that β1 = β2 = 0 results in a value of 22.1546 with an asymptotic P -value

of 0.00002. This shows that there is a difference between our model and the Cox regression

model with uncensored and informatively censored versus non-informatively censored. An

other extreme case of this model is when the estimates for β1 or β2 are infinity and no

proper fit for β0 can be obtained. A way out is to interchange the role of informative and

non-informative or to consider the classical Cox regression model.
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Figure 1: The estimates for the cumulative hazard functions for males and females.
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Figure 1: Cumulative hazard function
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